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12:00­12:45  Session 9: Biomechanics
CHAIR: Juliette Unwin

12:00 Marie Rognes
Accurate Numerical Modeling of Small Collections of Cardiac Cells ( abstract
)

12:15 Mariya Ptashnyk and Brian Seguin
The impact of microscopic structure on mechanical properties of plant cell
walls and tissues ( abstract )

12:30 Will Zhang and Michael Sacks
Simulating the Response of Bioprosthetics Heart Valve Tissues to Cyclic
Loading in FEniCS ( abstract )

12:45­13:45 Lunch Break

13:45­14:45  Session 10: Visualisation and Large Scale Computing
CHAIR: Lawrence Mitchell
LOCATION:  Salle Tavenas Main Theatre

13:45 Hugo Hadfield, Juliette Unwin, Nathan Sime and Garth Wells
podS: A Parallel Multilevel Monte Carlo Framework ( abstract )

14:00 Anders Logg, Carl Lundholm and Magne Nordaas
Solving Poisson’s equation on the Microsoft HoloLens ( abstract )

14:15 Martin Sandve Alnæs, Vidar Fauske and Min Ragan­Kelley
3D visualization with FEniCS in Jupyter Notebooks ( abstract )

14:30 Chris Richardson, Jack Hale and Garth Wells
Uncontainable enthusiasm: the pain and joy of Docker on HPC and cloud (
abstract )

14:45­15:15 Coffee Break

15:15­16:30  Session 11: Coupled and interface problems
CHAIR: Tormod Landet
LOCATION:  Salle Tavenas Main Theatre

15:15 Wietse Boon and Jan Nordbotten
Mixed­Dimensional Linear Elasticity with Relaxed Symmetry ( abstract )

15:30 Cécile Daversin­Catty and Marie E. Rognes
Towards coupled mixed dimensional finite elements in FEniCS ( abstract )

15:45 Karl Erik Holter, Miroslav Kuchta and Kent­Andre Mardal
Trace Constrained Problems in FEniCS ( abstract )

16:00 Karl Erik Holter, Miroslav Kuchta and Kent­Andre Mardal
Tracer transport in microvasculature: A case study on coupling 1D­3D
problems in FEniCS ( abstract )

16:15 Anders Logg, Carl Lundholm and Magne Nordaas
A Space­Time Cut Finite Element Method for the Heat Equation in FEniCS (
abstract )

16:30­16:40  Session 12: Group photo
CHAIR: Jack S. Hale
LOCATION:  Salle Tavenas Rear Room

16:40­18:15  Session 13: Meet the developers and coding
CHAIR: Jack S. Hale
LOCATION:  Salle Tavenas Rear Room

18:15­19:15  Session 14: Optional: Guided walk to dinner via UNESCO Heritage sites.
CHAIR: Jack S. Hale
LOCATION:  Salle Tavenas Rear Room

19:15­23:59  Session : Conference Dinner
CHAIR: Jack S. Hale
LOCATION:  La Table du Belvédère

Wednesday, June 14th

View this program:  with abstracts session overview talk overview

09:15­10:00  Session 15: Solid Mechanics I
CHAIR: Davide Baroli
LOCATION:  Salle Tavenas Main Theatre

09:15 Miguel Rodriguez, Christoph Augustin and Shawn Shadden
FEniCS Mechanics: A Package for Continuum Mechanics Simulations (
abstract )

09:30 Marco Morandini
Handling of finite rotations in Dolfin ( abstract )

09:45 Maria Vasilyeva
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Multiscale model reduction using GMsFEM for applied problems in
heterogeneous domains ( abstract )

10:00­10:30 Coffee break

10:30­11:15  Session 16: Solid Mechanics II
CHAIR: Cécile Daversin
LOCATION:  Salle Tavenas Main Theatre

10:30 Juliette Unwin, Garth Wells, Nathan Sime and Hugo Hadfield
Multi­Level Monte Carlo for Large­scale Vibrations Problems Using FEniCS
and podS ( abstract )

10:45 Hernán Mella, Joaquín Mura and Esteban Sáez
Implementation of Mixed and Hybrid Formulation of the PML Method in
Elastodynamics Using FEniCS ( abstract )

11:00 Benjamin Goldsberry and Michael Haberman
Finite Element Modeling of Elastic Wave Dispersion in Pre­strained
Negative Stiffness Honeycombs Using FEniCS ( abstract )

11:15­11:30 Short break

11:30­12:15  Session 17: Fluid Mechanics
CHAIR: Carl Lundholm
LOCATION:  Salle Tavenas Main Theatre

11:30 Jan Blechta and Martin ěehoĜ
FENaPack ­ FEniCS Navier­Stokes preconditioning package ( abstract )

11:45 Henning Bonart, Christian Kahle and Jens­Uwe Repke
Simulating Moving Contact Line Problems Using the Cahn­Hilliard­Navier­
Stokes Equations ( abstract )

