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Abstract. Modern society is increasingly dependent on Cyber-Physical Systems 
(CPSs) in diverse domains such as aerospace, energy and healthcare. 
Employing Product Line Engineering (PLE) in CPSs is cost-effective in terms 
of reducing production cost, and achieving high productivity of a CPS 
development process as well as higher quality of produced CPSs. To apply CPS 
PLE in practice, one needs to first select an appropriate variability modeling 
technique (VMT), with which variabilities of a CPS Product Line (PL) can be 
specified. In this paper, we proposed a set of basic and CPS-specific variation 
point (VP) types and modeling requirements for proposing CPS-specific VMTs. 
Based on the proposed set of VP types (basic and CPS-specific) and modeling 
requirements, we evaluated four VMTs: Feature Modeling, Cardinality Based 
Feature Modeling, Common Variability Language, and SimPL (a variability 
modeling technique dedicated to CPS PLE), with a real-world case study. 
Evaluation results show that none of the selected VMTs can capture all the 
basic and CPS-specific VP and meet all the modeling requirements. Therefore, 
there is a need to extend existing techniques or propose new ones to satisfy all 
the requirements. 

Keywords: Product Line Engineering, Variability Modeling, and Cyber-
Physical Systems 

1 Introduction 
Cyber-Physical Systems (CPSs) integrate computation and physical processes and 
their embedded computers and networks monitor and control physical processes by 
often relying on closed feedback loops [1, 2]. Nowadays, CPSs can be found in many 
different domains such as energy, maritime and healthcare. Many CPS producers 
employ the Product Line Engineering (PLE) practice, aiming to improve the overall 
quality of produced CPSs and the productivity of their CPS development processes 
[3].  

In [4], a systematic domain analysis of the CPS PLE industrial practice is 
presented, which focuses on capturing static variabilities and facilitating product 
configuration at the pre-deployment phase. The systematic domain analysis identifies 



the following key characteristics of CPS PLE: (1) CPSs are heterogeneous and 
hierarchical systems; (2) the hardware topology can vary from one product to another; 
(3) the generic software code base might be instantiated differently for each product, 
mainly based on the hardware topology configuration; and (4) there are many 
dependencies among configurable parameters, especially across the software code 
base and the hardware topology. Various challenges in CPS PLE were also reported 
in [4] such as lacking of automation and guidance and expensive debugging of 
configuration data. In general, cost-effectively supporting CPS PLE, especially 
enabling automation of product configuration, is an industrial challenge.  

Cost-effectiveness of PLE is characterized by its support for abstraction and 
automation. Generally speaking, abstraction is a key mean that enables reuse. Concise 
and expressive abstractions for CPS PLE are required to specify reusable artifacts at a 
suitable level of abstraction as commonalities and variabilities. Such abstractions are 
quite critical and provide the foundation for automation. To capture variabilities at a 
high level of abstraction, a number of variability modeling techniques (VMTs) are 
available in the literature, including Feature Modeling (FM) [5], Cardinality Based 
Feature Modeling (CBFM) [6], a UML-based variability modeling methodology 
named SimPL [7], and Common Variability Language (CVL) [8]. These VMTs were 
proposed for a particular context/domain/purpose. For example, SimPL was designed 
for the architecture level variability modeling. It is however no evidence showing 
which VMT suits CPS PLE the best. 

In this paper, we propose a set of basic variation point (VP) types, CPS-specific VP 
types, and modeling requirements of CPS PLE. To define basic VP types, we 
constructed a conceptual model for basic data types in mathematics. Corresponding to 
each basic data type, we defined one basic VP type (Section 4.1). We also constructed 
a conceptual model for CPS based on the knowledge gathered from literature about 
CPSs and our experience of working with industry [4]. The second and third authors 
of the paper have experience of working with industrial CPS case studies and have 
derived the conceptual model. From the CPS conceptual model, we systematically 
derived a set of CPS-specific VP types (Section 4.2). We also derived a set of 
modeling requirements based on the literature and our experience in working with 
industry [4] (Section 5).  Based on the proposed basic and CPS-specific VP types and 
the modeling requirements, we evaluated FM [5], CBFM [6] , CVL [8], and SimPL 
[7]. FM was selected as it is the most widely used VMT in industry [9] and CBFM is 
an extension of FM. CVL is a language for modeling variability using any domain 
specific language based on Meta Object Facility (MOF), which was submitted to 
Object Management Group for standardization but did not go through due to 
Intellectual Property Rights issues. SimPL is a specific VMT dedicated for CPS PLE 
and has been applied to address industrial challenges. To evaluate the VMTs, we 
modeled a case study (Material Handling System-MHS) with all the VMTs and 
evaluated them using the proposed eight basic and 16 CPS-specific VP types, and 
nine modeling requirements. 

Results of the evaluation show that 1) only SimPL and CVL can capture all the 
basic VP types, whereas FM and CBFM provide partial support. None of the four 
VMTs can capture all the CPS-specific VP types; 2) SimPL and CVL provide support 
for 81% and 75% of the total CPS-specific VP types respectively, whereas CBFM 
supports 50% and FM supports only 15% of the total CPS-specific VP types; 3) 



SimPL satisfies all but one of the modeling requirements, FM and CBFM only covers 
one modeling requirement, and CVL fully or partially fulfills four requirements out of 
nine requirements. Based on above results, we can conclude that it is required to 
either extend an existing technique or propose a new one to facilitate the variability 
modeling in the context of CPS PLE. The proposed VP types and modeling 
requirements can be also used as evaluation criteria for selecting existing VMTs or 
defining new ones for a particular application when necessary. 

