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Abstract— Uncoordinated charging of a rapidly growing num-
ber of electric vehicles (EVs) and the uncertainty associated with
renewable energy resources may constitute a critical issue for
the electric mobility (E-Mobility) in the transportation system
especially during peak hours. To overcome this dire scenario,
we introduce a stochastic game to study the complex interactions
between the power grid and charging stations. In this context,
existing studies have not taken into account the dynamics
of customers’ preference on charging parameters. In reality,
however, the choice of the charging parameters may vary over
time, as the customers may change their charging preferences.
We model this behavior of customers with another stochastic
game. Moreover, we define a quality of service (QoS) index to
reflect how the charging process influences customers’ choices
on charging parameters. We also develop an online algorithm
to reach the Nash equilibria for both stochastic games. Then,
we utilize real data from the California Independent System
Operator (CAISO) to evaluate the performance of our proposed
algorithms. The results reveal that the electricity cost with the
proposed method can result in a saving of about 20% compared
to the benchmark method, while also yielding a higher QoS
in terms of charging and waiting time. Our results can be
employed as guidelines for charging service providers to make
efficient decisions under uncertainty relative to power generation
of renewable energy.

Index Terms— Electric vehicles, transportation electrification,
stochastic game, renewable energy, QoS.

NOMENCLATURE

A. Sets and Indices
i EV index.
m Charging station index.
t Time index.
T Time horizon.
M Number of charging stations.
Hm,t Set of EVs in the m-th charging station.

Manuscript received July 21, 2019; revised May 12, 2020; accepted June 26,
2020. This work was supported by the Norwegian Research Council under
Grant 275106 (LUCS Project), Grant 287412 (PACE Project), and Grant
267967 (SmartNEM Project). The Associate Editor for this article was
S. A. Birrell. (Corresponding author: Hwei-Ming Chung.)

Hwei-Ming Chung and Frank Eliassen are with the Department of Infor-
matics, University of Oslo, 0373 Oslo, Norway, (e-mail: hweiminc@ifi.uio.no;
frank@ifi.uio.no).

Sabita Maharjan and Yan Zhang are with the Department of Informat-
ics, University of Oslo, 0373 Oslo, Norway, and also with the Simula
Metropolitan Center for Digital Engineering, 0167 Oslo, Norway (e-mail:
yanzhang@ieee.org; sabita@ifi.uio.no).

Digital Object Identifier 10.1109/TITS.2020.3008279

B. Variables
Pi,t Charging rate of EV i .
xm,t Power purchased from the grid for charging sta-

tion m at time t .
ωi, j Probability of EV i choosing the j -th deadline.

C. Parameters
SOCi,t State of charge (SOC) of EV i at time t .
SOCfini Target SOC of EV i .
Ecapi Battery capacity of EV i .
Edei Demand of EV i .
Efini Energy level of the battery when EV i leaves.
Pmaxi Maximum charging rate of EV i .
�c Charging efficiency of the EV.
vi (ai ) Departure (arrival) time of EV i .
fi Estimated finishing time of the charging of EV i .
rm,t Renewable power generation of the m-th charging

station at time t .
Pbaset Base load of the power grid at time t .
Ppeak Peak constraint of the power grid.
kt Electricity price at time t .
Qm,t Charging queue of charging station m at time t .
Zm,t Request penalty queue of charging station m at

time t .
Bi,t Waiting time queue of EV i at time t .

D. Operators

| · | Cardinality of set.
AT Transpose of matrix A.

Other notations are defined in the text.

I. INTRODUCTION

ELECTRIFICATION of transportation (E-Mobility) plays
an important role in achieving the goals of the Paris

agreement enforced in 2016, which requires 1170 giga tons
of CO2 from cumulative emissions to be cut down during
the 2015 − 2100 period [1]. Under this trend, the deployment
of EVs is regarded as an important initiative to reduce CO2
emission from conventional vehicles. Various policies have
been made in many countries in order to reach the vehicle
market share of EVs up to 30% by 2030 [2].
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One of the key issues of deploying EVs is the driving
distance. However, with a large and rapidly growing number
of EVs, charging service providers in the transportation system
should be aware of the negative impact of uncoordinated
charging to the efficient and reliable operation of the power
grid. Uncoordinated large-scale EV charging can lead to
problems, such as increase in peak load and power quality
reduction [3]. To cope with this situation, researchers have
proposed various coordinated charging mechanisms (e.g., [4]–
[11]). These algorithms require various charging parameters,
including charging demand, arrival time, and departure time,
as inputs.

The EV charging management problem was studied in [4]–
[8], where the interaction between power grid and charg-
ing stations was considered. The authors in [4] presented a
mathematical model in order to minimize electricity cost for
charging EVs. Based on the framework in [4], the authors
in [5] applied model predictive control to jointly address
optimal power flow problem for managing charging tasks.
Then, the competition between charging stations may lead
to a less efficient charging management solution. Therefore,
irrational behavior of the charging stations was taken into
account in [6]. The authors in [7] further studied the dynamic
behaviors of the charging stations and EV owners. The method
of optimally utilizing the charging capacity was proposed in
[8]. On the other hand, studies such as [9], [10] schedule the
charging of EVs without considering the power generation
from the grid. The authors in [9], [10] proposed a parameter
called user convenience, which is calculated from charging
states of EVs, and algorithms were proposed to maximize
user convenience. The authors in [11] further applied user
convenience to the charging management problem.

Integration of renewable energy resources into the trans-
portation system is another initiative in order to further reduce
CO2 emission. However, dealing with inherent uncertainty
associated with power generation from renewable energy
resources, such as solar panels and wind turbines, will be
a major issue for the charging management problem. Such
uncertainties were addressed in [12]–[19]. In [12], the authors
proposed an index, called competitive ratio, to design an algo-
rithm that can capture system uncertainty; however, the com-
petitive ratio needs the optimal offline solution. The authors
in [13] classified EVs with different priorities to manage
the uncertainty associated with renewable energy generation.
The multi-objective optimization was formulated to solve the
EV charging management problem with renewable energy
in [14]. The authors in [15]–[17] modeled the EV charging
management problem as Markov decision process (MDP). The
uncertainty associated with renewable power was addressed in
both power flow operation and charging management problem
by the authors in [18]. The charging management problem in
a charging station was formulated as a stochastic optimization
problem in [19].