12:00 Tormod Landet, Mikael Mortensen and Kent­Andre Mardal
Slope Limiting of Divergence Free Discontinuous Galerkin Vector Fields in
the Context of Two­Phase Flows ( abstract )

12:15­12:30  Session 18: Closing session
CHAIR: Stéphane P. A. Bordas
LOCATION:  Salle Tavenas Main Theatre
12:30­13:30 Closing lunch
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3D visualization with FEniCS in Jupyter Notebooks

Martin S. Alnæs, Simula Research Laboratory, martinal@simula.no,

Vidar T. Fauske, Simula Research Laboratory, vidar@simula.no,

Min Ragan-Kelley, Simula Research Laboratory, benjaminrk@simula.no

Keywords: FEniCS, Jupyter, Visualization

As part of the OpenDreamKit project (www.opendreamkit.org), we are working on improving the
state of 3D visualization in Jupyter Notebooks (www.jupyter.org).

Jupyter Notebooks run from a web browser based user interface and can display anything a browser
can display, which includes interactive javascript widgets and GPU accelerated 3D graphics through
WebGL. These fundamental technologies have now matured somewhat and reached widespread support,
including mobile targets.

The last couple of years a number of visualization projects have started to explore this area, including
established projects such as VTK, Paraview and MayaVi, as well as newer smaller projects such as
ipyvolume, k3d-jupyter, and SciviJS, the latter two being initiatives from the OpenDreamKit project.

In this talk we will present our current work on this front, and invite you as users and developers of
FEniCS to provide your opinions on which future directions of this project that would be useful to you.



FEniCS: Sustainable Software Development Practices

Martin S. Alnæs (Simula Research Laboratory, martinal@simula.no),
Jan Blechta, Jack S. Hale, Anders Logg, Chris Richardson,

Johannes Ring, Marie Rognes, and Garth N. Wells.

Keywords: FEniCS, Software Productivity, Software Development

The FEniCS project aims to provide a high productivity environment for development of finite element
based simulation software. Techniques applied to achieve this goal include mixed language programming
and code generation, which enables writing high performance programs in a high level language. End-
user productivity is a high priority goal in our software designs. To sustain the productivity of the
multinational team of part-time developers (mainly researchers and students) is paramount to the long
term survival of the project. To minimize the developer workload while making the process open and
accessible to new contributors and users, we regularly question which tools are the best available for our
needs. On this poster we will present our current tool choices and work flows for developers and the
wider FEniCS community. This list includes version control, build systems, testing, release management,
team communication, documentation, and end user support. The most recent addition to our toolbox are
developer curated Docker images. We are investigating their usefulness in testing infrastructure, end user
deployment, HPC cluster deployment, and as reproducible software environments to accompany journal
publications. We welcome discussion on alternatives that can simplify our lives.

This poster was previously presented at SIAM CSE17 PP108 Minisymposterium: Software Produc-
tivity and Sustainability for CSE and Data Science.



Simulating Moving Contact Line Problems Using the

Cahn-Hilliard-Navier-Stokes Equations

Henning Bonart, Technische Universität Berlin, henning.bonart@tu-berlin.de

Christian Kahle, Technische Universität München, christian.kahle@ma.tum.de

Jens-Uwe Repke, Technische Universität Berlin, jens-uwe.repke@tu-berlin.de

Keywords: Cahn-Hilliard-Navier-Stokes, Moving contact lines, Supercomputing

The wetting of liquid films on solid surfaces occurs in many industrial processes like coating or painting
and apparatuses involving trickle films. At the intersection of the gas-liquid interface with the solid surface
a moving contact line is formed. Applying the common no-slip boundary condition at the solid surface,
a non-physical divergent stress at the contact line occurs. One possibility to circumvent this difficulty in
the context of continuum mechanics is the coupling of the incompressible Navier-Stokes equations with
the Cahn-Hilliard (CH) equation. The CH equation models the interface between the fluids with a diffuse
interface of positive thickness and describes the distribution of the different fluids by a smooth indicator
function. Especially, the CH equation allows the contact line to move naturally on the solid surface due
to a diffusive flux across the interface, which is driven by the gradient of the chemical potential. The
Cahn-Hilliard-Navier-Stokes (CHNS) model forms a tightly coupled and nonlinear system of four partial
differential equations.

In this talk, we present a new FEniCS-based library for massive parallel simulations using CHNS
models for problems involving moving contact lines. The library is programmed mainly in Python,
whereas some time critical parts are in C++. Furthermore, Parallel HDF5 is applied for in- and output
and PETSc’s SNES with MUMPS is used for the solution of the nonlinear system. The library aims to
be easily extendable and to serve as a platform for rapid benchmarking of different CHNS models and
solution schemes. For efficient simulations of the thermodynamically consistent CHNS model by [1] for
large density ratios, we employ a stable solution scheme as proposed in [2]. Besides the structure of the
library, we discuss the compilation of the FEniCS toolchain and our own implementations on a Cray
XC40/XC30 supercomputer system. Furthermore, we present some promising physical results on moving
contact lines and discuss the good scalability on the supercomputer.