The rest of the paper is organized as follows: Section 2 presents the related work. 
Section 3 presents the context of the work. Section 4 presents the proposed VP types. 
Section 5 presents the modeling requirements. In Section 6, we report evaluation 
results. Threats to validity are given in Section 7. Section 8 concludes the paper. 

2 Related Work 
This section discusses the existing literature that compares or classifies VMTs, 
systematic literature reviews (SLRs) and surveys of VMTs.  

Galster et al. [10] conducted a SLR of 196 papers published during 2000-2011, on 
variability management in different phases of software systems. Results show that 
most of the papers focus on design time variabilities and a small portion of the papers 
focus on runtime variabilities. In [11], Chen et al. conducted a SLR of 33 VMTs in 
software product lines and highlighted the challenges involved in variability modeling 
such as evolution of variability, and configuration. Arrieta et al. [12] conducted a SLR 
of variability management techniques, but limited their scope to techniques for 
Simulink published after 2008. Berger et al. [9] conducted a survey on industry 
practices of variability modeling using a questionnaire, aiming to discover 
characteristics of industrial variability models, VMTs, tools and processes. Another 
industrial survey of feature-based requirement VMTs was conducted to find out the 
most appropriate technique for a company [13]. They evaluated existing techniques 
based on requirements collected from the company’s engineers, including readability, 
simplicity and expressive, types of variability and standardization.  

 Eichelberger and Schmid [14] classified and compared 10 textual VMTs in terms 
of scalability. They compared the selected techniques in five different aspects: 
configurable elements, constraints support, configuration support, scalability, and 
additional language characteristics. Similarly, Sinnema and Deelstra [15] classified 
six VMTs  and compared them based on key characteristics of VMTs such as 
constraints, tool support, and configuration guidance. Czarnecki et al. [16] reported an 
experience report, in which they compared two types of VMTs: decision modeling 
and feature modeling. They compared them in 10 aspects: application, hierarchy, unit 
of variability, data types, constraints, modularity, orthogonality, mapping to artifacts, 
tool support, and binding time and mode. A comparative study [17] was reported to 
compare two VMTs, i.e., Kconfig and CDL, in the context of operating systems, in 
terms of constructs, semantics, and tool support.  

All the above studies classify and evaluate various types of VMTs either in general 
or for a particular domain other than CPSs. We however, in this paper, propose a set 
of basic and CPS-specific VP types as well as a list of modeling requirements for 



evaluating VMTs in the context of CPS PLE, based on which we evaluated four 
representative VMTs with a non-trivial case study. 

3 Context 
Section 3.1 and 3.2 introduce the case study and the four VMTs. In Section 3.3, we 
present the study procedure. 

3.1 Case Study 

The case study is a product line of Handling Systems, which consist of various types 
of sub-systems such as Automatic Storage Retrieval System (ASRS), Automatic 
Guided Vehicle (AGV), Automatic Identification and Data Collection (AIDC) and 
Warehouse Management System. We selected three of these systems: AGV, AIDC, 
and ASRS for the evaluation of the selected VMTs. AGV is a fully automatic 
transport system that uses unmanned vehicles to transport all types of loads without 
human intervention. It is typically used within warehouse, production and logistics for 
safe movement of goods. AIDC is used to identify, verify, record, and track the 
products. Typically, these systems are used in supply chain, order picking, order 
fulfillment, and determination of weight, volume, and storage. ASRS is an automated 
system for inventory management, which is used to place and retrieve the loads from 
pre-defined locations in the warehouse. The 
descriptive statistics of the MHS case study’s class 
diagram are given in Table 1. We modeled the 
case study (MHS) using the four selected VMTs 
(i.e., FM, CBFM, SimPL, and CVL). The case 
study models corresponding to selected VMTs are 
available at [18]. 

3.2 Variability Modeling Techniques 

Feature Modeling (FM) is widely applied in practice 
[9]. A feature model is organized hierarchically as a 
tree. The root node of the tree represents the system, 
whereas the descendent nodes are functionalities of the 
system (features). A feature can be mandatory, 
optional or alternative. A feature can either be a 
compound feature that has one or more descendent 
features or a leaf feature with no descendent features. Fig. 1 shows an excerpt of the 
FM model for AGV modeled using Pure::Variants [19]. As shown in Fig. 1, 
AGVHardware, Sensor, and Connectivity are mandatory features. The Connectivity 
feature has three alternative features, i.e., Bluetooth, Wifi, and NFC. The Sensor 
feature has two optional features: MultiRayLEDScanner and LaserScanner.  

Cardinality Based Feature Modeling 
(CBFM) is an extension to FM, which 
introduces new concepts such as Feature 
Cardinalities, Groups and Groups 

 
Fig. 1. An excerpt of FM for AGV 

Table 1. Descriptive statistics of the 
MHS  

Element Count 
Class 132 
Generalization  56 
Composition 62 
Association 69 
Simple attribute 113 
Enumerated attribute 82 
Enumeration 23 
Enumeration Literal 73 

 

Fig 2. An excerpt of CBFM for AGV 



Cardinalities, Attributes, and References. For Feature Cardinalities, features can be 
annotated with cardinalities such as <1..*> whereas alternative features and optional 
features are special cases with cardinality <1..1> and <0..1> respectively. A feature 
group can be or-group with cardinality <1..k> or alternative-group with cardinality 
<1..1>. For an alternative-group, one can select only one feature, whereas for or-
group, one can select 1 to k number of features where k is the maximum number of 
features in the group. A feature can have one attribute of either String or Integer type. 
To achieve better modularization, a special leaf node (i.e., Reference) was introduced 
to refer to another feature model. This can be used to divide a large feature model into 
smaller ones to support modularization. As shown in Fig. 1 AGVHardware, Sensor, 
and Connectivity are mandatory features.  AGVHardware and Sensor have feature 
cardinality <1..10>. Connectivity has an 
alternative-group that consists of three 
features: Bluetooth, Wifi, and NFC. The 
Sensor feature has an or-group consisting of 
two features with group cardinality <0..2>. 