For the studies [15]–[18], they showed that EV charging
management problem with the uncertainty of renewable energy
generation can be solved with MDP and obtained promising
results in terms of electricity cost. However, for utilizing
MDP, we need to model transition probabilities of the system

states (e.g., renewable energy generation or charging demand),
which are not readily available in practice. Thus, we rely on
predicted information. Unfortunately, such predictions have
often proven to be quite inaccurate [20]. For example, the day-
ahead prediction error in some days for renewable energy
generation may result in a large error due to the unpredictable
weather [20]. Therefore, designing an online algorithm for
EV charging management incorporating renewable energy
resources remains a big challenge and an important problem
to solve. Also, different from [12], [13], [19], we study
EV charging management problem among several charging
stations that requires cooperation between charging stations.
In addition, the dynamic behavior of EV owners or charging
stations during charging should be also considered. In [6],
irrational behaviors of the charging stations were modeled
by using prospect theory. Prospect theory was also used
to represent customers’ irrationally varying willingness of
participating in a demand response program [21]. Further-
more, the driving behaviors were incorporated in the driving
range estimation in [22]. The preferences of EV owners on
choosing charging stations and the preferences of charging
stations on choosing EV owners were jointly considered in
[7]. However, the dynamic behavior of EV owners with regard
to the charging parameters also plays an important role in
the charging management problem. Specifically, algorithms
designed in [4], [5], [9]–[11] are based on the parameters given
by EV owners. However, EV owners may change preference
on the charging parameters during charging and they will
not explicitly report this dynamic behavior to the charging
stations. Moreover, the dynamic preference on the charging
parameters may create conditions detrimental to reliability
and resiliency of the charging algorithms. Therefore, when
designing the algorithm for solving the charging management
problem, it should be taken into account that EV owners
may change the charging parameters while the EVs are in
the charging stations. Jointly considering and modeling the
dynamics of customers’ preference on charging parameters
and uncertainty associated with renewable energy resources,
therefore demand novel solutions.

To overcome the aforementioned challenges, in this paper,
we employ a stochastic game, a generalization of MDP, such
that we rely to a lesser extent on the forecasted information.
The forecasted information is only used to calculate the
charging status of EVs for EV owners. Also, EV owners may
dynamically change their preference on charging parameters.
To capture and characterize this dynamic behavior of EV
owners, we introduce a QoS index. More specifically, EV
owners attempt to obtain a better QoS during the charging
process by changing their preferences on charging parameters.
We then model varying choices of EV owners on charging
parameters under the uncertainty associated with renewable
power generation also as a stochastic game. In order to obtain
the Nash equilibria for both stochastic games, we design
an online algorithm. We evaluate the performance of our
proposed solution using real-world data from CAISO [23], that
provides all the historical data of the power system operation
in California. We show that the proposed algorithm yields
satisfactory results even if the prediction error is large.
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Fig. 1. System model used in this paper.

The main contributions of this paper are threefold:

• In the paper, we address the EV charging management
problem incorporating the dynamic behavior of EV own-
ers in terms of changing the charging parameters. We
model the problem in the form of two stochastic games
where the amount of renewable power generated is the
stochastic variable.

• We design an online algorithm to approach the Nash
equilibria for both stochastic games that leads to a subop-
timal solution. We further quantify the proximity of the
obtained solution to the optimal solution.

• We utilize real-world data to illustrate the performance of
the proposed algorithm in terms of total electricity cost
and QoS. The results show a reduction of about 20% in
electricity cost and a gain of about 12% in terms of QoS.

II. SYSTEM MODEL

In this paper, we consider a transportation system consist-
ing of M charging stations each having renewable energy
resources (e.g., solar or wind power) as illustrated in Fig. 1.
All charging stations are connected to power grid and belong
to a single utility or single private enterprise. Then, the owner
of the charging stations collects the charging parameters from
EV owners and then schedule the charging tasks. We consider
a total of N EVs in the system. The charging management
problem is studied in a time horizon T with equal length
time slots t = 1, 2, . . . ,T . In time slot t , Hm,t denotes the
set of EV indices in the m-th charging station. Moreover,
we assign EV owners the same indices as their EVs. Then,
Hm,t is used to represent the cardinality of the set Hm,t . We
use Ht = ⋃M

m=1 Hm,t to denote the set of EV indices in all
charging stations.

For EV i , the state of charge (SOC) at time slot t is denoted
by SOCi,t , where 0 ≤ SOCi,t ≤ 1. Then, the capacity of EV
i is denoted by Ecapi . The target SOC, denoted by SOCfini ,
indicates the expected SOC at the departure time of EV i .
We further employ Edei and Efini to denote demand of EV
owner i and the final battery energy level at departure time,
respectively. Then, ai denotes the arrival time of EV i , and
vi is the corresponding deadline (departure time). With these
notations, we can write Edei = Efini − SOCi,aiE

cap
i . When

EV i arrives in the charging station, EV owner submits the
charging parameters (i.e., ai , vi , and SOCfini ) to the charging
station.

In every time slot, EV i is assigned a charging rate, denoted
by Pi,t , which is restricted by the maximum charging rate,
Pmaxi , based on the physical constraints of batteries. Other
than the charging rate, the charging station can broadcast the
estimated finishing time slot of the charging task, denoted by
fi , to EV owner i . Also, fi is always earlier than vi .

