
This paper will be presented at System Analysis and Modeling (SAM) Conference 2016
(http://sdl-forum.org/Events/SAM2016/index.htm)

Evaluating Variability Modeling Techniques for Supporting Cyber-Physical System Product Line
Engineering (Author Version)

Evaluating Variability Modeling Techniques for
Supporting Cyber-Physical System Product Line

Engineering

Safdar Aqeel Safdar 1, Tao Yue1,2, Shaukat Ali1, Hong Lu1

 1Simula Research Laboratory, Oslo, Norway
2 University of Oslo, Oslo, Norway

{safdar, tao, shaukat, honglu}@simula.no

Abstract. Modern society is increasingly dependent on Cyber-Physical Systems
(CPSs) in diverse domains such as aerospace, energy and healthcare.
Employing Product Line Engineering (PLE) in CPSs is cost-effective in terms
of reducing production cost, and achieving high productivity of a CPS
development process as well as higher quality of produced CPSs. To apply CPS
PLE in practice, one needs to first select an appropriate variability modeling
technique (VMT), with which variabilities of a CPS Product Line (PL) can be
specified. In this paper, we proposed a set of basic and CPS-specific variation
point (VP) types and modeling requirements for proposing CPS-specific VMTs.
Based on the proposed set of VP types (basic and CPS-specific) and modeling
requirements, we evaluated four VMTs: Feature Modeling, Cardinality Based
Feature Modeling, Common Variability Language, and SimPL (a variability
modeling technique dedicated to CPS PLE), with a real-world case study.
Evaluation results show that none of the selected VMTs can capture all the
basic and CPS-specific VP and meet all the modeling requirements. Therefore,
there is a need to extend existing techniques or propose new ones to satisfy all
the requirements.

Keywords: Product Line Engineering, Variability Modeling, and Cyber-
Physical Systems

1 Introduction
Cyber-Physical Systems (CPSs) integrate computation and physical processes and
their embedded computers and networks monitor and control physical processes by
often relying on closed feedback loops [1, 2]. Nowadays, CPSs can be found in many
different domains such as energy, maritime and healthcare. Many CPS producers
employ the Product Line Engineering (PLE) practice, aiming to improve the overall
quality of produced CPSs and the productivity of their CPS development processes
[3].

In [4], a systematic domain analysis of the CPS PLE industrial practice is
presented, which focuses on capturing static variabilities and facilitating product
configuration at the pre-deployment phase. The systematic domain analysis identifies

the following key characteristics of CPS PLE: (1) CPSs are heterogeneous and
hierarchical systems; (2) the hardware topology can vary from one product to another;
(3) the generic software code base might be instantiated differently for each product,
mainly based on the hardware topology configuration; and (4) there are many
dependencies among configurable parameters, especially across the software code
base and the hardware topology. Various challenges in CPS PLE were also reported
in [4] such as lacking of automation and guidance and expensive debugging of
configuration data. In general, cost-effectively supporting CPS PLE, especially
enabling automation of product configuration, is an industrial challenge.

Cost-effectiveness of PLE is characterized by its support for abstraction and
automation. Generally speaking, abstraction is a key mean that enables reuse. Concise
and expressive abstractions for CPS PLE are required to specify reusable artifacts at a
suitable level of abstraction as commonalities and variabilities. Such abstractions are
quite critical and provide the foundation for automation. To capture variabilities at a
high level of abstraction, a number of variability modeling techniques (VMTs) are
available in the literature, including Feature Modeling (FM) [5], Cardinality Based
Feature Modeling (CBFM) [6], a UML-based variability modeling methodology
named SimPL [7], and Common Variability Language (CVL) [8]. These VMTs were
proposed for a particular context/domain/purpose. For example, SimPL was designed
for the architecture level variability modeling. It is however no evidence showing
which VMT suits CPS PLE the best.

In this paper, we propose a set of basic variation point (VP) types, CPS-specific VP
types, and modeling requirements of CPS PLE. To define basic VP types, we
constructed a conceptual model for basic data types in mathematics. Corresponding to
each basic data type, we defined one basic VP type (Section 4.1). We also constructed
a conceptual model for CPS based on the knowledge gathered from literature about
CPSs and our experience of working with industry [4]. The second and third authors
of the paper have experience of working with industrial CPS case studies and have
derived the conceptual model. From the CPS conceptual model, we systematically
derived a set of CPS-specific VP types (Section 4.2). We also derived a set of
modeling requirements based on the literature and our experience in working with
industry [4] (Section 5). Based on the proposed basic and CPS-specific VP types and
the modeling requirements, we evaluated FM [5], CBFM [6] , CVL [8], and SimPL
[7]. FM was selected as it is the most widely used VMT in industry [9] and CBFM is
an extension of FM. CVL is a language for modeling variability using any domain
specific language based on Meta Object Facility (MOF), which was submitted to
Object Management Group for standardization but did not go through due to
Intellectual Property Rights issues. SimPL is a specific VMT dedicated for CPS PLE
and has been applied to address industrial challenges. To evaluate the VMTs, we
modeled a case study (Material Handling System-MHS) with all the VMTs and
evaluated them using the proposed eight basic and 16 CPS-specific VP types, and
nine modeling requirements.

Results of the evaluation show that 1) only SimPL and CVL can capture all the
basic VP types, whereas FM and CBFM provide partial support. None of the four
VMTs can capture all the CPS-specific VP types; 2) SimPL and CVL provide support
for 81% and 75% of the total CPS-specific VP types respectively, whereas CBFM
supports 50% and FM supports only 15% of the total CPS-specific VP types; 3)

SimPL satisfies all but one of the modeling requirements, FM and CBFM only covers
one modeling requirement, and CVL fully or partially fulfills four requirements out of
nine requirements. Based on above results, we can conclude that it is required to
either extend an existing technique or propose a new one to facilitate the variability
modeling in the context of CPS PLE. The proposed VP types and modeling
requirements can be also used as evaluation criteria for selecting existing VMTs or
defining new ones for a particular application when necessary.