Common Variability Modeling (CVL) 
is a generic variability modeling language 
and is composed of three interrelated models: 
base model, variability model, and resolution 
model. The base model can be defined in UML or any MOF based Domain Specific 
Language (DSL). Corresponding to the base model a variability model is defined. The 
variability model has a tree structure to specify variabilities. The resolution model 
specifies configurations of variabilities corresponding to a particular product. To 
support CVL, an Eclipse-based plugin CT-CVL is available [20]. In Fig. 3, rounded 
rectangles (e.g., AGVHardware, SensorType, Connectivity) represent Choice elements 
and a rectangle (e.g., Sensor) represents a VClassifier element whereas an ellipse 
represents a variable. Multiplicity inside the VClassifier Sensor (0..10) indicates that 
the number of instances of sensors can be between zero to 10 where for each instance 
one needs to configure sensor type and model. Connectivity and SensorType are 
ChoiceVP with group cardinality (1..1), which means only one option can be selected 
from given alternative options. 

SimPL is a UML based VMT, which provides notations and guidelines for 
modeling variabilities and commonalities of CPS product lines at the architecture and 
design level. To support SimPL, several modeling tools [21] (RSA, MagicDraw, and 
Papyrus) are available. It captures four types of VPs: Attribute-VP, Type-VP, 
Topology-VP, and Cardinality-VP. A SimPL product line model can be specified with 
a subset of UML structural elements and stereotypes defined in the SimPL profile. 
Constraints are specified in the Object Constraint Language (OCL). SimPL has two 
major views: SystemDesignView and VariabilityView. SystemDesignView is 
composed of HardwareView, SoftwareView, and AllocationView to represent 
hardware components, 
software components and 
their relationship. 
VariabilityView is for 
capturing and structuring 
variabilities using UML 

 
Fig. 3. An excerpt of CVL for AGV 

 
Fig. 4. An excerpt of SimPL for AGV 



packages and template parameters. Stereotype «ConfigurationUnit» is applied on 
UML packages to group relevant variabilities. Variabilities are defined as template 
parameters of a package template and can trace back to hardware or software 
elements in the SystemDesignView. Fig. 4 presents an excerpt of the HardwareView 
of MHS, in which AGV is a hardware component composed of zero to many Sensors. 
Sensor can be of two types: LaserScanner and MultiRayLEDScanner.  AGV has one 
Attribute-VP (connectivity) and one Cardinality-VP (sensors) denoting the number of 
instances of Sensor. For Sensor, two variabilities are specified: model (Attribute-VP) 
and type of sensor (Type-VP). AGVConfigurationUnit and SensorsConfigurationUnit 
are the template packages that are used to organize the variabilities corresponding to 
hardware component AGV and hardware Sensor respectively. 

3.3 Procedure of the Study 

Fig. 5 describes the procedure that we followed to conduct the study. First, we 
constructed a conceptual model for defining data types in mathematics and then we 
validated the data types with MARTE [22] and SysML [23], as these two standards 
are often used for modeling embedded systems and therefore can be used for 
modeling CPSs. In the third step, we defined a set of basic VP types (Section 4.1), 
based on the mathematical basic data types. We used basic data types for defining the 
basic VP types, as configuring a VP always requires assigning/selecting a value to/for 
a basic type variable. In the fourth step, we derived a set of modeling requirements 
(Section 5) based on knowledge collected from the literature and our experience of 
conducting industry-oriented research in the field of CPS PLE [4]. In the fifth step, 
we constructed a conceptual model for CPS, which is used to systematically derive 
the CPS-specific VP types (Step 6, more details in Section 4.2). In Step 7, we 
modeled the MHS case study with the selected VMTs, followed by the evaluation of 
the selected VMTs (Step 8, details in Section 6), based on the basic VP types, CPS-
specific VP types, and the set of modeling requirements.  

 
Fig. 5. Procedure of the study 

4 Basic and CPS-specific Variation Point Types 

4.1 Basic Variation Point Types 

Based on the basic data types in mathematics, we constructed a conceptual model to 
classify them, as shown in Fig. 6. A Variable can be a VariationPoint or a Non-
configurableVariable, which represents the configurable and non-configurable 



variable in CPS PLE. Each 
Variable has a Type, which is 
classified into two categories: 
Atomic (taking a single value at 
a given point of time) and 
Composite (composed of more 
than one atomic type, where 
each atomic type variable takes 
exactly one value at a given point in time). Atomic types are further classified into 
Quantitative types (taking numeric values) and Qualitative types (taking non-numeric 
values). Quantitative types can be Discrete (taking countable values) or Continuous 
(taking uncountable values). Integer is the concrete Discrete type, whereas Real is the 
concrete Continuous type. Qualitative types are categorized into String, Binary and 
Categorical that is further classified into Ordinal and Nominal.  