In the m-th charging station, the generation of renewable
energy at time t is represented as rm,t , and its capacity is
denoted by rcapm . However, the available renewable energy
may not be enough to meet the demand of all EVs. To
overcome this situation, the m-th charging station has to
purchase an amount of energy, xm,t , from the grid. The base
load and the peak constraint of the power grid at time t are
Pbaset and Ppeak, respectively. Thus, we have

Pbaset +
M∑

m=1

xm,t ≤ Ppeak. (1)

Throughout this paper, we consider the following:
1) the charging station only has knowledge about the base

load and the generation of renewable energy at the
current time slot. The base load information and the
generation of renewable energy in the future can only
be forecasted; and

2) EVs do not discharge power to the grid (i.e., Pi,t ≤ 0),
since discharging infrastructure for the charging stations
is still expensive and discharging may accelerate battery
degradation rate; and

3) real-time pricing model is adopted. Therefore, charging
stations can only know the current electricity price.

To measure how the EV owners act accordingly to the
charging processes, a QoS index is required. Some charging
algorithms may let every EV spend long time on charging,
such that all EV owners wait long time for SOC reaching
SOC

f in
i . On the other hand, some algorithms select EVs with

priority, and therefore the waiting time of the EVs may vary
considerably. Hence, QoS for EV i can be defined as

QoSi = ln(1 + ( fi − ai )) + ln (1 + (vi − fi )) . (2)

The first term indicates the charging time, which is the duration
for the SOC to reach SOCfini . The second term represents the
duration after SOC reaching SOCfini but before the deadline.
Normally, the total time for EVs staying in the charging
stations can be regarded as the summation of charging and
waiting time. Then, the power for charging EVs is determined
by the charging stations, and therefore the charging stations
can be regarded as the entities that allocate the charging
and waiting time for EVs. The EV owners can evaluate
the charging process with (2), and then adjust the charging
parameters to influence the power allocation of the charging
stations such that the QoS can be improved. The definition
of QoS is motivated by the objective function of the fair
rate allocation problem [24], where QoS in (2) represents the
fairness of the charging process.

III. STOCHASTIC GAME FORMULATION

As shown in Fig. 1, there exists a two-level interaction
between three participants in E-Mobility, namely substation,
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charging stations, and EV owners. The first level is between
the substation and the charging stations, and the second level
is between the charging station and the EV owners. In the
first level, the charging stations decide the amount of power to
draw from the power grid. Then, based on the available power,
the charging station can broadcast the estimated finishing
charging time to EV owners. After receiving fi , EV owners
may want to change the charging parameters to improve QoS.
Because the uncertainty of renewable energy is a stochastic
variable, which can influence the decisions of the participants,
we use stochastic games to model interactions of both levels.
Specifically, we game the first level as a cost minimization
game and game the second level as a deadline selection game.

A. Cost Minimization Game

At the beginning of every time slot, the charging stations
have to decide the amount of power to draw from the power
grid. For achieving better E-Mobility, charging stations require
more power from the power grid than before; however, some
uncertainties may exist so that it is difficult for charging
stations to make decisions. Renewable power generation in
the future and future electricity prices are uncertain. Also,
substations may increase the electricity price in the upcoming
time slot if charging stations consume too much power at
current time slot. To minimize the total electricity cost in
a day, charging stations should interact with the substa-
tions. This interaction can be modeled as a non-cooperative
stochastic game, which can be defined by a tuple �1 =
{kt , r, x, {1, 2, · · · , M}, um }. The main components of the
game include:

• kt represents real-time electricity price at time t ;
• r := {r1,t , · · · , rM,t } represents states of the renewable

power generation in all charging stations;
• x := {x1,t , · · · , xM,t } is the action of the charging

stations;
• {1, 2, · · · , M} is the set of the players (i.e., charging

stations in the power grid); and
• um is the expected payoff function of the m-th charging

station corresponding to the selected action.

The m-th charging station observes the amount of renewable
energy generated, rm,t , and the real-time electricity price, kt ,
at each time slot. Then, the charging stations have to decide
how much power to purchase from the grid (i.e., x). After
selecting the amount of energy to purchase from the grid,
the charging stations receive a payoff, um . The payoff function
for the charging stations is the expected electricity cost in a
day, which can then be expressed as

um(xm,t , x−m,t ) = E

⎡
⎣ T∑

t=1

kt

M∑
m=1

xm,t

⎤
⎦ , (3)

where x−m,t is the power drawn by the charging stations
except the m-th charging station.

In the cost minimization game, the charging stations aim to
minimize the expected electricity cost in a day; we can search
for the Nash equilibrium (NE) to reach this goal. NE for the
cost minimization game is defined as following:

Definition 1 (NE for the Cost Minimization Game): In
game theory, NE is a state of the game that no player can
benefit by unilaterally changing strategies, while the other
players keep their strategies unchanged. The NE of the cost
minimization game �1, denoted by x∗ :=

{
x∗

1,t · · · x∗
M,t

}
,

such that for all charging stations, it satisfies the following
inequality:

um(x∗
m,t , x∗−m,t ) ≤ um(xm,t , x∗−m,t ), (4)

where it implies that the electricity cost will be higher if the
m-th charging station does not choose x∗

m,t .
The NE of the cost minimization game can be obtained by

solving the following optimization problem.

min
x

um(xm,t , x−m,t ) (5a)

subject to E

[∑
t

(
xm,t + rm,t

)] ≥
∑

i∈Hm,t

Ede
i , ∀m (5b)

Pbaset +
M∑

m=1

xm,t ≤ Ppeak, ∀t . (5c)

Constraint (5b) indicates that the amount of power purchased
from the power grid and the generated renewable power should
fulfill the total charging demand. Constraint (5c) represents the
capacity constraint, i.e., the total load in a power grid should
be bounded by Ppeak. The uncertainty associated with the
renewable power level is regarded as a random variable and
the total electricity cost should be calculated under this uncer-
tainty. Therefore, (5) is a stochastic optimization problem.

B. Deadline Selection Game

After deciding xm,t , the charging station allocates power to
EVs and then estimates fi for EV owners. The generation of
the renewable power in the upcoming time slots may influence
the outcome of fi , and therefore fi can be regarded as a
stochastic term to EV owners.

