
E VA L U AT I N G R E C O N F I G U R AT I O N I M PA C T I N
S E L F - A D A P T I V E S Y S T E M S
A N A P P R OAC H B A S E D O N C O M B I N AT O R I A L
I N T E R AC T I O N T E S T I N G

S A G A R S E N , S T E FA N O D I A L E S I O , D U S I C A M A R I J A N , A R N A B
S A R K A R , S I M U L A R E S E A R C H L A B O R AT O RY, O S L O , N O R WAY

August 27, 2015 12h30-12h45, SEAA 2015, Funchal Madeira

1

O U T L I N E

• problem context

• approach to generate test sequence of
reconfigurations

• preliminary validation

• what impact can this work have?

2

T E K I O : A S E L F - A D A P T I V E V I S I O N S Y S T E M

Software system that adapts due to change in
operational context

3

T E K I O ’ S A R C H I T E C T U R E

4

Santiago Hurtado, Sagar Sen, and Rubby Casallas. 2011. Reusing legacy software in a self-
adaptive middleware framework. (ARM '11). ACM, New York, NY, USA, 29-35.

S E V E R A L P O S S I B L E W AY S T O
C O N F I G U R E

N O R M A L
L I G H T / L O W
L I G H T / V I D E O

F I L E

5

S E V E R A L P O S S I B L E W AY S T O
C O N F I G U R E

H I STOGRAM/
MEANSH I FT /
SMOOTH ING

6

S E V E R A L P O S S I B L E W AY S T O
C O N F I G U R E

HAAR / LBP

7

M O D E L L I N G VA R I A B I L I T Y W I T H
C L A S S I F I C AT I O N T R E E S

Composition

Classification

Class

configurations

8

• What can happen when we arbitrarily reconfigure the
self-adaptive system based on contextual changes?

9

R E C O N F I G U R AT I O N

Composition

Classification

Class

10

I M PA C T O N Q O S (F R A M E R AT E)

●●

●

●

●

●

●

●
●
●

●

2
4

6
8

Test Configuration Adaptation Pairs

Fr
am

es
 P

er
 S

ec
on

d

Vinyasa
Maximum FPS Difference

C4 C10 C7 C5 C6 C5 C7 C3 C10 C5

+ 1.17 − 1.54 − 1.11 − 1.44 − 1.35

11

I M PA C T O F Q O S (C P U U S A G E)

●
●

●

●

●

20
30

40
50

Test Configuration Adaptation Pairs

C
PU

_U
sa

ge
_I

n_
Pe

rc
en

ta
ge

s

Vinyasa
Maximum CPU Usage Difference

C8 C7 C7 C9 C11 C6 C9 C7 C11 C10

+ 11.33

+ 10.79

− 6.06

+ 4.85

− 5.42

12

C H A L L E N G E

• How can we generate an adequate test sequence of
reconfigurations such that we can understand and
evaluate reconfiguration impact on QoS?

13

O U T L I N E

• a challenge in testing self-adaptive systems

• approach to generate test sequence of
reconfigurations

• preliminary validation

• what impact can this work have?

14

C O N D I T I O N S F O R T H E T E S T S E Q U E N C E
A D E Q U A C Y
• It is a minimal sequence of repeated configurations of an

adaptive system

• Configurations in the sequence must cover T-wise (pairwise in
most cases) interactions between variable/mutable features. Eg.
interaction between object detection and image segmentation

• Sequence must satisfy constraints between adaptable features
(such as only one of two possible object detection algorithms can
be used in a configuration)

• The sequence must cover all valid R-wise interactions (hops)
between configurations.

15

16

Step 1: Generating configurations covering T-wise
interactions

T R A N S F O R M AT I O N O F C L A S S I F I C AT I O N
T R E E T O A L L O Y

transform

constraint satisfaction problem in a lightweight formal
method Alloy

17

A L L O Y
• The Alloy language can represent a modelling domain such as classification

trees in first-order relational logic with quantifiers.

• Alloy signatures define a finite set of “atoms” immutable named entities.
Eg. The signature Integer has atoms -2,-1,0,1,2,..etc. in the a finite scope of 2.

• Alloy facts, predicates, and functions specify constraints between atoms as
“relations”. Eg. The relation “xor” between two signatures is a 2-tuple
relation

• Alloy Analyser transforms a modelling domain to 3-Conjunctive Normal Form
to be solved by a SAT solver such as MiniSAT in a finite scope. The solver
create atoms in the scope and determines an assignment for all relations
called an Alloy instance.

• Alloy instances can then be transformed back to a a set of configurations

18

H I G H L I G H T S O F T R A N S F O R M AT I O N

• Features of the adaptive system are Alloy signatures

• A Configuration signature is a relation towards a set of
features

• A ConfigurationSet signature is relation to a set of
configurations

• Constraints between features are transformed to Alloy facts

• T-wise combinatorial interactions between features are
transformed to a set of 2^T C(N,T) Alloy predicates

(Details of transformation in the paper)
19

20

• Goal is to solve the Alloy model to obtain a
ConfigurationSet

• With a minimal number of configurations that satisfies all
valid T-wise interaction predicates

• Intractable

I N C R E M E N TA L G R O W T H O F
C O N F I G U R AT I O N S E T

• We incrementally grow configuration sets until all T-wise
predicates are solved in a finite scope.

• We merge all configuration sets into a one set of
configurations that cover all T-wise predicates.

21

22

Step 2: Generating a test sequence covering R-wise
hops between configurations from Step 1

T E S T S E Q U E N C E T H AT C O V E R S A L L R -
W I S E

• Given a set of K configurations that cover T-wise
interactions between features we generate all R-
permutations of the set of K configurations.

• Test sequence satisfying all R-wise permutations
contains K!/(K-R)! reconfigurations

23

R E S U LT L O O K S L I K E T H I S F O R T E K I O

132 Reconfigurations covering
all pairwise feature interactions

and
pairwise reconfigurations

between configurations for Tekio

24

O U T L I N E

• a challenge in testing self-adaptive systems

• approach to generate test sequence of
reconfigurations

• preliminary validation

• what impact can this work have?

25

P R E L I M I N A R Y VA L I D AT I O N

• We measured CPU Usage, Frame rate, and Memory
usage in Tekio by running the sequence of 132
reconfigurations about 100 times

• We discovered several critical reconfigurations that
consistently led to fluctuations in CPU usage and
frame rate.

• These reconfigurations eventually helped develop
adaptation rules for stable QoS

26

O U T L I N E

• a challenge in testing self-adaptive systems

• approach to generate test sequence of
reconfigurations

• preliminary validation

• what impact can this work have?

27

I M PA C T

• (Self-)adaptive component-based systems empower software
reuse and evolution and change behaviour at runtime

• However, this comes the “cost” of unknown and unexpected
behaviour

• We aim to tame this unpredictability by understanding
reconfiguration impact with combinatorial interaction testing

• Combinatorial interaction testing gives good coverage of
behaviour and is successful in detecting unpredictability

• Not much better than random testing

28

29

Thank you!
sagar@simula.no

mailto:sagar@simula.no