References

[1] Helmut Abels, Harald Garcke, and Günther Grün. ”Thermodynamically consistent, frame indifferent
diffuse interface models for incompressible two-phase flows with different densities.” Mathematical
Models and Methods in Applied Sciences 22.03 (2012): 1150013.

[2] Harald Garcke, Michael Hinze, and Christian Kahle. ”A stable and linear time discretization for a
thermodynamically consistent model for two-phase incompressible flow.” Applied Numerical Math-
ematics 99 (2016): 151-171.



Mixed-Dimensional Linear Elasticity with Relaxed Symmetry

Wietse M. Boon, University of Bergen, wietse.boon@uib.no

Jan M. Nordbotten, University of Bergen, jan.nordbotten@uib.no

Keywords: Mixed-dimensional, Mixed finite elements, Linear elasticity.

Thin inclusions in materials are common in a variety of applications, ranging from steel plate rein-
forced concrete to composite materials and cemented fracture systems. To ease implementation issues
such as mesh generation, mixed-dimensional representations of the material have become an attractive
strategy. In such a representation, the thin inclusions are considered as lower-dimensional manifolds with
significantly different material properties. The associated, governing equations are then fully coupled to
the surroundings.

The explicit consideration of momentum conservation is especially important when considering stress
states around thin inclusions. For example, in the context of fracture propagation, the region near
fracture tips is of particular interest since the stress state contains a wealth of information. An accu-
rate representation of the surrounding stress, possessing physical conservation properties, is therefore
imperative.

In this work, we employ mixed finite elements to obtain a locally conservative discretization scheme.
The symmetry of the stress tensor is then imposed in a weak sense, which allows for the use of familiar,
conforming, finite elements with relatively few degrees of freedom. The mixed-dimensional representa-
tion is exploited to the fullest extent by considering subdomains of all dimensionalities. In particular,
intersections between d-dimensional manifolds are considered as separate (d − 1)-dimensional manifolds
and all couplings are incorporated between domains with codimension one.

We present several theoretical results including well-posedness of the variational formulation and the
mixed finite element discretization scheme. Moreover, numerical examples and their implementations
using FEniCS are considered in two and three dimensions.



FENaPack - FEniCS Navier-Stokes preconditioning package

Jan Blechta, Charles University, blechta@karlin.mff.cuni.cz,

Martin Řehoř, Charles University, rehor@karlin.mff.cuni.cz

Keywords: Navier-Stokes equations, PCD preconditioner, HPC

In this contribution we present a novel theoretical analysis of PCD (pressure-convection-diffusion)
preconditioner for approximation of Navier-Stokes equations, present some important implementational
details, and provide an open-source implementation suitable for deployment on HPC systems.

We consider a linearization of Navier-Stokes equations written in a block form
(

−ν∆+ v · ∇ ∇

− div 0

)(

u

p

)

=

(

f

0

)

. (1)

Formally we can express a Schur complement of the system as

S = − div (−ν∆+ v · ∇)
−1

∇. (2)

Reasonable strategy for solving (1) is to employ GMRES with right preconditioner given by

(

−ν∆+ v · ∇ ∇

0 −S

)

−1

. (3)

The problem is that an action of S−1 needed to express an action of (3) cannot be efficiently implemented
because S given by (2) is a dense matrix when discretized. A possible remedy is to swap the order of
operators in (2) and hope for a stability of this approximation. This gives rise to a pair of possible Schur
complement approximations

S ≈ −∆(−ν∆+ v · ∇)
−1

≡ X (4)

S ≈ (−ν∆+ v · ∇)
−1

(−∆) ≡ Y. (5)

The immediate question is what boundary conditions should one enforce in a Laplacian solve needed
for action of X−1 or Y −1. This has been a topic of long-standing discussions in the literature using
different heuristic arguments. We provide a new rigorous analysis advocating boundary conditions which
appeared in [4, Section 9.3.2] and [5, section 2.1] under certain reasonable assumptions which were not
known before. Under such conditions we are able to prove that X and Y are continuous isomorphisms on
L2(Ω) which results in L2-norm equivalence with Schur complement S. This is a good heuristics giving
mesh-independent convergence rates of GMRES.

