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1 Introduction

Patient-specific cardiac modeling can be used as a tool in diagnosis and to optimize patient
treatment. A key benefit of using modeling is that it allows you to compute mechanical features
that otherwise are impossible to measure safely in a human heart, and thereby increase the
insight and understanding of the state of the heart. Moreover, modeling enable us to test
possible treatments numerically without surgical intervention. However, in order for the model
to be reliable and realistic, the underlying cardiac mechanics model has to be adapted to the
patient under consideration. This means that measurements throughout the cardiac cycle have
to be taken into account in the model personalisation process.

2 Methods

In this study we constrain a cardiac computational model using measurements obtained from
the hospital. More specifically we use a patient-specific left ventricular (LV) geometry together
with 4D LV regional strain, LV volume and LV pressure measurement as input to the model.
The pressure is imposed through a Neumann boundary condition on the LV endocardium, while
the volume and strain are fitted to the model by formulating the problem as a PDE-constrained
optimization problem. The total mismatch between simulated and measured strain and volume
at measurement point ¢ can be combined into a misfit functional of the form
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where If,ol and Iétrain represents the volume and strain misfit respectively, and « controls the
weight on the volume versus strain fit.

The optimization procedure is divided into two phases: passive and active. In the passive
phase, the LV is inflated from the assumed stress-free configuration at diastasis up to point
of end-diastole(ED). This phase is used to determine passive elastic material properties. We
employ a transversally isotropic version of the Holzapfel-Ogden strain energy law [2]
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where C is the Right Cauchy Green tensor, I1 = tr C and I;; = e¢- Cer with ef being a unit
vector field pointing in the direction of the muscle fibers. The parameters a,ayf,b, by is made
specific to the patient by minimizing the misfit between measured and simulated volume.



To model the active contraction we apply the active strain formulation[1] which is based on
a multiplicative decomposition of the deformation gradient F into an elastic(e) and an active
part(a): F = F.F,. The active deformation gradient is chosen to have the following form:
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where € [0, 1) represents the active muscle fiber shortening and is used as control variable
for this phase. In order to capture local properties and to obtain a more realistic contraction
pattern we let v be a piecewise linear function. For this phase we solve
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where 2 is the left ventricular wall and W being the virtual work[6] of all forces applied to the
system. Here we have also introduced a total variation regularization for the purpose of numeri-
cal stability. The solver is fully parallelized and based on the open-source framework FEniCS[4].
The problem is solved using a gradient-based optimization algorithm[5], where the gradient is
computed by solving an automatically derived adjoint equation[3]. Note that since the contrac-
tion parameter ~ is spatially resolved, the number of parameters to determine at each point in
the active phase is equal to the number of vertices in the mesh. This makes adjoint gradient
calculations computationally advantageous over standard finite difference approximations.

3 Results

We tested the method on synthetic data and were able to reproduce the synthetic displacement
field within a maximum error of 0.06 cm on clean data and 0.13 cm on noisy data. Using a = 0.2
and A = 0.1 for the active phase we are able to get a relative average regional error in strain of
less than 10% and a relative average volume error of less than 0.0045% using real patient data
as input.
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