The rest of the paper is organized as follows: Section 2 presents the related work.
Section 3 presents the context of the work. Section 4 presents the proposed VP types.
Section 5 presents the modeling requirements. In Section 6, we report evaluation
results. Threats to validity are given in Section 7. Section 8 concludes the paper.

2 Related Work
This section discusses the existing literature that compares or classifies VMTs,
systematic literature reviews (SLRs) and surveys of VMTs.

Galster et al. [10] conducted a SLR of 196 papers published during 2000-2011, on
variability management in different phases of software systems. Results show that
most of the papers focus on design time variabilities and a small portion of the papers
focus on runtime variabilities. In [11], Chen et al. conducted a SLR of 33 VMTs in
software product lines and highlighted the challenges involved in variability modeling
such as evolution of variability, and configuration. Arrieta et al. [12] conducted a SLR
of variability management techniques, but limited their scope to techniques for
Simulink published after 2008. Berger et al. [9] conducted a survey on industry
practices of variability modeling using a questionnaire, aiming to discover
characteristics of industrial variability models, VMTs, tools and processes. Another
industrial survey of feature-based requirement VMTs was conducted to find out the
most appropriate technique for a company [13]. They evaluated existing techniques
based on requirements collected from the company’s engineers, including readability,
simplicity and expressive, types of variability and standardization.

 Eichelberger and Schmid [14] classified and compared 10 textual VMTs in terms
of scalability. They compared the selected techniques in five different aspects:
configurable elements, constraints support, configuration support, scalability, and
additional language characteristics. Similarly, Sinnema and Deelstra [15] classified
six VMTs and compared them based on key characteristics of VMTs such as
constraints, tool support, and configuration guidance. Czarnecki et al. [16] reported an
experience report, in which they compared two types of VMTs: decision modeling
and feature modeling. They compared them in 10 aspects: application, hierarchy, unit
of variability, data types, constraints, modularity, orthogonality, mapping to artifacts,
tool support, and binding time and mode. A comparative study [17] was reported to
compare two VMTs, i.e., Kconfig and CDL, in the context of operating systems, in
terms of constructs, semantics, and tool support.

All the above studies classify and evaluate various types of VMTs either in general
or for a particular domain other than CPSs. We however, in this paper, propose a set
of basic and CPS-specific VP types as well as a list of modeling requirements for

evaluating VMTs in the context of CPS PLE, based on which we evaluated four
representative VMTs with a non-trivial case study.

3 Context
Section 3.1 and 3.2 introduce the case study and the four VMTs. In Section 3.3, we
present the study procedure.

3.1 Case Study

The case study is a product line of Handling Systems, which consist of various types
of sub-systems such as Automatic Storage Retrieval System (ASRS), Automatic
Guided Vehicle (AGV), Automatic Identification and Data Collection (AIDC) and
Warehouse Management System. We selected three of these systems: AGV, AIDC,
and ASRS for the evaluation of the selected VMTs. AGV is a fully automatic
transport system that uses unmanned vehicles to transport all types of loads without
human intervention. It is typically used within warehouse, production and logistics for
safe movement of goods. AIDC is used to identify, verify, record, and track the
products. Typically, these systems are used in supply chain, order picking, order
fulfillment, and determination of weight, volume, and storage. ASRS is an automated
system for inventory management, which is used to place and retrieve the loads from
pre-defined locations in the warehouse. The
descriptive statistics of the MHS case study’s class
diagram are given in Table 1. We modeled the
case study (MHS) using the four selected VMTs
(i.e., FM, CBFM, SimPL, and CVL). The case
study models corresponding to selected VMTs are
available at [18].

3.2 Variability Modeling Techniques

Feature Modeling (FM) is widely applied in practice
[9]. A feature model is organized hierarchically as a
tree. The root node of the tree represents the system,
whereas the descendent nodes are functionalities of the
system (features). A feature can be mandatory,
optional or alternative. A feature can either be a
compound feature that has one or more descendent
features or a leaf feature with no descendent features. Fig. 1 shows an excerpt of the
FM model for AGV modeled using Pure::Variants [19]. As shown in Fig. 1,
AGVHardware, Sensor, and Connectivity are mandatory features. The Connectivity
feature has three alternative features, i.e., Bluetooth, Wifi, and NFC. The Sensor
feature has two optional features: MultiRayLEDScanner and LaserScanner.

Cardinality Based Feature Modeling
(CBFM) is an extension to FM, which
introduces new concepts such as Feature
Cardinalities, Groups and Groups

Fig. 1. An excerpt of FM for AGV

Table 1. Descriptive statistics of the
MHS

Element Count
Class 132
Generalization 56
Composition 62
Association 69
Simple attribute 113
Enumerated attribute 82
Enumeration 23
Enumeration Literal 73

Fig 2. An excerpt of CBFM for AGV

Cardinalities, Attributes, and References. For Feature Cardinalities, features can be
annotated with cardinalities such as <1..*> whereas alternative features and optional
features are special cases with cardinality <1..1> and <0..1> respectively. A feature
group can be or-group with cardinality <1..k> or alternative-group with cardinality
<1..1>. For an alternative-group, one can select only one feature, whereas for or-
group, one can select 1 to k number of features where k is the maximum number of
features in the group. A feature can have one attribute of either String or Integer type.
To achieve better modularization, a special leaf node (i.e., Reference) was introduced
to refer to another feature model. This can be used to divide a large feature model into
smaller ones to support modularization. As shown in Fig. 1 AGVHardware, Sensor,
and Connectivity are mandatory features. AGVHardware and Sensor have feature
cardinality <1..10>. Connectivity has an
alternative-group that consists of three
features: Bluetooth, Wifi, and NFC. The
Sensor feature has an or-group consisting of
two features with group cardinality <0..2>.

