
11/14/19

From myths and fashions to 
evidence-based software 
engineering

Magne Jørgensen, 
SimulaMet, Scienta and Kathmandu University Myths



11/14/19
Fashion Evidence-based judgments and decisions



11/14/19

LET'S START WITH SOME MYTHS
AND WHY WE BELIEVE IN THEM

The paper clip 
was invented by a 
Norwegian



11/14/19
Most communication is non-verbal Software projects fail most of the time, 

and the quality of software is low



11/14/19
More myths (or at least over-
simplifications and over-generalizations)
o Duplicating code is always bad
o You should never use the goto-statement
o CVs, programmer-selected references and 

interviews are good sources for the evaluation of 
skill

o There is a 10:1 relation between the best and worst 
programmers

o Adding people to a late project will make it later
o There is an increase in the cost of fixing errors the 

later in the project you are
o All statements of the type model X is better than 

model Y, or programming language A is better than 
B.

Reasons for believing in myths, over-
simplifications and over-generalizations

o When we want something to be true, we don't check 
the evidence.

o Confirmation bias. Mainly looking for confirming 
evidence.

o Lack of precision in claim. We fit the meaning to the 
observations and us it to confirm the claim.

o Misunderstood or over-generalized research results.
o Self-fulfilling claims (we experience it simply because 

we believe in it).
o It is often hard to find representative evidence.
o Deliberate spread, repetition and authority-based 

claims.
o To understand is to accept. De-accepting is more 

difficult



11/14/19

A FEW WORDS ON FASHION

How To Create a New Popular Software 
Development Method? 
(according to the Fashion Theory – Kieser)

1. Present one key principle that, according to the 
gurus, has been neglected in previous methods.

2. Describe how the old methods are bound to fail.

3. Link the new method with highly treasured values, 
such as communication, individuals, flexibility and 
user value.



11/14/19
How To Create a New Popular Software 
Development Method? (Fashion Theory)

o Present stories about great successes when using the 
method. 

o Emphasize that the method is based on experienced 
professionals knowledge.

o Present the pioneers as exceptional professionals with 
long experience. Give them guru status.

How To Create a New Popular Software 
Development Method? (Fashion Theory)

o Base the messages on a mixture of simplicity and 
ambiguity. 

o Point out that the method may be hard to 
implement. Failures are thus explainable by poor 
implementation.

o Provide easy readable books with no academic 
jargon and direct speech.



11/14/19
How To Create a New Popular Software 
Development Method? (Fashion Theory)

o Time the introduction of the new method well. 
ü Every new generation of software professionals need their 

“own” methods to separate themselves from the others and 
be the most knowledgeable. 

ü This means that the success of a method (many followers) is 
also its path to destruction when it follows fashion-principles.

o Now and then, couple principles to science. 
ü Low quality studies and strongly biased interpretations are no 

problem, since nobody will check the sources.

Lots of methods have been fashionable ...

The Waterfall model, the sashimi model, agile development, rapid 
application development (RAD), unified process (UP), lean 
development, modified waterfall model, spiral model development, 
iterative and incremental development, evolutionary development 
(EVO), feature driven development (FDD), design to cost, 4 cycle of 
control (4CC) framework, design to tools, re-used based development, 
rapid prototyping, timebox development, joint application development 
(JAD), adaptive software development, dynamic systems development 
method (DSDM), extreme programming (XP), pragmatic programming, 
scrum, test driven development (TDD), model-driven development, 
agile unified process, behavior driven development, code and fix, 
design driven development, V-model-based development, solution 
delivery, cleanroom development, ….

What will be the next?



11/14/19

FASHION CAN BE GOOD ...

BUT WOULDN’T IT BE BETTER IF
THE CHANGES WERE
EVIDENCE-BASED?

EVIDENCE-BASED SOFTWARE 
ENGINEERING



11/14/19
Evidence-based software engineering (EBSE)

o The main steps of EBSE are as follows:
1. Convert a relevant problem or need for information into an 

answerable question.
2. Search the literature and practice-based experience for the best 

available evidence to answer the question.
3. Critically appraise the evidence for its validity, impact, and 

applicability.
4. Integrate the appraised evidence with practical experience and 

the client's values and circumstances to make decisions about 
practice.

5. Evaluate performance in comparison with previous performance 
and seek ways to improve it.

Tore Dybå, Barbara Kitchenham and Magne Jørgensen, Evidence-based Software 
Engineering for Practitioners, IEEE Software, Vol. 22, No. 1, Jan-Feb 2005.