A Composite data type combines several variables and/or constants, which is 
classified as: Compound and Collection. Compound takes only variables (e.g., 
complex numbers in SysML containing two variables realPart and imaginaryPart 
[23]) whereas Collection takes Variables and/or Constants (e.g., collection of colors). 
Attributes minElements and maxElements of Collection specify the minimum and 
maximum numbers of elements in a collection. As shown in Fig. 6, we have classified 
Collection into six types (i.e., Bag, Array, Record, 
Set, OrderedSet and Sequence) based on three 
properties: homogeneity, uniqueness and order. 
The homogeneity, uniqueness, and order properties 
of each collection type are specified as OCL 
constraints (Appendix A). Table 2 summarizes the 
six types of Collection along with their properties.  

To validate the conceptual model of the basic data types, we mapped the data types 
defined in the MARTE Value Specification Language-VSL [22] and SysML [23] to 
the basic data types presented in Fig. 6. We used MARTE and SysML for validation 
because these two 
modeling languages can 
be used for modeling 
CPSs [24, 25]. During the 
validation, we do not 
include the extended data 
types provided in 
MARTE, as they are 
defined by extending the 
data types used in our 
mapping. In case of 
SysML we include all the 
data types. Results of the 
mapping are presented in Table 3, from which one can see that each data type in 
MARTE and SysML has a correspondence in our basic data type classification, which 
suggests that our classification of the basic data types is complete.  

Table 2. Collection types  
Collection  Hom. Uni. Ord. 
Bag No No No 
Record No Yes No 
Set Yes Yes No 
OrderedSet Yes Yes Yes 
Array Yes No No 
Sequence Yes No Yes 
 

Table 3. Mapping MARTE and SysML data types to the basic data types  
MARTE SysML Basic data types 

Integer Integer Integer 
UnlimitedNatural UnlimitedNatural Integer 
Boolean Boolean Binary 
String String String 
Real Real Real 
DateTime Complex Compound 
EnumerationType Enumeration Ordinal/Nominal 
 ControlValue Nominal/Ordinal 
IntervalType UnitAndQuantityKind Compound 
TupleType  Compound 
ChoiceType  Compound 
CollectionType  Collection 

 

 
Fig. 6. Basic data types 

 



In Fig. 7, we present a classification of basic VP types where one basic VP type is 
defined corresponding to each basic data type presented in Fig. 6. A VariationPoint 
can be a CompositeVP or an AtomicVP. An AtomicVP can come with any of the six 
concrete types: StringVP, BinaryVP, NominalVP, OrdinalVP, IntegerVP, and RealVP 
corresponding to String, Binary, Nominal, Ordinal, Integer, and Real respectively. A 
CompositeVP can be CompoundVP or CollectionVP, which are defined corresponding 
to Compound and Collection data types respectively. As shown in Fig. 7, a 
CompositeVP may have several AtomicVPs and/or CompositeVPs depending on the 
number of variableElements (Fig. 6) involved in the Composite data type. 
CollectionVP may have two additional IntegerVP(s), i.e., lowerLimitVP and 
upperLimitVP corresponding to the minimum and maximum numbers of the elements 
in the collection.  

 
Fig. 7. Classification of the basic VP types  

4.2 CPS-specific Variation Point Types  

In this section, first we present a conceptual model for CPS (Fig. 8), based on which 
we then derive a set of CPS-specific VP types (Table 4). As shown in Fig. 8, a CPS 
can be defined as a set of physical components (e.g., human heart, engine), interfacing 
components (e.g., sensor, actuator, network), and cyber components (with deployed 
software), which are integrated together to accomplish a common goal.  

 
Fig. 8. A CPS conceptual model 

A CPS can have one or more topologies, which define how various components are 
integrated. A CPS controls and monitors a set of physical properties. A 
CyberComponent can either be a CommunicationComponent or 
ComputationalComponent, which takes values of StateVariables as input and updates 
their values when needed. Each component in CPS has several component properties. 
CPS may interact with PhysicalEnvironment and ExternalAgents (e.g., external 
systems). Both PhysicalProperty and ComponentProperty have attributes name, type, 
and unit to specify the name, type (e.g., descriptive, numeric, Boolean), and unit of a 
specific property. PhysicalProperty has an extra Boolean attribute isContinuous to 
specify either it is a continuous or a discrete type of property. 



In Table 4, the first column represents the CPS concepts used to derive CPS-
specific VP types and the second column shows the derived CPS-specific VP types. 
The last column presents the basic VP type corresponding to a particular CPS-specific 
VP type.  

Table 4. CPS-specific VP types  
CPS Concept CPS-Specific VP Type Basic VP Type 

CP Descriptive-VP StringVP 
CP, PP DiscreteMeasurement-VP  IntegerVP 
CP, PP ContinuousMeasurement-VP  RealVP 
CP, PP BinaryChoice-VP BinaryVP 
CP, PP PropertyChoice-VP NominalVP/OrdinalVP 
CP, PP MeasurementUnitChoice-VP OrdinalVP 
CP, PP MeasurementPrecision-VP RealVP 
CP, PP, COM Multipart/Compound-VP CompoundVP 
COM ComponentCardinality-VP  IntegerVP 
COM ComponentCollectionBoundary-VP IntegerVP 
COM ComponentChoice-VP NominalVP/OrdinalVP 
COM ComponentSelection-VP CollectionVP 
Topology TopologyChoice-VP NominalVP 
Deployment AllocationChoice-VP NominalVP 
Interact InteractionChoice-VP NominalVP 
Constraint ConstraintSelection-VP CollectionVP 
  *CP=ComponentProperty, PP =PhysicalProperty, COM=Physical, Interfacing, or Physical Component  
PhysicalProperty and ComponentProperty: Descriptive-VP, 