Common Variability Modeling (CVL)
is a generic variability modeling language
and is composed of three interrelated models:
base model, variability model, and resolution
model. The base model can be defined in UML or any MOF based Domain Specific
Language (DSL). Corresponding to the base model a variability model is defined. The
variability model has a tree structure to specify variabilities. The resolution model
specifies configurations of variabilities corresponding to a particular product. To
support CVL, an Eclipse-based plugin CT-CVL is available [20]. In Fig. 3, rounded
rectangles (e.g., AGVHardware, SensorType, Connectivity) represent Choice elements
and a rectangle (e.g., Sensor) represents a VClassifier element whereas an ellipse
represents a variable. Multiplicity inside the VClassifier Sensor (0..10) indicates that
the number of instances of sensors can be between zero to 10 where for each instance
one needs to configure sensor type and model. Connectivity and SensorType are
ChoiceVP with group cardinality (1..1), which means only one option can be selected
from given alternative options.

SimPL is a UML based VMT, which provides notations and guidelines for
modeling variabilities and commonalities of CPS product lines at the architecture and
design level. To support SimPL, several modeling tools [21] (RSA, MagicDraw, and
Papyrus) are available. It captures four types of VPs: Attribute-VP, Type-VP,
Topology-VP, and Cardinality-VP. A SimPL product line model can be specified with
a subset of UML structural elements and stereotypes defined in the SimPL profile.
Constraints are specified in the Object Constraint Language (OCL). SimPL has two
major views: SystemDesignView and VariabilityView. SystemDesignView is
composed of HardwareView, SoftwareView, and AllocationView to represent
hardware components,
software components and
their relationship.
VariabilityView is for
capturing and structuring
variabilities using UML

Fig. 3. An excerpt of CVL for AGV

Fig. 4. An excerpt of SimPL for AGV

packages and template parameters. Stereotype «ConfigurationUnit» is applied on
UML packages to group relevant variabilities. Variabilities are defined as template
parameters of a package template and can trace back to hardware or software
elements in the SystemDesignView. Fig. 4 presents an excerpt of the HardwareView
of MHS, in which AGV is a hardware component composed of zero to many Sensors.
Sensor can be of two types: LaserScanner and MultiRayLEDScanner. AGV has one
Attribute-VP (connectivity) and one Cardinality-VP (sensors) denoting the number of
instances of Sensor. For Sensor, two variabilities are specified: model (Attribute-VP)
and type of sensor (Type-VP). AGVConfigurationUnit and SensorsConfigurationUnit
are the template packages that are used to organize the variabilities corresponding to
hardware component AGV and hardware Sensor respectively.

3.3 Procedure of the Study

Fig. 5 describes the procedure that we followed to conduct the study. First, we
constructed a conceptual model for defining data types in mathematics and then we
validated the data types with MARTE [22] and SysML [23], as these two standards
are often used for modeling embedded systems and therefore can be used for
modeling CPSs. In the third step, we defined a set of basic VP types (Section 4.1),
based on the mathematical basic data types. We used basic data types for defining the
basic VP types, as configuring a VP always requires assigning/selecting a value to/for
a basic type variable. In the fourth step, we derived a set of modeling requirements
(Section 5) based on knowledge collected from the literature and our experience of
conducting industry-oriented research in the field of CPS PLE [4]. In the fifth step,
we constructed a conceptual model for CPS, which is used to systematically derive
the CPS-specific VP types (Step 6, more details in Section 4.2). In Step 7, we
modeled the MHS case study with the selected VMTs, followed by the evaluation of
the selected VMTs (Step 8, details in Section 6), based on the basic VP types, CPS-
specific VP types, and the set of modeling requirements.

Fig. 5. Procedure of the study

4 Basic and CPS-specific Variation Point Types

4.1 Basic Variation Point Types

Based on the basic data types in mathematics, we constructed a conceptual model to
classify them, as shown in Fig. 6. A Variable can be a VariationPoint or a Non-
configurableVariable, which represents the configurable and non-configurable

variable in CPS PLE. Each
Variable has a Type, which is
classified into two categories:
Atomic (taking a single value at
a given point of time) and
Composite (composed of more
than one atomic type, where
each atomic type variable takes
exactly one value at a given point in time). Atomic types are further classified into
Quantitative types (taking numeric values) and Qualitative types (taking non-numeric
values). Quantitative types can be Discrete (taking countable values) or Continuous
(taking uncountable values). Integer is the concrete Discrete type, whereas Real is the
concrete Continuous type. Qualitative types are categorized into String, Binary and
Categorical that is further classified into Ordinal and Nominal.

A Composite data type combines several variables and/or constants, which is
classified as: Compound and Collection. Compound takes only variables (e.g.,
complex numbers in SysML containing two variables realPart and imaginaryPart
[23]) whereas Collection takes Variables and/or Constants (e.g., collection of colors).
Attributes minElements and maxElements of Collection specify the minimum and
maximum numbers of elements in a collection. As shown in Fig. 6, we have classified
Collection into six types (i.e., Bag, Array, Record,
Set, OrderedSet and Sequence) based on three
properties: homogeneity, uniqueness and order.
The homogeneity, uniqueness, and order properties
of each collection type are specified as OCL
constraints (Appendix A). Table 2 summarizes the
six types of Collection along with their properties.

To validate the conceptual model of the basic data types, we mapped the data types
defined in the MARTE Value Specification Language-VSL [22] and SysML [23] to
the basic data types presented in Fig. 6. We used MARTE and SysML for validation
because these two
modeling languages can
be used for modeling
CPSs [24, 25]. During the
validation, we do not
include the extended data
types provided in
MARTE, as they are
defined by extending the
data types used in our
mapping. In case of
SysML we include all the
data types. Results of the
mapping are presented in Table 3, from which one can see that each data type in
MARTE and SysML has a correspondence in our basic data type classification, which
suggests that our classification of the basic data types is complete.