After receiving fi from the charging station, the EV owners
can calculate the waiting time. According to (2), the QoS may
be very low for some EV owners. Then, from the customers’
perspective, the EV owners may change their preferences on
the charging parameters, such that the power allocation to EVs
can be influenced. By doing so, the QoS can be improved. For
the charging parameters, ai is fixed when the EV arrives, and
therefore it cannot be modified. Thus, EV owners can change
vi and SOCfini according to the charging process. In our
model, EV owners can change vi in order to influence QoS.
This kind of stochastic interactions has not been incorporated
in previous studies. Similar to the cost minimization game,
the interaction between EV owners and the charging station
can be formulated as a non-cooperative stochastic game called
deadline selection game. The game can also be represented as
a tuple, �2 = {f, D,Hm,t , ui }, and the main components in
this stochastic game include:

• f := {
f1, · · · , f|Hm,t |

}
denotes the estimated finishing

time of charging broadcasted by the charging station;
• D :=

{
dT

1 , · · · , dT
|Hm,t |

}
is the action space for the EV

owners;

Authorized licensed use limited to: UNIVERSITY OF OSLO. Downloaded on September 01,2020 at 23:16:46 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHUNG et al.: INTELLIGENT CHARGING MANAGEMENT OF EVs CONSIDERING DYNAMIC USER BEHAVIOR AND RENEWABLE ENERGY 5

• Hm,t is the set of the players (i.e., EV owners with EVs
in the m-th charging station); and

• ui is the payoff function to EV owner i .

The charging station will broadcast the estimated finishing
charging time, fi , to EV owner i after allocating the power to
EVs, and fi is defined as

fi =
{

t

∣∣∣∣ SOCi,t = Efini

Ecapi

}
. (6)

After receiving fi from the charging station, EV owner i
can take k different actions in the action space denoted by
dT

i := {di,1 · · · di,k}, where the elements in the action space

revolve around vi . Then, let W :=
{
ωωωT

1 , · · · ,ωωωT
|Hm,t |

}
denote

the vector of the mixed strategies of all EV owners, where, for
each EV owner i ∈ Hm,t , we have ωωωT

i := {ωi,1 · · ·ωi,k } and
ωi, j is the probability corresponding to the choice of the j -th
pure strategy in dT

i . Based on the response, the EV owners
will receive a payoff, which is the risk function denoted by

ui

(
ωωωT

i ,ωωωT−i

)
=
∑

i∈Hm,t

E

⎡
⎣ k∑

j=1

wi, j (SOC
fin
i −SOCi,t )e

fi−di, j

⎤
⎦ ,

(7)

where ωωωT−i denotes the mixed strategy of the EV owners except
the i -th EV owner. Here, the risk function indicates the risk
level of fulfilling the demand under the chosen deadline for
the EV owner. The goal of EV owner i is to choose a mixed
strategy so as to minimize its payoff function as given in (7).

The NE for the deadline selection game can be obtained by
solving the following optimization problem

min
W

ui

(
ωωωT

i ,ωωωT−i

)
(8a)

subject to
k∑

j=1

wi, j = 1, ∀i ∈ Hm,t (8b)

wi, j ≥ 0. ∀i ∈ Hm,t , j (8c)

The objective function of (8) aims to minimize the risk
function for the EV owners. Constraint (8b) indicates that
the sum of all probabilities over the action space should
be 1. Constraint (8c) ensures that wi, j is non-negative. The
uncertainty about renewable power generation may influence
the estimation on fi , and therefore it is also a stochastic
variable Thus, (8) is also a stochastic optimization problem.

IV. EQUILIBRIA FOR THE GAMES

From (5) and (8), it is clear that obtaining the Nash
equilibria is challenging due to the expectation term. Also,
there are many uncertainties such as the electricity prices,
states of the renewable power, and the demand of upcoming
EVs. To avoid the need of predicting such parameters, we will
design an online algorithm, for which we need to convexify
the original problems. We use virtual queues [25] to model the
charging process and then design an online algorithm based
on the virtual queue. The steps are explained in detail in this
section.

A. Cost Minimization Game Convexification

While searching the NE, the charging stations have to meet
the demand from EV owners as stated in (5b). Therefore, for
the m-th charging station, we can construct a virtual queue to
address the current charging tasks. The charging virtual queue
can be expressed as

Qm,t+1 = max{Qm,t − �cYm,t , 0} + λm,t , (9)

where Ym,t = xm,t + rm,t is the total available energy for
charging EVs and λm,t is the demands of the EVs arriving at
time t . Quantity �c is the charging efficiency.

Note that (9) does not include the terms accounting for the
deadline of charging tasks. Thus, we create another virtual
queue for the m-th charging station called request penalty
queue to address this issue, i.e.,

Zm,t+1 = max{Zm,t + ηm Qm,t − �cYm,t , 0}, (10)

where ηm is the parameter that can adjust the growth rate of
Zm,t .

The Lyapunov function associated with the virtual queues
constructed above will be

Lchargt = 1

2

(
M∑

i=1

Q2
m,t +

M∑
i=1

Z2
m,t

)
. (11)

Then, we define a one-step conditional Lyapunov drift as

�charg
t = E

[
Lchargt+1 − Lchargt |Qm,t , Ym,t , λm,t

]
, (12)

where it represents the expected change in the Lyapunov
function from t to t + 1. In (12), it is difficult to capture the
probability density function of the renewable energy. There-
fore, instead of minimizing (12) directly, we can minimize its
upper bound. The individual upper bound of the virtual queues
will be

Q2
m,t+1 − Q2

m,t ≤ �2
c Y 2

m,t + 2Qm,t
(
λmaxm,t − �cYm,t

)
, (13a)

Z2
m,t+1 − Z2

m,t ≤ 2Zm,t
(
ηm Qm,t − �cYm,t

)
+ (ηm Qm,t − �cYm,t )

2. (13b)

Based on (13a) and (13b), Lyapunov drift can be bounded by

�
charg
t

≤
M∑

m=1

E

[
1

2

(
�2

c Y 2
m,t + (ηm Qm,t − �cYm,t )

2
)]

+
M∑

m=1

E

[
Qm,t

(
λmax

2

m,t −�cYm,t

)
+Zm,t

(
ηm Qm,t −�cYm,t

)]
,

= E

[
J1(x)|Qm,t , Ym,t , λm,t

]
, (14)

where we regard λmax
2

m,t as a constant in (14). The detailed
derivation is provided in Appendix A.