We provide an open-source implementation [3] built on top of the FEniCS project [1] and PETSc [2].
Thanks to the abstraction the package is designed with, an implementation of a particular variant of
PCD preconditioner can look like

Python code

1 class PCDPC_BRM2(BasePCDPC):

2 def apply(self , pc , x, y):

3 # Fetch work vector

4 z0 , z1 = self.get_work_vecs(x, 2)

5

6 # Apply PCD

7 self.ksp_Mp.solve(x, y) # y = M_p^{-1} x

8 y.copy(result=z0) # z0 = y

9 self.mat_Kp.mult(z0 , z1) # z1 = K_p z0

10 self.bcs_applier(z1) # apply bcs to z1

11 self.ksp_Ap.solve(z1 , z0) # z0 = A_p^{-1} z1

12 y.axpy(1.0, z0) # y = y + z0

13 y.scale(-1.0) # y = -y

The base class BasePCDPC provides members to apply particular ingredients of PCD, e.g., mat_Ap,
bcs_applier, etc., taking care of matrix-vector operations based on user-provided UFL input. This
allows to easily modify the preconditioner for different needs, e.g., time-dependent problem, spatially
variable viscosity, etc. Furthermore approximation of required solves can be setup with an ease using the
PETSc parameter system



Python code

1 PETScOptions.set("fieldsplit_u_ksp_type", "richardson")

2 PETScOptions.set("fieldsplit_u_ksp_max_it", 1)

3 PETScOptions.set("fieldsplit_u_pc_type", "hypre")

4 PETScOptions.set("fieldsplit_u_pc_hypre_type", "boomeramg")

5 PETScOptions.set("fieldsplit_p_PCD_Ap_ksp_type", "richardson")

6 PETScOptions.set("fieldsplit_p_PCD_Ap_ksp_max_it", 2)

7 PETScOptions.set("fieldsplit_p_PCD_Ap_pc_type", "hypre")

8 PETScOptions.set("fieldsplit_p_PCD_Ap_pc_hypre_type", "boomeramg")

9 PETScOptions.set("fieldsplit_p_PCD_Mp_ksp_type", "chebyshev")

10 PETScOptions.set("fieldsplit_p_PCD_Mp_ksp_max_it", 5)

11 PETScOptions.set("fieldsplit_p_PCD_Mp_ksp_chebyshev_eigenvalues", "0.5, 2.0")

12 PETScOptions.set("fieldsplit_p_PCD_Mp_pc_type", "jacobi")

An example of obtained solution is in the Figure 1a. Figure 1b demonstrates mesh independence of the
preconditioner.

(a) Flow over a backward facing step in 3D
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(b) Scaling of different variants of PCD preconditioner
to solve the nonlinear Navier-Stokes problem with pre-
scribed tolerance. Top figure shows mesh independence
of number of total GMRES iterations. This figure is
produced automatically using a CI service.
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Model order reduction methods are a family of well-established techniques for reducing the computational
cost of parametrized PDEs. They provide a good trade-off between fast computation and high-fidelity
approximation while preserving reliability.

One popular model order reduction technique is the reduced basis method (RB). This approach leads
to a a set of global RB basis functions that optimally represent the solution and also provides a reliability
estimate of the gap between high fidelity solution and reduced one of the parametrized PDE, for a given
range of possible sample parameters.

In this poster, we present a novel alchemy of model reduction, reduced assembly [Schenone et al.,2016],
and domain decomposition method that we call iRANitsche [Baroli et al].
Rather than using globally reduced basis function computed offline, we design a spatially local reduced
basis space and we apply the ‘reduced assembly‘ (RA) technique [Schenone et al.,2016], which is used to
efficiently reduce the assembly complexity cost of online Galerkin projection.

Figure 1: At left the picture shows a Gaussian function supported on the finest grid, at right the coarsening
representation is obtained via reduced assembly.

Our approach instead deals with reducing the degree of freedom of domain preserving a certain



accuracy of the locally reduced basis function. However, it leads to non-matching mesh and in principle
may lead to discontinuous basis function across the interface of each pair of sub-domains.

For this reason, we employ a Nitsche-based gluing formulation using the MultiMesh [Massing et al. 2013,
Johansson et al. 2015] framework developed recently in DOLFIN. The robustness of this coupling scheme
is determined by the penalty coefficients that are chosen using ghost penalty technique in [E.Burman 2015].

We will show how we develop our package at the top of DOLFIN [Logg et al. 2012], SLEPc4py and
PETSC4py[Dalcin et al. 2011].

The numerical tests performed in 2D and 3D on an academic and the patient-specific problems
(Figure 2) provided by Dr. Hertel of Hospital Center de Luxembourg shows the good performance of
the method and reduction of computation cost of some order of magnitude with respect the high-fidelity
approximation.

Figure 2: The figure shows the deformation obtain by iRBNitsche of post-augumented vertebra
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Particles with sizes that range from sub-micrometers to about 1 millimeter and with particular elec-
trical and/or magnetic properties, experience mechanical forces and torques when they are subjected to
electromagnetic fields (this type of particles are called “electromechanical particles”).