Table 2. Collection types
Collection Hom. Uni. Ord.
Bag No No No
Record No Yes No
Set Yes Yes No
OrderedSet Yes Yes Yes
Array Yes No No
Sequence Yes No Yes

Table 3. Mapping MARTE and SysML data types to the basic data types
MARTE SysML Basic data types

Integer Integer Integer
UnlimitedNatural UnlimitedNatural Integer
Boolean Boolean Binary
String String String
Real Real Real
DateTime Complex Compound
EnumerationType Enumeration Ordinal/Nominal
 ControlValue Nominal/Ordinal
IntervalType UnitAndQuantityKind Compound
TupleType Compound
ChoiceType Compound
CollectionType Collection

Fig. 6. Basic data types

In Fig. 7, we present a classification of basic VP types where one basic VP type is
defined corresponding to each basic data type presented in Fig. 6. A VariationPoint
can be a CompositeVP or an AtomicVP. An AtomicVP can come with any of the six
concrete types: StringVP, BinaryVP, NominalVP, OrdinalVP, IntegerVP, and RealVP
corresponding to String, Binary, Nominal, Ordinal, Integer, and Real respectively. A
CompositeVP can be CompoundVP or CollectionVP, which are defined corresponding
to Compound and Collection data types respectively. As shown in Fig. 7, a
CompositeVP may have several AtomicVPs and/or CompositeVPs depending on the
number of variableElements (Fig. 6) involved in the Composite data type.
CollectionVP may have two additional IntegerVP(s), i.e., lowerLimitVP and
upperLimitVP corresponding to the minimum and maximum numbers of the elements
in the collection.

Fig. 7. Classification of the basic VP types

4.2 CPS-specific Variation Point Types

In this section, first we present a conceptual model for CPS (Fig. 8), based on which
we then derive a set of CPS-specific VP types (Table 4). As shown in Fig. 8, a CPS
can be defined as a set of physical components (e.g., human heart, engine), interfacing
components (e.g., sensor, actuator, network), and cyber components (with deployed
software), which are integrated together to accomplish a common goal.

Fig. 8. A CPS conceptual model

A CPS can have one or more topologies, which define how various components are
integrated. A CPS controls and monitors a set of physical properties. A
CyberComponent can either be a CommunicationComponent or
ComputationalComponent, which takes values of StateVariables as input and updates
their values when needed. Each component in CPS has several component properties.
CPS may interact with PhysicalEnvironment and ExternalAgents (e.g., external
systems). Both PhysicalProperty and ComponentProperty have attributes name, type,
and unit to specify the name, type (e.g., descriptive, numeric, Boolean), and unit of a
specific property. PhysicalProperty has an extra Boolean attribute isContinuous to
specify either it is a continuous or a discrete type of property.

In Table 4, the first column represents the CPS concepts used to derive CPS-
specific VP types and the second column shows the derived CPS-specific VP types.
The last column presents the basic VP type corresponding to a particular CPS-specific
VP type.

Table 4. CPS-specific VP types
CPS Concept CPS-Specific VP Type Basic VP Type

CP Descriptive-VP StringVP
CP, PP DiscreteMeasurement-VP IntegerVP
CP, PP ContinuousMeasurement-VP RealVP
CP, PP BinaryChoice-VP BinaryVP
CP, PP PropertyChoice-VP NominalVP/OrdinalVP
CP, PP MeasurementUnitChoice-VP OrdinalVP
CP, PP MeasurementPrecision-VP RealVP
CP, PP, COM Multipart/Compound-VP CompoundVP
COM ComponentCardinality-VP IntegerVP
COM ComponentCollectionBoundary-VP IntegerVP
COM ComponentChoice-VP NominalVP/OrdinalVP
COM ComponentSelection-VP CollectionVP
Topology TopologyChoice-VP NominalVP
Deployment AllocationChoice-VP NominalVP
Interact InteractionChoice-VP NominalVP
Constraint ConstraintSelection-VP CollectionVP
 *CP=ComponentProperty, PP =PhysicalProperty, COM=Physical, Interfacing, or Physical Component
PhysicalProperty and ComponentProperty: Descriptive-VP,

DiscreteMeasurement-VP, ContinuousMeasurement-VP, BinaryChoice-VP,
PropertyChoice-VP, MeasurementUnitChoice-VP, and MeasurementPrecision-VP are
defined for physical properties and/or component properties of CPS. Descriptive-VP
is a StringVP, which requires setting a value in order to configure it. It can be defined
for a textual ComponentProperty such as ID of a sensor. DiscreteMeasurement-VP
and ContinuousMeasurement-VP are IntegerVP and RealVP respectively. Both these
two types of VPs can be defined for numeric component properties (e.g., data
transmission interval of a sensor) or physical properties (e.g., length and weight of a
physical component) of CPS. BinaryChoice-VP is a BinaryVP, which can be defined
for Boolean physical properties (e.g., the presence of a magnetic field) and component
properties (e.g., whether a sensor keeps the events’ log). PropertyChoice-VP is a
NominalVP or an OrdinalVP, which requires selecting one value from a list of pre-
defined values. For example, a ComponentProperty can be connectionType, which
can be configured as wired, 3G, or Wi-Fi, which can be captured as a PropertyChoice-
VP. MeasurementUnitChoice-VP is an OrdinalVP, which is derived from the unit of
PhysicalProperty and ComponentProperty. For example, one can select meter,
centimeter or millimeter as a unit for length (a PhysicalProperty).
MeasurementPrecision-VP is a RealVP, which is related to the degree of
measurement precision for a PhysicalProperty or ComponentProperty.

Component: ComponentCardinality-VP, ComponentCollectionBoundary-VP,
ComponentChoice-VP, and ComponentSelection-VP are derived from the different
types of CPS components: CyberComponent, InterfacingComponent,
PhysicalComponent. ComponentCardinality-VP is an IntegerVP, which is related to
varying number of instances of a CPS component (e.g., number of temperature
sensors). ComponentCollectionBoundary-VP is an IntegerVP, which is related to the
upper limit and/or the lower limit of a collection of CPS components. For example,

the maximum and minimum numbers of sensors supported by a controller.
ComponentChoice-VP is a NominalVP/OrdinalVP, which is about selecting a
particular type of CPS component such as selecting a speedometer sensor from
several speedometers with various specifications. ComponentSelection-VP is a
CollectionVP, which is about selecting a subset of CPS components from a collection
of CPS components such as selecting sensors for a product from available sensors.