Minimizing J1(x) ensures that E

[
J1(x)|Qm,t , Ym,t , λm,t

]
is minimized by opportunistically minimizing an expectation
[26]. However, minimizing the Lyapunov drift upper bound,
�charg

t , can push the queue to a lower value. Therefore,
we further add another penalty term to �charg

t , such that the
stability of the queues can be considered. Then, this is called
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drift-plus-penalty algorithm. The drift-plus-penalty algorithm
states that we should greedily minimize the upper bound of
the drift-plus-penalty. Hence, we formulate an optimization
problem based on the drift-plus-penalty algorithm as

P1 : min
x

J1(x)+kt

(
M∑

m=1

V charg
m xm,t

)
(15a)

subject to Ym,t ≤ min

⎧⎨
⎩
∑

i∈Hm,t

Pmaxi , Qm,t

⎫⎬
⎭ , ∀m (15b)

Pbaset +
M∑

m=1

xm,t ≤ Ppeak. (15c)

Here, the penalty term is the total electricity cost at time t , and
V charg

m is the weight with respect to the electricity cost for
the m-th charging station. Thus, (15a) is a trade-off between
minimizing the queue-length drift and the penalty function.
Some charging stations may not receive enough power in the
current time slot, and therefore we put the remaining demand
into the penalty queue. If the electricity price is the same in
the next time slot, the charging station with huge value in the
penalty queue should receive more power in the next time slot.
This is because we minimize the expected difference of the
summation of two virtual queues as in (12). The optimization
problem P1 is a quadratic optimization problem, which can
be solved using interior-point method [27]. Constraint (15b)
ensures that Ym,t cannot exceed the amount that all EVs are
charged with Pmaxi or the current queue value. Eq. (15c) keeps
the base load with the power drawn from the grid less than
the peak constraint, Ppeak.

B. Deadline Selection Game Convexification

In the deadline selection game, the EV owners attempt to
change the deadline, while the risk level is considered. Then,
according to the definition of QoS in (2), charging time is
fixed after receiving fi , and EV owners can only change the
deadline to influence the waiting time. Therefore, for EV i in
the m-th charging station, we can also define a virtual queue
accounting for the waiting time, which can be written as

Bi,t+1 =min
{
Bi,t +(SOCfini −SOCi,t )

(
ωωωT

i di − fi

)
, Bmax

i

}
,

(16)

where ωωωT
i di − fi represents the time difference between the

selected deadline and the estimated finishing charging time.
Also, in our design, the waiting time decreases if the SOC
approaches the desired SOC, SOCfini . Then, we restrict the
value of the virtual queue with Bmax

i . According to (16),
we can define another Lyapunov function as

Ldeadt = 1

2

∑
i∈Hm,t

B2
i,t . (17)

The Lyapunov drift based on Ldead
t will be

�dead
t = E

[
Ldeadt+1 − Ldeadt |Bi,t , fi ,SOCi,t

]
. (18)

As in Section IV-A, we use drift-plus-penalty algorithm, and
therefore we have to find the upper bound of the Lyapunov

drift. The upper bound of the Lyapunov drift, if only one EV
staying in the charging station, will be

B2
i,t+1 − B2

i,t ≤
(
ωωωT

i di − fi

)2 + 2 Bi,t

(
ωωωT

i di − fi

)
. (19)

The detailed derivation is provided in Appendix B. Based on
(19), we can then define

J2(W)=
∑

i∈Hm,t

((
ωωωT

i di − fi

)2+2 Bi,t

(
ωωωT

i di − fi

))
. (20)

By combining (18) with (20), we can get following relation

�dead
t ≤ E

[
J2(W)|Bi,t , fi ,SOCi,t

]
. (21)

Identical to the steps in Section IV-A, we minimize J2 and then
add a penalty term followed by drift-plus-penalty algorithm.
The problem can now be formulated as

P2 : min
w

J2(W)+
∑

i∈Hm,t

k∑
j=1

V dead
i wi, j (SOC

fin
i −SOCi,t )e

fi−di, j

subject to (8b), (8c) (22)

The objective function of (22) is also a trade-off between
changing the deadline and the risk function. In other words,
EV owner i may choose to leave the charging station earlier
if fi is earlier than vi ; however, the risk function goes higher
for this choice. That is, fi may be influenced by the renewable
power, such that SOC state may not reach SOC f in

i if EV owner
i wants to leave earlier. problem P2 is a quadratic optimization
problem, which can also be solved by using interior-point
method [27].

V. ONLINE ALGORITHM DESIGN

In order to search the Nash equilibria for both stochastic
games presented in Section III, we convexify the original
formulations to two optimization problems in Section IV. In
this section, we design an online algorithm based on these
formulations and then provide the theoretical analysis.

A. Finishing Charging Time Estimation

In the deadline selection game, the charging station will
broadcast fi for every EV owner. Hence, before introducing
the algorithm in detail, we discuss how the charging station can
estimate fi . In this case, we need the aid of the forecasted base
load information. Also, the future electricity price is hard to
be forecasted such that it is unknown to the charging stations.
Hence, we can only assume the electricity price is the same
in the future. This assumption is only used for estimating fi

for EV owners. We can then use the following remark to get
the idea of estimating the finishing charging time.

