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O U T L I N E

• problem context 

• approach to generate test sequence of 
reconfigurations 

• preliminary validation 

• what impact can this work have?
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T E K I O :  A  S E L F - A D A P T I V E  V I S I O N  S Y S T E M

Software system that adapts due to change in 
operational context 
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S E V E R A L  P O S S I B L E  W AY S  T O  
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S E V E R A L  P O S S I B L E  W AY S  T O  
C O N F I G U R E

H I STOGRAM/
MEANSH I FT /
SMOOTH ING

6



S E V E R A L  P O S S I B L E  W AY S  T O  
C O N F I G U R E

HAAR / LBP
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M O D E L L I N G  VA R I A B I L I T Y  W I T H  
C L A S S I F I C AT I O N  T R E E S

Composition

Classification

Class

configurations
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• What can happen when we arbitrarily reconfigure the 
self-adaptive system based on contextual changes?
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R E C O N F I G U R AT I O N

Composition

Classification

Class
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I M PA C T  O N  Q O S  ( F R A M E  R AT E )
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I M PA C T  O F  Q O S  ( C P U  U S A G E )
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C H A L L E N G E

• How can we generate an adequate test sequence of 
reconfigurations such that we can understand and 
evaluate reconfiguration impact  on QoS?
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O U T L I N E

• a challenge in testing self-adaptive systems 

• approach to generate test sequence of 
reconfigurations 

• preliminary validation 

• what impact can this work have?
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C O N D I T I O N S  F O R  T H E  T E S T  S E Q U E N C E  
A D E Q U A C Y
• It is a minimal sequence of repeated configurations of an 

adaptive system 

• Configurations in the sequence must cover T-wise (pairwise in 
most cases) interactions between variable/mutable features. Eg. 
interaction between object detection and image segmentation  

• Sequence must satisfy constraints between adaptable features   
(such as only one of two possible object detection algorithms can 
be used in a configuration) 

• The sequence must cover all valid R-wise interactions  (hops) 
between configurations.
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Step 1: Generating configurations covering T-wise 
interactions



T R A N S F O R M AT I O N  O F  C L A S S I F I C AT I O N  
T R E E  T O  A L L O Y

transform

constraint satisfaction problem in a lightweight formal 
method Alloy
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A L L O Y
• The Alloy language can represent a modelling domain such as classification 

trees in first-order relational logic with quantifiers. 

• Alloy signatures define a finite set of “atoms” immutable named entities.  
Eg. The signature Integer has atoms -2,-1,0,1,2,..etc. in the a finite scope of 2. 

• Alloy facts, predicates, and functions specify constraints between atoms as 
“relations”. Eg.  The relation “xor” between two signatures is a 2-tuple 
relation 

• Alloy Analyser transforms a modelling domain to  3-Conjunctive Normal Form 
to be solved by a SAT solver such as MiniSAT in a finite scope. The solver 
create atoms in the scope and determines an assignment for all relations 
called an Alloy instance. 

• Alloy instances can then be transformed back to a a set of configurations
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H I G H L I G H T S  O F  T R A N S F O R M AT I O N

• Features of the adaptive system are  Alloy signatures  

• A Configuration signature is a relation towards a set of 
features  

• A ConfigurationSet signature is relation to  a set of 
configurations 

• Constraints between features are transformed to Alloy facts 

• T-wise combinatorial interactions between features are 
transformed to a set of 2^T C(N,T) Alloy predicates 

(Details of transformation in the paper)
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• Goal is to solve the Alloy model to obtain a 
ConfigurationSet  

• With a minimal number of configurations that satisfies all 
valid T-wise interaction predicates 

• Intractable



I N C R E M E N TA L  G R O W T H  O F  
C O N F I G U R AT I O N  S E T

• We incrementally grow  configuration sets until all T-wise 
predicates are solved in a finite scope. 

• We merge all configuration sets into a one set of 
configurations that cover all T-wise predicates.
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Step 2: Generating a test sequence  covering R-wise 
hops between configurations from Step 1



T E S T  S E Q U E N C E  T H AT  C O V E R S  A L L  R -
W I S E  

• Given a set of K configurations that cover T-wise 
interactions between features we generate all R-
permutations of the set of K configurations. 

• Test sequence satisfying all R-wise permutations 
contains K!/(K-R)! reconfigurations
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R E S U LT  L O O K S  L I K E  T H I S  F O R  T E K I O

132 Reconfigurations covering 
all pairwise feature interactions 

and  
pairwise reconfigurations 

between configurations for Tekio
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O U T L I N E

• a challenge in testing self-adaptive systems 

• approach to generate test sequence of 
reconfigurations 

• preliminary validation 

• what impact can this work have?
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P R E L I M I N A R Y  VA L I D AT I O N

• We measured CPU Usage, Frame rate, and Memory 
usage in Tekio by running the sequence of 132 
reconfigurations about 100 times   

• We discovered several critical reconfigurations that 
consistently led to fluctuations in CPU usage and 
frame rate. 

• These reconfigurations eventually helped develop 
adaptation rules for stable QoS
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O U T L I N E

• a challenge in testing self-adaptive systems 

• approach to generate test sequence of 
reconfigurations 

• preliminary validation 

• what impact can this work have?
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I M PA C T

• (Self-)adaptive component-based systems empower software 
reuse and evolution and change behaviour at runtime 

• However, this comes the “cost” of unknown and unexpected 
behaviour 

• We aim to tame this unpredictability by understanding 
reconfiguration impact with combinatorial interaction testing 

• Combinatorial interaction testing gives good coverage of 
behaviour and is successful in detecting unpredictability 

• Not much better than random testing
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