DiscreteMeasurement-VP, ContinuousMeasurement-VP, BinaryChoice-VP, 
PropertyChoice-VP, MeasurementUnitChoice-VP, and MeasurementPrecision-VP are 
defined for physical properties and/or component properties of CPS. Descriptive-VP 
is a StringVP, which requires setting a value in order to configure it. It can be defined 
for a textual ComponentProperty such as ID of a sensor. DiscreteMeasurement-VP 
and ContinuousMeasurement-VP are IntegerVP and RealVP respectively. Both these 
two types of VPs can be defined for numeric component properties (e.g., data 
transmission interval of a sensor) or physical properties (e.g., length and weight of a 
physical component) of CPS. BinaryChoice-VP is a BinaryVP, which can be defined 
for Boolean physical properties (e.g., the presence of a magnetic field) and component 
properties (e.g., whether a sensor keeps the events’ log). PropertyChoice-VP is a 
NominalVP or an OrdinalVP, which requires selecting one value from a list of pre-
defined values. For example, a ComponentProperty can be connectionType, which 
can be configured as wired, 3G, or Wi-Fi, which can be captured as a PropertyChoice-
VP. MeasurementUnitChoice-VP is an OrdinalVP, which is derived from the unit of 
PhysicalProperty and ComponentProperty. For example, one can select meter, 
centimeter or millimeter as a unit for length (a PhysicalProperty). 
MeasurementPrecision-VP is a RealVP,  which is related to the degree of 
measurement precision for a PhysicalProperty or ComponentProperty.  

Component: ComponentCardinality-VP, ComponentCollectionBoundary-VP, 
ComponentChoice-VP, and ComponentSelection-VP are derived from the different 
types of CPS components: CyberComponent, InterfacingComponent, 
PhysicalComponent. ComponentCardinality-VP is an IntegerVP, which is related to 
varying number of instances of a CPS component (e.g., number of temperature 
sensors). ComponentCollectionBoundary-VP is an IntegerVP, which is related to the 
upper limit and/or the lower limit of a collection of CPS components. For example, 



the maximum and minimum numbers of sensors supported by a controller. 
ComponentChoice-VP is a NominalVP/OrdinalVP, which is about selecting a 
particular type of CPS component such as selecting a speedometer sensor from 
several speedometers with various specifications. ComponentSelection-VP is a 
CollectionVP, which is about selecting a subset of CPS components from a collection 
of CPS components such as selecting sensors for a product from available sensors. 

Multipart/Compound-VP is a CompoundVP, which can be specified for a 
PhysicalProperty, ComponentProperty, or a component (Physical, Cyber, or 
Interfacing) that requires configuring several constituent VPs involved in it. As in the 
domain of CPS, it is common that different properties do not give complete meaning 
unless they are combined together. For example, length is a PhysicalProperty, which 
is meaningless without a unit. Hence, we need a Compound-VP type, which involves 
two VPs including length and its unit. A Compound-VP can also be defined for a 
component (e.g., sensor), which contains several other VPs defined for its properties. 

Topology: TopologyChoice-VP is a NominalVP, which is related to selecting a 
topology from several alternatives. For example, how CyberComponent (e.g., 
controller) is connected with InterfacingComponents (e.g., sensors and actuators).  

Deployment: AllocationChoice-VP is a NominalVP, which is about the 
deployment of software on a CyberComponent (e.g., controller). For example, the 
same version of software can be deployed on different controllers or different 
versions of software can be deployed on the same controller.  

Interaction: InteractionChoice-VP is a NominalVP, which is about the interaction 
(presented as association named interact in Fig. 8), of two CPS components (e.g., 
CyberComponent and InterfacingComponent) or interaction of CPS with an external 
agent, which can be for example an external system. 

Constraint: ConstraintSelection-VP is a CollectionVP, which is about selecting a 
subset of constraints in order to support the configuration of a specific product, from a 
set of constraints defined for the corresponding CPS product line. 

5 Modeling Requirements  
In addition to capturing different types of VPs, a VMT should also accommodate 
some modeling requirements to enable automation of configuring CPS products. 
These requirements (Table 5) are derived from the literature and our experience of 
working with industry [4]. 

In  Table 5, R1 is related to support different binding times of a VP, as a VP can be 
configured at three different phases [26]: the pre-deployment phase, the deployment 
phase and the post-deployment phase. Requirements R2 focuses on a traceability 
mechanism to link the variability model and its base whereas R3 is related to realizing 
the separation of concerns principle in the product line model. R4-R8 are relevant to 
different types constraints that a VMT should be able to capture for enabling 
automation of the configuration process in CPS PLE [3]. In [3], a constraint 
classification was presented and we extended it by adding two more categories: 
inference and conformance. These constraints are needed to facilitate different 
functionalities of an interactive, multi-step and multi-staged configuration solution, 



such as consistency checking, decision inferences. R9 is related to modeling different 
types of configurable elements of CPSs. 

Table 5. Modeling requirements 
ID Name Description 
R1 VP binding time Support different binding times for a VP (e.g., pre-deployment, deployment, 

and post-deployment phases).  
R2 Linkage between 

VP and the base 
Provide a mechanism to relate a VP to the corresponding base model element. 

R3 Separation of 
Concerns 

Provide a mechanism to realize the principle of separation of concerns to enable 
multi-staged and cross-disciplinary configuration of CPS.  

R4 Variability 
dependency 

Capture dependencies between a VP and a variant, two VPs, and two variants. 