Remark 1: The optimal solution of EV charging problem
with the same cost function is to balance the load profile
after charging [11], [28]. That is, the total charging demand
should be distributed to the time slots from t to t � =
{argmin vi |i ∈ Ht }. With the based load information and the
charging demand, fi for EV owners can be estimated.
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B. Stochastic EV Charging Management Algorithm

At the beginning of the time slot, each charging station
observes the current base load and the current generation of
renewable energy information. A charging station also deter-
mines the set of EVs and the corresponding charging demand
in the charging station. With this information, the charging
stations solve Problem P1 to determine the amount of power to
draw from the grid by applying numerical optimization algo-
rithms [27]. The virtual queues Qm,t and Zm,t can be updated
with (9) and (10) according to the solution of Problem P1,
respectively. After knowing the available energy for charging
EVs, the charging station decides which EV can be charged.
However, in this paper, we do not focus on selecting EVs to be
charged, as the literature offers many solutions to this aspect.
Therefore, we employ the idea of the earliest deadline first
(EDF) method as in [28], where the EDF method assigns the
charging rate to EVs according to the deadline. After receiving
power from the charging station, the SOC of EV i can be
updated as

SOCi,t+1 = SOCi,t + �c
Pi,t

Ecap
i

. (23)

The charging station then estimates fi for EV owners based
on the Remark 1 in Section V-A. With the updated SOC
information and fi , EV owners can decide to shift their
deadline by solving Problem P2. The deadline can then be
updated using

v̂i = {di,k |k = argmax ωi,k }. (24)

The Bi,t can be updated based on the solution of Problem P2.
Also, the charging station has to collect the charging informa-
tion of EVs, which arrive at time t , at the end of the time slot.
Based on the selection of the EV owners, the m-th charging
station updates the V charg

m as

V charg
m =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(1−α)V charg

m , if
∑

i∈Hm,t
(v̂i − vi ) < 0,

(1+α)V charg
m , if

∑
i∈Hm,t

(v̂i − vi ) > 0,

V charg
m , if

∑
i∈Hm,t

(v̂i − vi ) = 0,

(25)

where α ≈ 0. The intuition of (25) is that charging stations
decrease the trade-off term to purchase more power from the
grid if most of the EV owners wish to leave earlier, and
vice versa. The steps repeat until the time slot reaches T .
On the basis of the discussion above, we summarize the steps
in Algorithm 1.

C. Performance and Computation Complexity Analysis

After designing the online algorithm in Section V-B,
we analyze the performance of the proposed algorithm in this
section. In Algorithm 1, P1 and P2 are convex optimization
problems, and therefore the solution of P1 and P2 will
converge to the optimal solution by utilizing the numerical
algorithms from [27]. However, both (5) and (8) are stochastic
optimization problems, and therefore the optimal solutions of
P1 and P2 can be the sub-optimal solutions of the original
stochastic optimization problems. Hence, we need to show the

Algorithm 1: Stochastic EV Charging Management Algo-
rithm

Input: N EVs with their information
Output: xm,t , Pi,t , v̂i

1 for t = 1 to T do
2 Determine Hm,t and Edei at time t
3 Get the real-time electricity price information at time t
4 Solve Problem P1
5 Update virtual queue with (9) and (10)
6 Select which EVs to be charged by applying EDF
7 Use (23) to update SOC information
8 Estimate fi based on the Remark 1
9 Solve Problem P2 and choose v̂i with (24)

10 Update virtual queue with (16)
11 Charging stations collect the charging information of

upcoming EVs
12 Update the parameters based on (25)

relation between the solutions of P1 and P2, and the solutions
of (5) and (8), respectively.

We first show the relation between the optimal solution
of P1 and (5). Let λi,t , rm,t , and kt be independent and
identically distributed (i.i.d) over time horizon. Then, there
exists a randomized stationary policy such that

E

[
kt

M∑
m=1

x∗
m,t

]
= c∗

t , (26)

where c∗
t is the optimal cost that can be achieved over time

slot t for (5), and x∗
m,t is the corresponding optimal control

decisions. With these notations, we can obtain the following
theorem.

Theorem 1: The total electricity cost in a day obtained by
solving Problem P1 is within O( 1

V charg
m

) to the NE of the cost

minimization game, which implies

T∑
t=1

c∗
t ≤

T∑
t=1

E [kt g(x)] ≤ DT
V charg

m
+

T∑
t=1

c∗
t . (27)

The proof is provided in Appendix C.
The relation between the solution of Problem P2 and NE of

deadline selection game can be obtained in a similar manner
in Theorem 1. With Theorem 1, we can conclude that the
solutions of P1 and P2 are the �-optimal solutions of (5)
and (8), respectively. Therefore, Theorem 1 implies that the
proposed algorithm can yield a solution close to the Nash equi-
libria of the cost minimization and deadline selection games
by increasing the trade-off parameters. However, increasing
V charg

m represents that the charging stations will focus more
on minimizing the electricity cost. Then, increasing V dead

i
increases the waiting time for EV owners.

Next, we analyze the computation complexity of Algo-
rithm 1. Operations other than those in lines 3 and 8 are
all linear. We therefore focus on analyzing the computation
complexity of solving the optimization formulation in lines 3
and 8. In lines 3 and 8, both Problem P1 and P2 are quadratic
convex optimization problems, and they can be easily solved.
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TABLE I

THE PARAMETER SETTING FOR DIFFERENT SCENARIOS

For the traditional interior-point method, the complexity is
O(n log(n)), where n is the number of the variables [29].
Therefore, the computation complexity of solving Problem P1
and P2 are O(M log(M)) and O(N log(N)), respectively.
The computation complexity of Algorithm 1 will then be
O(n log(n)), where n =max{M, N}. Thus, we can claim that
the overall complexity of Algorithm 1 is reasonably low.

VI. NUMERICAL RESULTS

We use real-world data from CAISO [23] to evaluate
the performance of the proposed algorithm. The data from
05/01/2018 is used. The base load information is normalized
by the maximum value. Then, we can get the solar and wind
energy capacity in California, such that we can calculate the
generation profile of unit renewable energy capacity. We also
employ real-time pricing data from [23]. Unless otherwise
specified, the simulation settings are as follows.

The total number of EVs is N , and they are randomly
assigned to one of the M charging stations, each of them hav-
ing 30 kWh solar and 10 kWh wind generation capacity. The
set of variables for different scenarios are provided in Table I.
The base load information is generated by multiplying the
maximum load in a day and the normalized load curve.