The theoretical study of this large class of complex systems is possible thanks to the development
of real-system models and numerical simulations of the stable (multi-particle) configurations and their
dynamics.

One of the phenomena that affect electromechanical particles is the dielectrophoresis (DEP)[1, 2].
A branch of emerging application relates to controlled manipulation of particles dispersed in colloidal

solutions (i.e. biological particles such as cells or DNA), since the strong selectivity of the response
depends on the particle volume, shape and composition [3]. Application fields of dielectrophoresis include
cell partitioning/isolation for the capture/separations without the use of biomarkers [4].

This contribution focuses on the theoretical study of the dynamics of micro-sized spherical biological
particles suspended in a colloidal solution, which are subjected to dielectrophoresis in the presence of
non-homogeneous and non-uniform variable electric fields.

Most DEP models in the literature are based on particles in the diluted solution limit [5]; in this
case the forces are calculated using an approximate method (standard DEP). The electric field is applied
through the electrodes present in a microfluidic channel in which the colloidal solution flows. Particle
manipulation and characterization using DEP is generally performed in a confined region near the elec-
trodes, so that the interaction between the particle and the surrounding walls can be significant. In this
work, we present numerical simulations of the movement of MDA-MB-231 tumor cells near electrodes
edges; we run a more detailed study, with a non-approximate calculation of the dielectrophoretic force:
DEP forces are estimated by integrating the Maxwell tensor [6]; it leads to an overall DEP force inde-
pendent of the complex dielectric permittivity of the particles and suspending medium and depends only
on the type of boundaries (conductive or isolating) and on the ratio between the particle and electrode
dimensions.

The dynamics is simulated by techniques borrowed from Molecular Dynamics (MD): our goal is to
first evaluate the forces acting on electromechanical particles starting from the initial configuration of
the system (position of the particles, geometry of the electrodes, electrical potentials applied), and then
calculate the dynamics of the particles through the integration of the equations of motion using MD-
like techniques. The Coupled MD-FEM study of particles’ kinetics consists of a loop with the following
steps: initial positions of the particles; calculation of forces; calculation of acceleration; integration of the
equations of motion; new positions. We use the numerical integration technique called Verlet Method.
The coupled MD-FEM algorithm and its implementation in the FEniCS environment are presented.
Realistic simulated cases will be discussed, showing also the difficulties of the methodic implementation
in 3D domains.

We carry out simulations of the movement of MDA-MB-231 tumor cells near the electrode edges,
based both on the standard DEP theory and on the non approximate theoretical model (MST). We
find that, in the case of standard DEP, the cells experience an attractive force that traps them near
the electrodes, while in the case of the MST-DEP force, the cells also form chains due to dipole-dipole
interactions and some escape from the attraction of the electrodes.

Our work shows the potential of coupled MD-FEM study of electromechanical particles.



Figure 1: Standard DEP. A): 1 sec. B): 100 sec. C): 200 sec. D) 300 sec. In the presence of standard
DEP force, the cells are attracted by the electrodes.

Figure 2: MST-DEP. A): 1 sec. B): 100 sec C): 200 sec. D) 300 sec. E): 400 sec. F): 450 sec. In
the presence of the DEP force calculated by the Maxwell Stress Tensor, the cells are attracted by the
electrodes and form chains due to dipole-dipole interactions; some cells escape the attraction of the
electrodes.
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The objective of this work is to present a Python code developed for the solution of differential-algebraic
systems of the form ∣∣∣∣∣∣

M(y(t))
dy

dt
(t) = f(t,y(t)),

y(0) = y0,

(1)

with a possibly singular matrix function M : Rd → Md×d(R) of constant rank in a neighbourhood of
the solution. This kind of systems arise from the space discretization of transient partial differential
equations (see [1] for a different approach where the time stepping is applied first) such as, for example,
the following non-linear heat equation (in this case y is associated to (u,v))

∣∣∣∣∣∣
p(u)

∂u

∂t
− div(v) = f, in Ω× (0, T ],

v − q(u)∇u = 0, in Ω× (0, T ],

∣∣∣∣∣∣

u = 0, in ∂Ω× (0, T ],

u(t = 0) = u0, in Ω,
(2)

by means of the finite element method. To this end, the finite element library FEniCS [2] is used.
For the discretization in time we are interested in implicit stiffly-accurate one-step methods with a low
computational cost. In particular, we consider Diagonally Implicit Runge-Kutta (DIRK) methods

M(yn +

i∑

j=1

aijkj)ki = hnf(tn + cihn,yn +

i∑

j=1

aijkj), i = 1, . . . , s,

yn+1 = yn +

n∑

j=1

bjkj ,

(3)

sub-families of them (such as SDIRK and ESDIRK) and Rosenbrock-Wanner methods (ROW). It is worth
noting that the jacobian matrices needed to solve the non-linear systems in (3) can be easily evaluated
using the library FEniCS [2]. In both cases, an embedded pair of methods is used to compute an error
estimator and adapt the time step with a marginal extra computational cost, as explained in [3].