R5 Ordering Specify constraints on the order of configuration steps. 
R6 Inference Specify constraints that can be used to configure VPs automatically. 
R7 Conformance Specify conformance rules for ensuring the correctness of configuration data.  
R8 Consistency Specify consistency rules for checking the consistency of the configuration data 

and variability models. 
R9 Multidisciplinary Model Software, PhysicalComponent, InterfacingComponent, 

CyberComponent, and PhysicalEnvironment elements of CPS.  

6 Evaluation  
The purpose of the evaluation is to compare the selected four VMTs with the aim to 
help modelers to select an appropriate VMT or propose a new one if necessary for 
CPS PLE, which can capture different types of VPs (Section 4) and meet the 
modeling requirements (Section 5). Corresponding to this goal, we pose the following 
research questions: RQ1: To what extent can each selected VMT capture the basic 
VPs? RQ2: To what extent can each selected VMT capture the CPS-specific VPs? 
RQ3: To what extent does a selected VMT comply with the modeling requirements? 
We answer RQ1, RQ2 and RQ3 in Section 6.1, Section 6.2, and Section 6.3, 
respectively. 

6.1 Evaluation Based on Basic VP Types (RQ1)  

To answer RQ1, we evaluate the selected VMTs based on the basic VP types. In 
Table 6, the first column represents the basic VP type and the second column 
indicates if a basic VP type is required by the MHS case study, whereas columns 3-6 
show how each selected VMT supports each basic VP type.  

As one can see from Table 6, modeling the MHS case study requires all the basic 
VP types. However, FM supports only three out of eight basic VP types: BinaryVP, 
NominalVP and OrdinalVP. Optional feature and alternative-group with two features 
of FM map to BinaryVPs. In FM, alternative-group corresponds to NominalVPs and 
OrdinalVPs, but FM does not differentiate NominalVP from OrdinalVP. CBFM 
provides support for all the basic VP types except for CompoundVP. Corresponding 
to RealVPs and StringVPs, CBFM provides attributes (one attribute per feature) of 
Real and String respectively. However, for IntegerVPs, it offers feature and group 
cardinalities together with Integer attributes. For BinaryVP, CBFM has optional 
features, alternative-groups, feature cardinalities (0..1), and Boolean attributes. 
Similar to FM, CBFM also provides alternative-groups, which map to NominalVPs 
and OrdinalVPs and CBFM does not differentiate these two types. For CollectionVP, 
CBFM provides alternative-groups and or-groups. 



Both SimPL and CVL support all the basic VP types. In SimPL, Attribute-VP 
defined with Real and String attributes map to RealVPs and StringVPs. IntegerVPs 
can map to Attribute-VPs defined on Integer attributes or Cardinality-VP. To support 
BinaryVP, SimPL provides Attribute-VP defined on attributes of the binary type, 
Cardinality-VP with two options, Type-VP with two types, and Topology-VP with 
two topologies. Cardinality-VP, Type-VP, and Topology-VP offered by SimPL can 
be mapped to NominalVPs and OrdinalVPs. SimPL does not differentiate NominalVP 
and OrdinalVP. To support CompoundVP, SimPL defines «ConfigurationUnit», 
which can be applied on packages, to organize a set of relevant VPs. In SimPL, 
CollectionVP corresponds to Cardinality-VP. 

Table 6. Evaluation based on the basic VP types (RQ1) 
Basic VP 

Type MHS  VMT 
FM CBFM SimPL CVL 

IntegerVP Yes No One At/F, 
G & F 
Cardinality 

Attribute-VP, 
Cardinality-VP 

Multiplicity, 
ParametricVP 

RealVP Yes No One At/F Attribute-VP ParametricVP 
StringVP Yes No One At/F Attribute-VP ParametricVP 
BinaryVP Yes OF, 

Alt. F 
One At/F, 
OF, 
Alt. G, 
F-Cardinality 

Attribute-VP, 
Cardinality-VP, 
Type-VP, 
Topology-VP 

ChoiceVP (ObjectSubstitution, 
SlotAssignment, ObjectExistence, 
SlotValueExistence, LinkExistence), 
Multiplicity, ParametricSlotAssignment 

NominalVP Yes Alt. G Alt. G Attribute-VP, 
Type-VP, 
Topology-VP 

Group of SlotAssignment (i.e., ChoiceVP) 
with group Multiplicity (1,1), 
ParametricObjectSubstitution (i.e., 
ParametricVP). 

OrdinalVP Yes Alt. G Alt. G 

CompoundVP Yes No No Configuration 
Unit 

CompositeVP, VClassifier with several 
Repeatable-VP(s). 

CollectionVP Yes No Alt. G, 
OR G 

Cardinality-VP VClassifier with configurable Multiplicity, 
group of SlotAssignment (i.e., ChoiceVP). 

*F=feature, OF=optional feature, G=group, At=attribute, Alt=Alternative, /= per, &= and 

To support RealVP and StringVP, CVL provides ParametricVP. For IntegerVP it 
provides ParametricVP and cardinalities. For BinaryVP, CVL has different types of 
ChoiceVPs (i.e., ObjectSubstitution, SlotAssignment, ObjectExistence, 
SlotValueExistence, and LinkExistence) along with multiplicity and 
ParametricSlotAssignment (i.e., ParametricVP). In CVL, both NominalVPs and 
OrdinalVPs can be mapped to SlotAssignments (i.e., ChoiceVP) with group 
multiplicity (1..1) or ParametricObjectSubstitution (i.e., ParametricVP).  Similar to all 
the other VMTs, CVL does not differentiate NominalVP and OrdinalVP. In CVL, 
CompoundVP maps to CompositeVP and a VClassifier with several RepeatableVP(s) 
can also be used to model CompoundVPs. For CollectionVP, CVL has VClassifier 
with the multiplicity other than (1..1) and a group of SlotAssignment (i.e., ChoiceVP). 