Multipart/Compound-VP is a CompoundVP, which can be specified for a
PhysicalProperty, ComponentProperty, or a component (Physical, Cyber, or
Interfacing) that requires configuring several constituent VPs involved in it. As in the
domain of CPS, it is common that different properties do not give complete meaning
unless they are combined together. For example, length is a PhysicalProperty, which
is meaningless without a unit. Hence, we need a Compound-VP type, which involves
two VPs including length and its unit. A Compound-VP can also be defined for a
component (e.g., sensor), which contains several other VPs defined for its properties.

Topology: TopologyChoice-VP is a NominalVP, which is related to selecting a
topology from several alternatives. For example, how CyberComponent (e.g.,
controller) is connected with InterfacingComponents (e.g., sensors and actuators).

Deployment: AllocationChoice-VP is a NominalVP, which is about the
deployment of software on a CyberComponent (e.g., controller). For example, the
same version of software can be deployed on different controllers or different
versions of software can be deployed on the same controller.

Interaction: InteractionChoice-VP is a NominalVP, which is about the interaction
(presented as association named interact in Fig. 8), of two CPS components (e.g.,
CyberComponent and InterfacingComponent) or interaction of CPS with an external
agent, which can be for example an external system.

Constraint: ConstraintSelection-VP is a CollectionVP, which is about selecting a
subset of constraints in order to support the configuration of a specific product, from a
set of constraints defined for the corresponding CPS product line.

5 Modeling Requirements
In addition to capturing different types of VPs, a VMT should also accommodate
some modeling requirements to enable automation of configuring CPS products.
These requirements (Table 5) are derived from the literature and our experience of
working with industry [4].

In Table 5, R1 is related to support different binding times of a VP, as a VP can be
configured at three different phases [26]: the pre-deployment phase, the deployment
phase and the post-deployment phase. Requirements R2 focuses on a traceability
mechanism to link the variability model and its base whereas R3 is related to realizing
the separation of concerns principle in the product line model. R4-R8 are relevant to
different types constraints that a VMT should be able to capture for enabling
automation of the configuration process in CPS PLE [3]. In [3], a constraint
classification was presented and we extended it by adding two more categories:
inference and conformance. These constraints are needed to facilitate different
functionalities of an interactive, multi-step and multi-staged configuration solution,

such as consistency checking, decision inferences. R9 is related to modeling different
types of configurable elements of CPSs.

Table 5. Modeling requirements
ID Name Description
R1 VP binding time Support different binding times for a VP (e.g., pre-deployment, deployment,

and post-deployment phases).
R2 Linkage between

VP and the base
Provide a mechanism to relate a VP to the corresponding base model element.

R3 Separation of
Concerns

Provide a mechanism to realize the principle of separation of concerns to enable
multi-staged and cross-disciplinary configuration of CPS.

R4 Variability
dependency

Capture dependencies between a VP and a variant, two VPs, and two variants.

R5 Ordering Specify constraints on the order of configuration steps.
R6 Inference Specify constraints that can be used to configure VPs automatically.
R7 Conformance Specify conformance rules for ensuring the correctness of configuration data.
R8 Consistency Specify consistency rules for checking the consistency of the configuration data

and variability models.
R9 Multidisciplinary Model Software, PhysicalComponent, InterfacingComponent,

CyberComponent, and PhysicalEnvironment elements of CPS.

6 Evaluation
The purpose of the evaluation is to compare the selected four VMTs with the aim to
help modelers to select an appropriate VMT or propose a new one if necessary for
CPS PLE, which can capture different types of VPs (Section 4) and meet the
modeling requirements (Section 5). Corresponding to this goal, we pose the following
research questions: RQ1: To what extent can each selected VMT capture the basic
VPs? RQ2: To what extent can each selected VMT capture the CPS-specific VPs?
RQ3: To what extent does a selected VMT comply with the modeling requirements?
We answer RQ1, RQ2 and RQ3 in Section 6.1, Section 6.2, and Section 6.3,
respectively.

6.1 Evaluation Based on Basic VP Types (RQ1)

To answer RQ1, we evaluate the selected VMTs based on the basic VP types. In
Table 6, the first column represents the basic VP type and the second column
indicates if a basic VP type is required by the MHS case study, whereas columns 3-6
show how each selected VMT supports each basic VP type.

As one can see from Table 6, modeling the MHS case study requires all the basic
VP types. However, FM supports only three out of eight basic VP types: BinaryVP,
NominalVP and OrdinalVP. Optional feature and alternative-group with two features
of FM map to BinaryVPs. In FM, alternative-group corresponds to NominalVPs and
OrdinalVPs, but FM does not differentiate NominalVP from OrdinalVP. CBFM
provides support for all the basic VP types except for CompoundVP. Corresponding
to RealVPs and StringVPs, CBFM provides attributes (one attribute per feature) of
Real and String respectively. However, for IntegerVPs, it offers feature and group
cardinalities together with Integer attributes. For BinaryVP, CBFM has optional
features, alternative-groups, feature cardinalities (0..1), and Boolean attributes.
Similar to FM, CBFM also provides alternative-groups, which map to NominalVPs
and OrdinalVPs and CBFM does not differentiate these two types. For CollectionVP,
CBFM provides alternative-groups and or-groups.

Both SimPL and CVL support all the basic VP types. In SimPL, Attribute-VP
defined with Real and String attributes map to RealVPs and StringVPs. IntegerVPs
can map to Attribute-VPs defined on Integer attributes or Cardinality-VP. To support
BinaryVP, SimPL provides Attribute-VP defined on attributes of the binary type,
Cardinality-VP with two options, Type-VP with two types, and Topology-VP with
two topologies. Cardinality-VP, Type-VP, and Topology-VP offered by SimPL can
be mapped to NominalVPs and OrdinalVPs. SimPL does not differentiate NominalVP
and OrdinalVP. To support CompoundVP, SimPL defines «ConfigurationUnit»,
which can be applied on packages, to organize a set of relevant VPs. In SimPL,
CollectionVP corresponds to Cardinality-VP.