Figure 1: Structure of the solver class

These families of methods have been implemented in an object-oriented Python code that, providing the
matrix function M(·) and the field f(·, ·) in (1) and the Butcher tableau defining the embedded methods,



allows the user to automatically integrate the equation in time with an adaptive time step adjusted to a
prescribed tolerance (see Figure 1 for the structure of the solver class).

Let us give further details on how M(·) and f(·, ·) can be generated for the model problem in (2) which
admits the following weak formulation: Find (u,v) ∈ L2((0, T ];H1

0 (Ω))× L2((0, T ]; (L2(Ω))d) such that
∣∣∣∣∣∣∣∣

∫

Ω

p(u)
∂u

∂t
ũ dΩ−

∫

Ω

v · ∇ũ dΩ−

∫

Ω

fũ dΩ = 0, ∀ũ ∈ H1
0 (Ω),

∫

Ω

v · ṽ dΩ−

∫

Ω

q(u)∇u · ṽ dΩ = 0, ∀ṽ ∈ (L2(Ω))d.

(4)

This weak formulation must be written in UFL language [4] as non-linear with the time derivative declared
as a trial function in order to be able to extract the mass matrix and right hand side:

∫

Ω

p(u)
∂u

∂t
ũ dΩ+

∫

Ω

0 · ṽ dΩ
assemble()
−−−−−−→ M(y(t)),

∫

Ω

v · ∇ũ dΩ+

∫

Ω

fũ dΩ−

∫

Ω

v · ṽ dΩ+

∫

Ω

q(u)∇u · ṽ dΩ
assemble()
−−−−−−→ f(t,y(t)),

(5)

where the mass matrix will clearly be singular with constant rank.

This procedure can be used to solve problems of the form
∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize Ψ(m) = Φ(y(T ),m) +

∫ T

0

g(y(t),m) dt

s.t. m ∈ A

M(y(t))
dy

dt
(t) = f(t,y(t),m)

y(0) = h(m)

(6)

arising from the space discretization of optimal control problems governed by transient partial differential
equations. The gradient of the discrete cost function with respect to the degrees of freedom of the control
m (needed by most of the iterative optimization algorithms) is computed by means of the discrete adjoint
state, deduced in [5] for Runge-Kutta methods and a particular case of this kind of problems.

During the talk we will show for different problems such as the non-linear heat equation described before
or the transient Stokes equations

∣∣∣∣∣∣∣∣

∂u

∂t
− ν∆u+∇p = f in Ω× (0, T ],

div(u) = 0 in Ω× (0, T ],

u = g in Γ× (0, T ],

(7)

that the methods presented here perform well converging with the expected order of accuracy, being the
Rosenbrock-Wanner methods specially attractive for the solution of high-scale transient partial differential
equations due to their low computational cost.
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In this work, we present novel computational tools for bayesian parameter inversion and optimal
experimental design for determining the 3D strain energy function parameters for myocardial tissue.
In previous work[1], we presented a framework for parameter inversion and optimal design based on
an experimental setup for 1 cm3 myocardial tissue samples that applies tri-axial Dirichlet boundary
conditions incrementally in quasi-static equilibrium and measures resultant surface traction forces (Figure
1 a).

In the current work, we extend the framework to a Bayesian inversion context for parameter estimation
and we consider more advanced techniques for optimal experimental design. We use the inverse problems
Python library hIPPYlib[2] a toolbox for FEniCS that enables easy development of scalable algorithms
for PDE-based deterministic and Bayesian inverse problems. In what follows, we introduce further the
functionality of hIPPYlib, we then present the forward problem, the Bayesian inverse problem, and some
thoughts on the optimal design of experiments.

hIPPYlib. Using hIPPYlib, the user expresses the forward problem PDE and the likelihood in weak
form using the friendly, compact, near-mathematical notation of FEniCS, which will then automatically
generate efficient code for the discretization. Given a prior distribution, determined by our prior knowl-
edge of the model parameters, we take advantage of hIPPYlib’s robust implementation of the inexact
Newton-conjugate gradient algorithm to compute the maximum a posterior (MAP) point. Invoking the
Laplace approximation to the posterior, we approximate the posterior distribution as a Gaussian distri-
bution with mean equal to the map point and covariance operator given by the inverse of the Hessian
evaluated at the MAP point. Such distribution can then be used directly as a surrogate for the true pos-
terior or as a proposal distribution for Markov Chain Monte Carlo (MCMC). The reduced gradient and
Hessian actions are automatically computed via their weak form specification in FEniCS by constraining
the state and adjoint variables to satisfy the forward and adjoint problem.