To summarize, both SimPL and CVL support all the basic VP types whereas FM 
and CBFM provide partial support. None of the selected four VMTs differentiate 
NominalVP and OrdinalVP. 

6.2 Evaluation Based on the CPS-Specific VP Types (RQ2) 

To answer RQ2, we evaluate the selected four VMTs based on the CPS-specific VP 
types (Section 4.2) and VPs modeled for the MHS case study. In Table 7, the first 
column represents the CPS-specific VP types and the second column indicates if a 



particular CPS-specific VP type is required by the MHS case study. Columns 3-6 are 
related to the four VMTs to signify if they support a particular CPS-specific basic VP 
type. The seventh column shows the number of VPs in the MHS case study 
corresponding to a particular CPS-specific VP type, whereas columns 8-11 show the 
number of VPs modeled using the four VMTs.   

As one can see from Table 7, our case study (MHS) contains VPs corresponding to 
all the CPS-specific VP types. FM does not cater majority of the CPS-specific VP 
types and only supports fully or partially three out of 16 CPS-specific VP types: 
BinaryChoice-VP, PropertyChooice-VP, and ComponentChoice-VP. 

CBFM supports six of 16 CPS-specific VP types: ComponentCardinality-VP, 
ComponentCollectionBoundary-VP, MeasurementPrecision-VP, PropertyChoice-VP, 
ComponentChoice-VP, and ComponentSelection-VP. It provides partial support for 
three CPS-specific VP types (i.e., Descriptive-VP, DiscreteMeasurement-VP, and 
ContinuousMeasurement-VP) because CBFM allows adding only one attribute for 
each feature. BinaryChoice-VP is also partially supported, as it can be captured using 
optional feature or cardinality but CBFM does not allows adding Boolean attribute. 
The remaining six CPS-specific VP types are not supported by CBFM. 

Both SimPL and CVL support Descriptive-VP, DiscreteMeasurement-VP, 
ContinuousMeasurement-VP, ComponentSelection-VP,  ComponentCardinality-VP, 
ComponentCollectionBoundary-VP, BinaryChoice-VP,  MeasurementPrecision-VP, 
MeasurementUnitChoice-VP, PropertyChoice-VP, ComponentChoice-VP, and 
Compound-VP. SimPL also supports TopologyChoice-VPs, which cannot be captured 
using CVL. The remaining three CPS-specific VP types (i.e., AllocationChoice-VP, 
InteractionChoice-VP, and ConstraintSelection-VP) are not catered by either SimPL 
or CVL.   

Table 7. Evaluation of VMTs based on the CPS-specific VP types and VPs (RQ2) 

CPS-Specific VP Type VP Types Coverage VP Coverage 
MHS FM CBFM SimPL CVL MHS FM CBFM SimPL CVL 

Descriptive-VP Yes No Partial Yes Yes 34 0 4 34 34 
DiscreteMeasurement-VP Yes No Partial Yes Yes 23 0 5 23 23 
ContinuousMeasurement-VP Yes No Partial Yes Yes 51 0 18 51 51 
ComponentCardinality-VP Yes No Yes Yes Yes 42 0 42 42 42 
ComponentCollectionBoundary-VP Yes No Yes Yes Yes 42 0 42 42 42 
MeasurementPrecision-VP Yes No Yes Yes Yes 2 0 2 2 2 
BinaryChoice-VP Yes Partial Partial Yes Yes 3 0 0 3 3 
PropertyChoice-VP Yes Yes Yes Yes Yes 82 82 82 82 82 
ComponentChoice-VP Yes Yes Yes Yes Yes 12 12 12 12 12 
TopologyChoice-VP Yes No No Yes No 9 0 0 9 0 
AllocationChoice-VP Yes No No No No 3 0 0 0 0 
InteractionChoice-VP Yes No No No No 15 0 0 0 0 
MeasurementUnitChoice-VP Yes No No Yes Yes 59 0 18 59 59 
ConstraintSelection-VP Yes No No No No 1 0 0 0 0 
ComponentSelection-VP Yes No Yes Yes Yes 42 0 42 42 42 
Multipart/Compound-VP Yes No No Yes Yes 64 0 0 64 26 
Total (count) 16 2.5 8 13 12 484 94 267 465 418 
Coverage (%) 100% 15% 50% 81% 75% - 19% 55% 96% 86% 

As shown in Table 7, none of the selected VMTs supports all the CPS-specific VP 
types. SimPL supports 81%, FM supports only 15%, CVL caters 75%, and CBFM 
covers 50% of the total CPS-specific VP types. Using SimPL and CVL we were able 



to model 96% and 86%, whereas with FM and CBFM, we could model only 19% and 
55% of total VPs in our case study.  

6.3 Evaluation Based on the Modeling Requirements (RQ3) 

Table 8 summarizes the results of our evaluation of the four VMTs in terms of 
modeling requirements (Section 5) with MHS. In Table 8, the first two columns are 
used to identify the requirements and the third column indicates if a requirement is 
required by MHS. Columns 4-7 signify if the VMTs support a particular requirement. 