Step 1: Formulation of problem and question(s)

o The problem to be solved should be clearly formulated and its 
reasons should be understood as much as possible.

o The question(s) related to the problem should be precise 
enough to be possible to answer, but not so narrow that there 
will be no evidence available.



11/14/19
Step 2: Collecting knowledge/evidence
Three main sources:
1) Research (use google scholar!)
2) Practice-based experience
3) Local studies/experiments (trying out)
.

Step 3: Evaluation of evidence
o Start with the identification and clarifications of the 

claims.
o Assess the relevance of the claims for your purpose.
o Read the paper/ask questions with the purpose of 

identifying evidence/experience that 
supports/weakens the claims. 

o Practice-based experience should be evaluated 
very much the same as research based evidence



11/14/19
Step 4: Summarize the evidence

o Avoid that the synthesis is a rationalization of what 
feels right

o If there are “meta studies” or “reviews” available, 
they do much of the job for you, but you still have 
to do the job to select the results relevant for your 
context (your problem).

Step 5: Implement the change and evaluate 
the effect
o Plan the evaluation of the effect of the change 

early. You may for example need “baseline” data 
(data about the situation before the change)
üUse benefit management for organizational 

changes
o Be aware of unwanted side-effects of implementing 

measures/evaluations



11/14/19

A REAL-LIFE STORY

Changing the development tool in a company

o A software development department wanted to 
replace their “old-fashioned” development tool 
with a more modern and more efficient one.

o They visited many possible vendors, participated at 
numerous demonstrations, and contacted several 
“reference customers”. Finally, they chose a 
development tool.

o A couple of years after the change, the 
department measured the change in development 
efficiency. Unfortunately, this had not improved and 
the new development tool was not as good as 
expected.

o What went wrong?



11/14/19
The company did not collect good evidence

o The evaluation focused on functionality, not on 
productivity or quality effects.

o Demonstrations may be more misleading than 
enlightening.

o Reference customers are not representative.
o Lack of collection of research-based, 

representative experience-based and/or locally 
created evidence on productivity and quality

o Low awareness of how they were impacted by the 
tool vendors persuasion techniques.

What would an evidence-based 
evaluation look like?
o Clarification of the goals with the change in new tools
o Collection and critical evaluation of of research studies 

comparing the tools.
o Collection and critical evaluation of more representative 

practice-based experience.
ü Identify customers similar themselves and use of more 

structured and critical experience elicitation processes. 
o Completion of own, local empirical studies (local trials)

ü Invite the tool vendors to solve problems specified by the 
department itself at the department’s own premises. 

o Implementation of the new tool following good benefits 
management processes, which include evaluation the 
changes.



11/14/19

PROBLEM
QUESTION
SEARCH

EVALUATION
AGGREGATION

IMPLEMENTATION
EVALUATION

Follow in the footsteps of Aristotles
and base practices on good
evidence!

QUESTIONS?



11/14/19

Timeline of most popular programming
languages 1965 to 2019
(Borrowed from "Data is beautiful")



11/14/19



11/14/19



11/14/19
Google trends 2004 – 2019 
(search popularity)

0,39859907



11/14/19
The ease of affecting beliefs:

Are risk-willing or risk-averse developers better? 

Study design: Research evidence + Self-generated 
argument.

Question: Based on your experience, do you think that risk-willing 
programmers are better than risk-averse programmers?

1 (totally agree) – 5 (No difference) - 10 (totally disagree)
Neutral group: Average 5.0

Group 
A:

Group 
B:Initially

Average 3.3
Debriefing
Average 2: 3.5
2 weeks later
Average 3: 
3.5

Initially
Average 5.4
Debriefing
Average 2: 5.0
2 weeks later
Average 3: 
4.9

“I see it when I believe it” vs “I believe it when I see it”

o Design: 
üData sets with randomly set performance data 

comparing “traditional” and “agile” methods.
ü Survey of each developer’s belief in agile methods

o Question: How much do you, based on the data set, agree 
in: “Use of agile methods has caused a better performance 
when looking at the combination of productivity and user 
satisfaction.”

o Result: 
üPrevious belief in agile 

determined what they saw in 
the random data

Very satisfiedSatisfiedDissatisfied

9
8
7
6

5
4
3
2
1
0

Very satisfiedSatisfiedDissatisfied
Agile

User Satisfaction

Pr
od

uc
ti

vi
ty

 (
Fu

nc
ti

on
 P

oi
nt

s/
W

or
k-

da
y) Traditional

Individual Value Plot of Productivity

Panel variable: Development Method