Forward Problem. An experimental setup presented in previous work is briefly described. We
built a tri-axial experimental setup for 1 cm3 soft tissue samples, capable of incrementally applying a
combination of multi-axial tension, compression, and shear Dirichlet boundary conditions in a quasi-static
equilibrium context and measuring tissue surface traction forces. Assuming an incompressible orthotropic
Fung strain energy function ΨF ung(u(ck), ξ), where ck are parameters which represent shear and elastic
moduli: ck, k = 0, 1, ..., 6 ⊂ C, the parameter space, and ξ are the local material orientations, we can
model forward problem as: find the displacement field u that minimizes the energy functional ΨF ung

s.t. the incompressibility constraint and the Dirichlet boundary conditions are satisfied. Specifically, it
reads:

Find u in [H1(Ω)]3 verifying

min
u

∫

Ω

ΨF ung(u(ck), ξ)dV

such that

det(F) = 1 in Ω

u = g on Γ ⊂ ∂Ω,

(1)

where
F = I + ∇u.



Inverse Problem. In our experiments we impose boundary condtions gi and we observe forces fi. We
define the pairs (gi, fi) as our collection of experiments i ∈ E (the experiments space). Given ξ, the
inverse problem for global material parameters ck, k = 0, 1, ..., 6 is:

Find c ∈ C verifying

min
c

J(c) :=
1

2

|E|
∑

i

(
∫

Γ

T(ui) · nids − fi

)2

subject to the forward problem,

(2)

where T is Cauchy stress. Notice from Figure 1 b), that since the amount of experimental data is large,
i.e. j = 0, 1, ...[150 − 300], the inverse problem is constrained by over 1,300 PDE’s, arriving from data
from 7 experiments, and, intuitively, the most important data for the inverse problem lie toward the right
end of the loading curves, where the stress/strain relationship is most nonlinear.

Figure 1: a) A photograph of the experimental setup, with Dirichlet boundary conditions applied to
two sets of 9 circular pins on opposing faces. b) Experimental data. There are >1300 data points from
7 experiments, each plotted in a different color c) FEniCS forward problem with Dirichlet boundary
conditions at the 9 circular pins on two opposite faces of a cube of tissue.

Optimal Experimental Design. Since excised tissue has a short lifespan, only a few experiments
are feasible (6 or 7). Therefore it is crucial to find a set of loading conditions that best allow for inversion
of material parameters. In this work, we solve an optimal experimental design problem to find such an
near-optimal set. In particular, we seek to maximize the expected information gain from the experimental
data, that is to maximize the Kullback-Leibler divergence between the prior and posterior distributions.
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For shape optimization problems, the computational domain is the design variable. Changing the
shape of an airfoil in a channel to minimize drag is such a problem. The evolving domains complicate
the numerical solution of shape optimization problems, and typically require large mesh deformations
with quality checks and a re-meshing software as a fallback. We propose an approach for solving shape
optimization problems on multiple overlapping meshes. In this approach, each mesh can be moved freely
and hence the multi-mesh approach allows larger deformation of the domain than standard single-mesh
approaches. The approach has been implemented in FEniCS and dolfin-adjoint, by employing the already
tested environment for multi-mesh [1]. We give examples of derivation of the shape-optimization problem
for a Stokes flow and present implementation of this in FEniCS.

Consider a general PDE constrained shape optimization problem

min
Ω,u

J(u(Ω),Ω) subject to F (u(Ω),Ω) = 0, (1)

where J is the goal functional, F (u,Ω) is the state equations, u is the solution of the state equation, Ω
is the domain of state equations.

We choose to divide the domain Ω into two non-overlapping domains by creating an artificial interface
Γ, s.t. Ω = Ω0 ∪ Ω1 and Γ = Ω0 ∩ Ω1, as depicted in Figure 1. Extension to an arbitrary number of
overlapping domains is possible.

The weak formulation of the state equations are then formulated and the continuity over the artificial
boundary is enforced by using Nitsches method.

For minimization, we choose a gradient based scheme, and find the gradient by using the adjoint
method, L = J + λ∗F ,

dJ(x)[V ] = ∂L/∂Ω, (2)

(∂F/∂u)∗λ = −(∂J/∂u)∗. (3)

Here Equation 3 is called the adjoint equation and λ the adjoint variable. By employing the Hadamard
formulas for Volume and Surface objective functions[2] one can achieve the functional sensitivities as a
function of the moving boundary and not the domain.