Table 8. Results for the evaluation of the VMTs based on the modeling requirements (RQ3) 
ID Name MHS FM CBFM CVL SimPL 
R1 VP binding times Yes No No Yes No 
R2 Linkage between VP and the base Yes No No Yes Yes 
R3 Separation of Concerns Yes No No Partial Yes 
R4 Variability dependencies Yes Partial Partial Partial Yes 
R5 Ordering  Yes No No Depends 

on base 
modeling 
language 

Yes 
R6 Inference Yes No No Yes 
R7 Conformance Yes No No Yes 
R8 Consistency  Yes No No Yes 
R9 Multidisciplinary Yes No No Partial 

None of the selected VMTs except for CVL allows specifying the binding time 
(R1) of a VP to enable its configuration in different phases. CVL and SimPL support 
linking a VP to the corresponding base model element explicitly (R2), which is 
however not supported by FM and CBFM, as they do not have separate base models. 
FM and CBFM do not support the separation of concerns (R3) and CVL supports 
partially as it models variabilities separately from the base model. SimPL supports R3 
as it provides hardware, software and allocation views in addition to the variability 
view. For MHS, we captured all the four views defined in SimPL. But, it still requires 
a view for specifying environment elements and corresponding VPs.  

R4-R8 are related to capturing different types of constraints to enable automation in 
CPS PLE. FM and CBFM provide partial support for capturing variability 
dependencies such as requires and excludes, but they are unable to capture other 
complex constraints such as consistency rules. In the case of CVL, it uses the Basic 
Constraint Language [8] for capturing simple propositional and arithmetic constraints 
but it is unable to capture all the types of constraints discussed in Section 5. If the 
base model is modeled in UML, then OCL can be integrated with CVL, thereby 
allowing the specification of all the types of constraints. SimPL is based on UML and 
OCL, which makes it possible to capture all the types of constraints.  

MHS is a multidisciplinary system, which contains Software, CyberComponent, 
and different types of PhysicalComponent and InterfacingComponent interacting with 
PhysicalEnvironment but none of the selected VMTs explicitly model these 
multidisciplinary elements of CPS (R9). SimPL supports all, except for 
PhysicalEnvironment elements. In case of CVL, it depends on the DSL used for 
modeling the base model, which may or may not have the capability of modeling 
different elements of CPS.  



7 Threats to validity 
One threat to validity of our study is the selection of the VMTs. Since it is not 
practically feasible to evaluate all existing VMTs, we therefore selected four 
representative VMTs. Another threat to validity is the completeness of the basic and 
CPS-specific VP types and modeling requirements. Note that our approach for 
deriving the basic VP types is systematic, which to certain extent ensures their 
completeness. In addition, we validated them using SysML and MARTE, which are 
two existing standards often used for embedded system modeling. We derived CPS-
specific VP types based on thorough domain analyses and our experience in working 
with industry. We also verified that the MHS case study covers all the CPS-specific 
VP types. 

8 Conclusion 
In this paper, we present a set of basic and CPS-specific VP types that need to be 
supported by a VMT in the context of CPS PLE. Moreover, we present a set of 
modeling requirements, which need to be catered to enable the automation of 
configuration in CPS PLE. Based on the proposed basic and CPS-specific VP types 
and modeling requirements, we evaluated four VMTs: feature model, cardinality 
based feature model, CVL, and SimPL, with a real-world case study. Results of our 
evaluation show that the selected four VMTs cannot capture all the VP types and 
none of the four VMTs meets all the requirements.  This necessitates the extension of 
an existing technique or proposal of a new one to facilitate CPS PLE. The proposed 
VP types and modeling requirements can be used as evaluation criteria to select a 
suitable VMT or develop a new one if necessary.  
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Appendix A: OCL Constraints  
Homogeneity: context Array, Set (Sequence, 
OrderedSet)(self.constantElements->size()=0 and 
self.variableElements->select(a|a.oclIsKindOf(Collection))->size()=0 
and self.variableElements->forAll(a,b| a.type=b.type))or 
(self.variableElements->size()=0 and self.constantElements-
>forAll(a,b| a.type=b.type)) or (self.constantElements->size()=0 and 
self.variableElements->size()=self.variableElements-
>select(a:Variable|a.type.oclIs KindOf(Collection))->size() and  
self.variableElements->forAll(v1, 
v2|(v1.type.oclAsType(Collection).constant Elements->size()=0 and 
v1.type.oclAsType(Collection ).variableElements->forAll(v3:Variable | 
v3.type = v2.type.oclAsType(Collection ).variableElements-
>asSequence()->first().type)) or (v1.type.oclAsType( 
Collection).variableElements->size()=0 and v1.type.oclAs 
Type(Collection).constantElements->forAll(v3:Constant| 
v3.type=v2.type.oclAsType (Collection).constantElements-
>asSequence()->first().type)))) 

Uniqueness: context Record (Set, OrderedSet) 
self.variableElements->select (self.variableElements -
>forAll(a,b| a=b))->isEmpty() and  self.constant Elements-
>select (self.constantElements->forAll(a,b| a=b))->isEmpty() 

Order: context Sequence self.variableElements->asSet()-
>size() >1 implies self.variableElements->asSequence()-
>reverse() <> self.variableElements->asSequence() and 
self.constantElements->asSet()->size() >1 implies 
self.constantElements->asSequence()->reverse() <> 
self.constantElements->asSequence() 
context OrderedSet self.variableElements->asOrderedSet()-
>reverse() <> self.variableElements->asOrderedSet() and 
self.constantElements->asOrderedSet()->reverse() <> 
self.constantElements->asOrderedSet() 

 