The EVs used in the simulation are all Nissan Leaf 2018,
each with a battery capacity of 40 kWh and a maximum
charging rate of 6.6 kW. The initial SOC values are randomly
and uniformly generated from the interval [0, 1], and the
EVs are assumed to be fully charged at the departure time.
The charging efficiency is set to 90%. The arrival time and
deadlines are generated randomly around 8 : 00 and 17 : 00,
respectively.

The time horizon is divided into 96 time slots with a length
of 15 minutes to represent a 24-hour period. Let V charg

m be
350 for all charging stations, V dead

i be 200 for all EV owners,
ηm be 1, and α be 0.001 as initial values. In the deadline
selection game, EV owners can choose between 5 actions,
{vi − 2, vi − 1, vi , vi + 1, vi + 2}, which means k = 5. Then,
Bmax

i is set to 20.
During the simulation, we compare our algorithm with the

offline charging cost minimization algorithm (OCCMA) in
[4] and the online charging scheduling algorithm (OCSA)
in [11] with the user convenience defined in [9] as the
benchmarks. The OCCMA obtains the real electricity price
and the real generation of renewable energy, and therefore
the OCCMA leads to the minimum electricity cost. Then,
we analyze two scenarios to OCSA denoted by OCSA-F and
OCSA-N. The forecasted renewable generation and forecasted
electricity price are available to the OCSA denoted as OCSA-
F. By contrast, OCSA-N only obtains the information of the

Fig. 2. Charging cost comparison.

forecasted renewable generation. Forecasted electricity price is
generated by adding Gaussian noise (with zero mean and dime
variance) to the real-time pricing data. Comparison between
the OCSA-F and the OCSA-N provides some useful insight on
the influence of the forecasted electricity price to the OCSA.
Also, OCSA-N is similar to the methods in [9], [10].

A. Electricity Cost

In this part, we consider the electricity cost of different
scenarios listed in Table I. Then, the results are presented
in Fig. 2. Note that we normalized the electricity cost with
the result of the OCCMA.

According to the simulation results, the proposed algorithm
yields results very close to the optimal solution. The proposed
method leads to 7.07% higher cost compared to the optimal
solution. The OCSA-F yields a comparable performance as
the proposed method. However, the difference is 26.12% for
OCSA-N. By applying the proposed algorithm, we can save
about 20.00% of the electricity cost compared to OCSA-N.

The OCSA-F leads to better performance than the OCSA-
N because of the knowledge about the future electricity price.
However, the performance of OCSA-F depends heavily on the
accuracy of the forecasted electricity price. If the difference
between the forecasted electricity price and the real electricity
price increases, the performance of the OCSA-F may degrade
to the performance of OCSA-N. OCSA-N performs poorly
because the future electricity price is unknown to the charg-
ing stations. Also, the estimated wind power generation on
05/01/2018 is much lower than the real power generation.
Therefore, the charging stations purchase more power from the
grid at the current time slot without considering the electricity
price. By contrast, with the proposed formulation, we have a
trade-off term between the remaining charging demand and
the electricity cost. If the price is too high, the charging
stations therefore use the renewable energy to charge without
purchasing the external energy from the power grid.

B. QoS

Other than the electricity cost, we study the outcome of the
deadline selection game. First, we present the results of the
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TABLE II

THE PROBABILITY OF SELECTING THE DEADLINE

Fig. 3. Charging profile of the 14-th EV.

deadline selection game. We assume there is only one EV in
the charging station for ease of explanation. Let fi be 16, V2
be 250, and Bi,t be 10. Three different SOC, which are 0.52
(Case 1), 0.64 (Case 2), and 0.73 (Case 3), are compared. We
then compare the influence of the value of virtual queue Bi,t .
Let fi be 16, V2 be 250, and SOCi,t be 0.64. Three different
virtual queue values, namely 10 (Case 2), 6.5 (Case 4), and
3.5 (Case 5), are discussed. The EV has five choices, namely
17 : 30, 17 : 45, 18 : 00, 18 : 15, and 18 : 30. The results are
provided in Table II.

From the results in Table II, it is clear that EV owners
postpone the deadline if they have low SOC right now. By
contrast, the EV owner wishes to leave the charging station
earlier if they have higher SOC at the current time slot. Thus,
EV owners have higher confidence to leave earlier if they are
at higher SOC. Next, we discuss the results of changing the
value of Bi,t . Under the same SOC, the EV owner with a
higher value of Bi,t would like to prepone the deadline. That
is, if the EV owners stay a long time in the charging station
without receiving power, the EV owner tends to leave earlier.

After showing the outcome of the deadline selection game,
we discuss its influence on the charging process. Therefore,
we need to analyze the charging profile of the EV in detail.
The charging profile of the 14-th EV is provided in Fig.3.
Here, we also compare the proposed method without deadline
selection game, which is EDF. OSCA-F has a similar charging
mechanism as OCSA-N, and thus the charging profile of
OSCA-F is omitted. The charging time of the 14-th EV is
8.75, 7.75, 6.75, and 5.75 hrs by utilizing OCCMA, OCSA-N,
proposed method, and EDF, respectively. We can observe that

Fig. 4. Average QoS evaluation.

the charging time of the proposed method is higher than EDF
but lower than OCCMA and OCSA-N. For both OCCMA and
OCSA-N, the EV keeps receiving power until the deadline
is reached; therefore, the charging time is long. In the EDF
method, the 14-th EV will be immediately charged after it
enters the charging station because it has an earlier deadline
than most of the EVs. However, for the proposed method,
it will postpone the charging task around 1 hour because some
EVs already have accumulative waiting time. Hence, the 14-th
EV needs to wait to receive the charging power.