Table 6. Evaluation based on the basic VP types (RQ1)
Basic VP

Type MHS VMT
FM CBFM SimPL CVL

IntegerVP Yes No One At/F,
G & F
Cardinality

Attribute-VP,
Cardinality-VP

Multiplicity,
ParametricVP

RealVP Yes No One At/F Attribute-VP ParametricVP
StringVP Yes No One At/F Attribute-VP ParametricVP
BinaryVP Yes OF,

Alt. F
One At/F,
OF,
Alt. G,
F-Cardinality

Attribute-VP,
Cardinality-VP,
Type-VP,
Topology-VP

ChoiceVP (ObjectSubstitution,
SlotAssignment, ObjectExistence,
SlotValueExistence, LinkExistence),
Multiplicity, ParametricSlotAssignment

NominalVP Yes Alt. G Alt. G Attribute-VP,
Type-VP,
Topology-VP

Group of SlotAssignment (i.e., ChoiceVP)
with group Multiplicity (1,1),
ParametricObjectSubstitution (i.e.,
ParametricVP).

OrdinalVP Yes Alt. G Alt. G

CompoundVP Yes No No Configuration
Unit

CompositeVP, VClassifier with several
Repeatable-VP(s).

CollectionVP Yes No Alt. G,
OR G

Cardinality-VP VClassifier with configurable Multiplicity,
group of SlotAssignment (i.e., ChoiceVP).

*F=feature, OF=optional feature, G=group, At=attribute, Alt=Alternative, /= per, &= and

To support RealVP and StringVP, CVL provides ParametricVP. For IntegerVP it
provides ParametricVP and cardinalities. For BinaryVP, CVL has different types of
ChoiceVPs (i.e., ObjectSubstitution, SlotAssignment, ObjectExistence,
SlotValueExistence, and LinkExistence) along with multiplicity and
ParametricSlotAssignment (i.e., ParametricVP). In CVL, both NominalVPs and
OrdinalVPs can be mapped to SlotAssignments (i.e., ChoiceVP) with group
multiplicity (1..1) or ParametricObjectSubstitution (i.e., ParametricVP). Similar to all
the other VMTs, CVL does not differentiate NominalVP and OrdinalVP. In CVL,
CompoundVP maps to CompositeVP and a VClassifier with several RepeatableVP(s)
can also be used to model CompoundVPs. For CollectionVP, CVL has VClassifier
with the multiplicity other than (1..1) and a group of SlotAssignment (i.e., ChoiceVP).

To summarize, both SimPL and CVL support all the basic VP types whereas FM
and CBFM provide partial support. None of the selected four VMTs differentiate
NominalVP and OrdinalVP.

6.2 Evaluation Based on the CPS-Specific VP Types (RQ2)

To answer RQ2, we evaluate the selected four VMTs based on the CPS-specific VP
types (Section 4.2) and VPs modeled for the MHS case study. In Table 7, the first
column represents the CPS-specific VP types and the second column indicates if a

particular CPS-specific VP type is required by the MHS case study. Columns 3-6 are
related to the four VMTs to signify if they support a particular CPS-specific basic VP
type. The seventh column shows the number of VPs in the MHS case study
corresponding to a particular CPS-specific VP type, whereas columns 8-11 show the
number of VPs modeled using the four VMTs.

As one can see from Table 7, our case study (MHS) contains VPs corresponding to
all the CPS-specific VP types. FM does not cater majority of the CPS-specific VP
types and only supports fully or partially three out of 16 CPS-specific VP types:
BinaryChoice-VP, PropertyChooice-VP, and ComponentChoice-VP.

CBFM supports six of 16 CPS-specific VP types: ComponentCardinality-VP,
ComponentCollectionBoundary-VP, MeasurementPrecision-VP, PropertyChoice-VP,
ComponentChoice-VP, and ComponentSelection-VP. It provides partial support for
three CPS-specific VP types (i.e., Descriptive-VP, DiscreteMeasurement-VP, and
ContinuousMeasurement-VP) because CBFM allows adding only one attribute for
each feature. BinaryChoice-VP is also partially supported, as it can be captured using
optional feature or cardinality but CBFM does not allows adding Boolean attribute.
The remaining six CPS-specific VP types are not supported by CBFM.

Both SimPL and CVL support Descriptive-VP, DiscreteMeasurement-VP,
ContinuousMeasurement-VP, ComponentSelection-VP, ComponentCardinality-VP,
ComponentCollectionBoundary-VP, BinaryChoice-VP, MeasurementPrecision-VP,
MeasurementUnitChoice-VP, PropertyChoice-VP, ComponentChoice-VP, and
Compound-VP. SimPL also supports TopologyChoice-VPs, which cannot be captured
using CVL. The remaining three CPS-specific VP types (i.e., AllocationChoice-VP,
InteractionChoice-VP, and ConstraintSelection-VP) are not catered by either SimPL
or CVL.

Table 7. Evaluation of VMTs based on the CPS-specific VP types and VPs (RQ2)

CPS-Specific VP Type VP Types Coverage VP Coverage
MHS FM CBFM SimPL CVL MHS FM CBFM SimPL CVL

Descriptive-VP Yes No Partial Yes Yes 34 0 4 34 34
DiscreteMeasurement-VP Yes No Partial Yes Yes 23 0 5 23 23
ContinuousMeasurement-VP Yes No Partial Yes Yes 51 0 18 51 51
ComponentCardinality-VP Yes No Yes Yes Yes 42 0 42 42 42
ComponentCollectionBoundary-VP Yes No Yes Yes Yes 42 0 42 42 42
MeasurementPrecision-VP Yes No Yes Yes Yes 2 0 2 2 2
BinaryChoice-VP Yes Partial Partial Yes Yes 3 0 0 3 3
PropertyChoice-VP Yes Yes Yes Yes Yes 82 82 82 82 82
ComponentChoice-VP Yes Yes Yes Yes Yes 12 12 12 12 12
TopologyChoice-VP Yes No No Yes No 9 0 0 9 0
AllocationChoice-VP Yes No No No No 3 0 0 0 0
InteractionChoice-VP Yes No No No No 15 0 0 0 0
MeasurementUnitChoice-VP Yes No No Yes Yes 59 0 18 59 59
ConstraintSelection-VP Yes No No No No 1 0 0 0 0
ComponentSelection-VP Yes No Yes Yes Yes 42 0 42 42 42
Multipart/Compound-VP Yes No No Yes Yes 64 0 0 64 26
Total (count) 16 2.5 8 13 12 484 94 267 465 418
Coverage (%) 100% 15% 50% 81% 75% - 19% 55% 96% 86%

As shown in Table 7, none of the selected VMTs supports all the CPS-specific VP
types. SimPL supports 81%, FM supports only 15%, CVL caters 75%, and CBFM
covers 50% of the total CPS-specific VP types. Using SimPL and CVL we were able

to model 96% and 86%, whereas with FM and CBFM, we could model only 19% and
55% of total VPs in our case study.

6.3 Evaluation Based on the Modeling Requirements (RQ3)

Table 8 summarizes the results of our evaluation of the four VMTs in terms of
modeling requirements (Section 5) with MHS. In Table 8, the first two columns are
used to identify the requirements and the third column indicates if a requirement is
required by MHS. Columns 4-7 signify if the VMTs support a particular requirement.

Table 8. Results for the evaluation of the VMTs based on the modeling requirements (RQ3)
ID Name MHS FM CBFM CVL SimPL
R1 VP binding times Yes No No Yes No
R2 Linkage between VP and the base Yes No No Yes Yes
R3 Separation of Concerns Yes No No Partial Yes
R4 Variability dependencies Yes Partial Partial Partial Yes
R5 Ordering Yes No No Depends

on base
modeling
language

Yes
R6 Inference Yes No No Yes
R7 Conformance Yes No No Yes
R8 Consistency Yes No No Yes
R9 Multidisciplinary Yes No No Partial

None of the selected VMTs except for CVL allows specifying the binding time
(R1) of a VP to enable its configuration in different phases. CVL and SimPL support
linking a VP to the corresponding base model element explicitly (R2), which is
however not supported by FM and CBFM, as they do not have separate base models.
FM and CBFM do not support the separation of concerns (R3) and CVL supports
partially as it models variabilities separately from the base model. SimPL supports R3
as it provides hardware, software and allocation views in addition to the variability
view. For MHS, we captured all the four views defined in SimPL. But, it still requires
a view for specifying environment elements and corresponding VPs.

R4-R8 are related to capturing different types of constraints to enable automation in
CPS PLE. FM and CBFM provide partial support for capturing variability
dependencies such as requires and excludes, but they are unable to capture other
complex constraints such as consistency rules. In the case of CVL, it uses the Basic
Constraint Language [8] for capturing simple propositional and arithmetic constraints
but it is unable to capture all the types of constraints discussed in Section 5. If the
base model is modeled in UML, then OCL can be integrated with CVL, thereby
allowing the specification of all the types of constraints. SimPL is based on UML and
OCL, which makes it possible to capture all the types of constraints.

MHS is a multidisciplinary system, which contains Software, CyberComponent,
and different types of PhysicalComponent and InterfacingComponent interacting with
PhysicalEnvironment but none of the selected VMTs explicitly model these
multidisciplinary elements of CPS (R9). SimPL supports all, except for
PhysicalEnvironment elements. In case of CVL, it depends on the DSL used for
modeling the base model, which may or may not have the capability of modeling
different elements of CPS.

7 Threats to validity
One threat to validity of our study is the selection of the VMTs. Since it is not
practically feasible to evaluate all existing VMTs, we therefore selected four
representative VMTs. Another threat to validity is the completeness of the basic and
CPS-specific VP types and modeling requirements. Note that our approach for
deriving the basic VP types is systematic, which to certain extent ensures their
completeness. In addition, we validated them using SysML and MARTE, which are
two existing standards often used for embedded system modeling. We derived CPS-
specific VP types based on thorough domain analyses and our experience in working
with industry. We also verified that the MHS case study covers all the CPS-specific
VP types.

8 Conclusion
In this paper, we present a set of basic and CPS-specific VP types that need to be
supported by a VMT in the context of CPS PLE. Moreover, we present a set of
modeling requirements, which need to be catered to enable the automation of
configuration in CPS PLE. Based on the proposed basic and CPS-specific VP types
and modeling requirements, we evaluated four VMTs: feature model, cardinality
based feature model, CVL, and SimPL, with a real-world case study. Results of our
evaluation show that the selected four VMTs cannot capture all the VP types and
none of the four VMTs meets all the requirements. This necessitates the extension of
an existing technique or proposal of a new one to facilitate CPS PLE. The proposed
VP types and modeling requirements can be used as evaluation criteria to select a
suitable VMT or develop a new one if necessary.

Acknowledgement. This work was supported by the Zen-Configurator project funded
by the Research Council of Norway (grant no. 240024/F20) under the category of
Young Research Talents of the FRIPO funding scheme. Tao Yue and Shaukat Ali are
also supported by the EU Horizon 2020 project U-Test (http://www. u-test.eu/) (grant
no. 645463), the RFF Hovedstaden funded MBE-CR (grant no. 239063) project, the
Research Council of Norway funded MBT4CPS (grant no. 240013/O70) project, and
the Research Council of Norway funded Certus SFI (grant no. 203461/O30).