We then evaluate the average QoS for the EV owners
in the charging stations in Fig. 4. According to the results,
the proposed algorithm can obtain 47.19% and 12.13% higher
QoS than the benchmarks, respectively. For the OCCMA,
it distributes the charging demands between ai and vi , such
that the charging tasks are finished just before the deadline.
In this case, the charging time is long, but the waiting is short.
By contrast, user satisfaction is used to schedule the charging
tasks without considering the cost in OCSA-N. By using this
algorithm, some EVs constantly receive the power, but some
need to wait a long time to get the power from the charging
station. The charging time of the OCSA-N thus varies consid-
erably. Then, the average QoS of the OCSA-F lies between
the OCCMA and the OCSA-N because of the accuracy of the
forecasted information as mentioned in Sec. VI-A. Therefore,
some EVs obtain high QoS but some EVs have low QoS;
however, the average QoS is still higher than the OCCMA. If
the forecasted information is accurate, the average QoS of the
OCSA-F will be the same as OCCMA. On the other hand,
the average QoS of the OCSA-F can approach to the average
QoS the OCSA-N if the forecasted information is inaccurate.
For the proposed method, we allow EVs to shift their deadline,
such that we can avoid the issue of a large variance in charging
time in the OSCA-N. That is why our proposed method can
obtain higher average QoS.

VII. CONCLUSION

In this work, we presented an intelligent EV charging man-
agement scheme for the charging stations in the transportation
system. By using the proposed method, we can eliminate
the negative impact of charging a large and rapidly growing
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number of EVs in electric mobility to the power grid. We
modeled the interactions between the power grid and charging
stations as a stochastic game. We incorporated the dynamic
behavior of EV owners in terms of their preference or choice
on charging parameters as another stochastic game. We then
proposed an online algorithm to approach the Nash equilibria
of both games. We utilized real data from California Inde-
pendent System Operator to evaluate the performance of the
proposed algorithm. The numerical results illustrated that the
proposed algorithm can achieve electricity cost very close
to the minimum electricity cost while also enhancing QoS
significantly.

APPENDIX

A. Lyapunov Drift Upper Bound in Cost Minimization Game

In (11), it contains two components, Qm,t and Zm,t . To get
the upper bound of (12), we derivate the upper bound of the
squared difference of each component separately. The detailed
derivation of the upper bound of Q2

m,t+1 − Q2
m,t is provided

as follow:

Q2
m,t+1

= (
max{Qm,t − �cYm,t , 0} + λm,t

)2
, (28a)

≤ (
Qm,t − �cYm,t

)2 + 2λm,t max{Qm,t − �cYm,t , 0} + λ2
m,t ,

(28b)

≤ Q2
m,t + �2

c Y 2
m,t + λ2

m,t + 2Qm,t
(
λm,t − �cYm,t

)
, (28c)

≤ Q2
m,t + �2

c Y 2
m,t + λmax

2

m,t + 2Qm,t
(
λmaxm,t − �cYm,t

)
. (28d)

In (28a), we square the both side of (9). Then, (28b) is
obtained by applying binomial theorem and max{a, 0}2 ≤ a2.
By neglecting the 2λm,t Ym,t , we can get (28c). In the final,
we assign λm,t with λmaxm,t to get (28d).

Then, a similar calculation can be carried out for the
derivation process of getting the upper bound of Z2

m,t+1−Z2
m,t .

The detailed derivation of the upper bound is provided as
follow:

Z2
m,t+1 = (max{Zm,t + ηm Qm,t − �cYm,t , 0})2 , (29a)

≤ (Zm,t + ηm Qm,t −�cYm,t
)2

, (29b)

=Z2
m,t +2Zm,t

(
ηm Qm,t −�cYm,t

)+(ηm Qm,t −�cYm,t )
2.

(29c)

B. Lyapunov Drift Upper Bound in Deadline Selection Game

In this appendix, we aim to provide the derivation of the
upper bound of (18). Eq. (17) contains the summation of all
EVs in the charging station. However, it is easier to show
derivation with only one EV in the charging station. Therefore,
we can ignore the summation first. The detailed derivation of
the upper bound is provided as follow:

B2
i,t+1=

(
min
{
Bi,t +(SOCfini −SOCi,t)

(
ωωωT

i di − f j

)
,Bmax

})2
,

(30a)

≤
(

Bi,t + (SOCfini − SOCi,t )
(
ωωωT

i di − f j

))2
, (30b)

= B2
i,t + (SOCfini − SOCi,t )

2
(
ωωωT

i di − fi

)2

+ 2 Bi,t (SOC
fin
i − SOCi,t )

(
ωωωT

i di − fi

)
, (30c)

≤ B2
i,t +

(
ωωωT

i di − fi

)2 + 2 Bi,t

(
ωωωT

i di − fi

)
. (30d)

We still square both side of (16) first. Then, the first inequality,
(30b), comes from the relation of min{a, b}2 ≤ a2. We use
binomial theorem to get (30c). In the final, (30d) is obtained
by assuming SOCfini − SOCi,t ≤ 1 − SOCi,t .

C. Proof of Theorem 1

Problem P1 is designed to minimize the drift bound, which
holds for all policies, including the optimal policy given in
(26). For notational simplicity, we assume V charg

m is the same
for all charging stations. Let us define g(x) =∑M

m=1 xm,t . We
then introduce the optimal solution to the right-hand side of
drift-plus-penalty term [30], [31] as

Lchargt+1 − Lchargt + V charg
m kt g(x)

≤ 1

2

M∑
m=1

λmax
2

m,t + J1(x∗)|Qm,t ,Ym,t ,λm,t + c∗
t V charg

m . (31)

Taking expectation on both side of (31) and using iterated
expectation, we can get following relation

E

[
Lchargt+1

]
−E

[
Lchargt

]
+V charg

m E [kt g(x)]≤ D+c∗
t V charg

m ,

(32)

where D is the constant in (31), and the optimal solution of x
makes the term related to the virtual queues be 0. The above
inequality holds for all t > 0. Therefore, we sum the above
equation from t = 0 to t = T , and then we can obtain

E

[
LchargT +1

]
− E

[
Lcharg0

]
+

T∑
t=1

V charg
m E [kt g(x)]

≤ DT +
T∑

t=1

V charg
m c∗

t . (33)

As E[Lcharg0 ] = 0 and E[LchargT +1 ] > 0, we divide V charg
m

on both side and then we get the second inequality listed in
Theorem 1.
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