References
1. http://cyberphysicalsystems.org/
2. Rawat, D.B., Rodrigues, J.J., Stojmenovic, I.: Cyber-Physical Systems: From Theory to Practice. CRC

Press (2015)
3. Nie, K., Yue, T., Ali, S., Zhang, L., Fan, Z.: Constraints: the core of supporting automated product

configuration of cyber-physical systems. Model-Driven Engineering Languages and Systems, pp. 370-
387. Springer (2013)

4. Yue, T., Ali, S., Selic, B.: Cyber-physical system product line engineering: comprehensive domain
analysis and experience report. In: Proceedings of the 19th International Conference on Software
Product Line, pp. 338-347. ACM, (2015)

5. Kang, K., Cohen, Sholom., Hess, James., Novak, William., & Peterson, A.: Feature-Oriented Domain
Analysis (FODA) Feasibility Study (CMU/SEI-90-TR-021). Carnegie Mellon University (1990)

6. Czarnecki, K., Helsen, S., Eisenecker, U.: Staged configuration using feature models. Software
Product Lines, pp. 266-283. Springer (2004)

7. Behjati, R., Yue, T., Briand, L., Selic, B.: SimPL: a product-line modeling methodology for families of
integrated control systems. Information and Software Technology (2013)

8. Haugen, O.: Common Variability Language (CVL). OMG Revised Submission (2012)
9. Berger, T., Rublack, R., Nair, D., Atlee, J.M., Becker, M., Czarnecki, K., Wąsowski, A.: A survey of

variability modeling in industrial practice. In: Proceedings of 7th International Workshop on
Variability Modelling of Software intensive Systems, pp. 7. ACM, (2013)

10. Galster, M., Weyns, D., Tofan, D., Michalik, B., Avgeriou, P.: Variability in software systems-A
systematic literature review. IEEE Transactions on Software Engineering, 40, 282-306 (2014)

11. Chen, L., Ali Babar, M., Ali, N.: Variability management in software product lines: A systematic
review. 13th International Software Product Line Conference, pp. 81-90 (2009)

12. Arrieta, A., Sagardui, G., Etxeberria, L.: A comparative on variability modelling and management
approach in simulink for embedded systems. V Jornadas de Computación Empotrada, ser. JCE (2014)

13. Djebbi, O., Salinesi, C.: Criteria for comparing requirements variability modeling notations for product
lines. In: 4th International Workshop on Comparative Evaluation in Requirements Engineering, pp. 20-
35. IEEE, (2006)

14. Eichelberger, H., Schmid, K.: A systematic analysis of textual variability modeling languages.
Software Product Line Conference, pp. 12-21. ACM (2013)

15. Sinnema, M., Deelstra, S.: Classifying variability modeling techniques. Information and Software
Technology 49, 717-739 (2007)

16. Czarnecki, K., Grünbacher, P., Rabiser, R., Schmid, K., Wąsowski, A.: Cool features and tough
decisions: a comparison of variability modeling approaches. In: 6th international workshop on
variability modeling of software intensive systems, pp. 173-182. ACM,(2012)

17. Berger, T., She, S., Lotufo, R., Wąsowski, A., Czarnecki, K.: Variability modeling in the real: a
perspective from the operating systems domain. International conference on Automated software
engineering, pp. 73-82. ACM (2010)

18. http://www.zen-tools.com/SAM2016.html
19. http://www.pure-systems.com
20. http://modelbased.net/tools/ct-cvl/
21. Safdar, S.A., Iqbal, M.Z., Khan, M.U.: Empirical Evaluation of UML Modeling Tools–A Controlled

Experiment. European Conference on Modeling Foundations and Applications, vol. 11, pp. 33-44.
Springer, Italy (2015)

22. The UML MARTE profile, http://www.omgmarte.org/.
23. OMG: Systems Modeling Language (SysML) v1.4, http://sysml.org/. (2015)
24. Selic, B., Gérard, S.: Modeling and Analysis of Real-Time and Embedded Systems with UML and

MARTE: Developing Cyber-Physical Systems. Elsevier (2013)
25. Derler, P., Lee, E.A., Vincentelli, A.S.: Modeling cyber–physical systems. Proceedings of the IEEE

100, 13-28 (2012)
26. Murguzur, A., Capilla, R., Trujillo, S., Ortiz, Ó., Lopez-Herrejon, R.E.: Context variability modeling

for runtime configuration of service-based dynamic software product lines. In: Proceedings of the 18th
International Software Product Line Conference: Companion Volume for Workshops, Demonstrations
and Tools, pp. 2-9. ACM, (2014)

Appendix A: OCL Constraints
Homogeneity: context Array, Set (Sequence,
OrderedSet)(self.constantElements->size()=0 and
self.variableElements->select(a|a.oclIsKindOf(Collection))->size()=0
and self.variableElements->forAll(a,b| a.type=b.type))or
(self.variableElements->size()=0 and self.constantElements-
>forAll(a,b| a.type=b.type)) or (self.constantElements->size()=0 and
self.variableElements->size()=self.variableElements-
>select(a:Variable|a.type.oclIs KindOf(Collection))->size() and
self.variableElements->forAll(v1,
v2|(v1.type.oclAsType(Collection).constant Elements->size()=0 and
v1.type.oclAsType(Collection).variableElements->forAll(v3:Variable |
v3.type = v2.type.oclAsType(Collection).variableElements-
>asSequence()->first().type)) or (v1.type.oclAsType(
Collection).variableElements->size()=0 and v1.type.oclAs
Type(Collection).constantElements->forAll(v3:Constant|
v3.type=v2.type.oclAsType (Collection).constantElements-
>asSequence()->first().type))))

Uniqueness: context Record (Set, OrderedSet)
self.variableElements->select (self.variableElements -
>forAll(a,b| a=b))->isEmpty() and self.constant Elements-
>select (self.constantElements->forAll(a,b| a=b))->isEmpty()

Order: context Sequence self.variableElements->asSet()-
>size() >1 implies self.variableElements->asSequence()-
>reverse() <> self.variableElements->asSequence() and
self.constantElements->asSet()->size() >1 implies
self.constantElements->asSequence()->reverse() <>
self.constantElements->asSequence()
context OrderedSet self.variableElements->asOrderedSet()-
>reverse() <> self.variableElements->asOrderedSet() and
self.constantElements->asOrderedSet()->reverse() <>
self.constantElements->asOrderedSet()