A concrete example of this approach is the shape optimization of an obstacle in Stokes-flow in the
domain specified in Figure 2, namely

min
u,Ω

J(u,Ω) =

∫

Ω

d
∑

i,j=1

(

∂ui

∂xj

)

dΩ, (4)

subject to

−∆u+∇p = 0 in Ω, ∇ · u = 0 in Ω,

u = 0 on Γ1 ∪ Γ2, u = u0 on Γ3, , p = 0 on Γ4, Vol = Vol0,
(5)

where Vol0 is the volume of the obstacle.
For deformation of the mesh, we have used two different deformation equations, a Laplacian smoothing

and a set of Eikonal convection equations[3]. For the multi-mesh problem, deformation is only done
one the front mesh, while the background mesh is stationary. Figure 3 shows that with the Laplacian
deformation the mesh degenerates in both the single-mesh and multi-mesh-case. Figure 4 shows that the
Eikonal convection equations preserves the mesh-quality in the multi-mesh-case, but not in the single-
mesh case, where the mesh degenerates at the boundary. We conclude that with a multi-mesh-approach,
the meshes are preserved better than with a single-mesh approach.



Ω̂0 = Ω

Ω̂1

K̂h,1

Γ Γ

Ω0

Ω1 Γ

K̂h,0

Figure 1: Left: Example of how to divide the domain into two pieces. Center: The specification of two
new domains, that will be used for meshing. Left: Example of how to mesh the domains Ω̂0 and Ω̂1.
Note that the boundaries of K̂h,1 does not align with the edges of K̂h,0.

Γ1

Γ1

Γ2Γ3 Γ4

Figure 2: Illustration of initial domain for the shape optimization problem in Stokes-flow.

Figure 3: Left: Optimal shape with Laplacian deformation for the Stokes-optimization problem on a
single mesh. Right: multi-mesh solution of similar problem. Both cases degeneration of the mesh near
the front of the geometry. The quality is measured in as the radius ratio of each triangle.

Figure 4: Left: Optimal shape with Eikonal convection deformation for the Stokes-optimization problem
on a single mesh. Right: multi-mesh solution of similar problem. In the multi-mesh-case the mesh does
not degenerate. The quality is measured in as the radius ratio of each triangle.
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In the brain, the vasculature twist and turn through the brain tissue as topologically one-dimensional
structures embedded in three dimensions. In the Earth’s crust, topologically two-dimensional faults and
one-dimensional fractures cut through the three-dimensional rock. In general, there is an abundance of
examples that call for mathematical and numerical models coupling n < m and m dimensional spaces.

As one example, consider the model presented by [1]: consider a topologically one-dimensional sub-
domain Λ embedded in a three-dimensional domain Ω ⊆ R

3 and consider real function spaces V defined
over Ω and K defined over Λ. The problem reads as find (u, l) ∈ V ×K such that

∫

Ω

(∇u · ∇ v + uv) dx+

∫

Λ

β (Πu− l) v ds = F (v) ∀ v ∈ V, (1)

∫

Λ

(

∂

∂s
l
∂

∂s
k + lk

)

ds−

∫

Λ

β (Πu− l) k ds = G(k) ∀ k ∈ K. (2)

In (1) and (2), Π : V → L2(Λ) e.g. represents a non-local averaging operator of the form:

Πu(s) =
1

2π

∫ 2π

0

u(x(s,R, θ)) dθ, (3)

where the radius R and the angles θ define circles normal to the curve Λ.
This talk is intended to continue the discussion on how best to support such finite element spaces and

associated finite element formulations in the FEniCS framework. Emphasis will be put on key motivating
examples, key abstractions and structures and key challenges.
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The understanding of plasma-object interaction is of importance for men and space technology in harsh
and inhospitable space environments. The flowing plasma in the upper-atmosphere contains energetic
megaelectronvolt electrons and ions that may cause damage to spacecrafts and satellites, and represents
serious health hazard to astronauts. Due to the complexity of the plasma-object interaction, in order
to study realistic space weather conditions, it is advisable to use first-principle numerical simulations,
such as with particle-in-cell (PIC) method, where the dynamics of plasma particles can be studied in
self-consistent force fields. The use of finite element method to study plasma-object interaction has the
advantage of giving considerable flexibility to have an accurate representation of the complex spacecraft
or satellite geometries [1].

This poster presents a particle-in-cell code written in FEniCS environment to study plasma-object
interaction.
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In this talk we describe a recent addition to FEniCS: native support for geometric multigrid via PETSc.

Rather than building an additional software project on top of FEniCS, we have included support for
GMG inside FEniCS itself. This is achieved by teaching PETSc how to construct the necessary prolon-
gation and restriction operators. That is, we enable the use of pc type "mg" in PETSc.

The main technical difficulty is building a sparse matrix that represents the prolongation operation
between two function spaces. Our code for the construction of the prolongation operator works in paral-
lel, for any Lagrange element. The code works even when the domain decompositions of the meshes do
not overlap, at the cost of some communication.

The code relies on the user supplying the hierarchy of meshes. The code does not rely on the hierar-
chy being nested or constructed via uniform refinement. In fact, the code works even when the meshes
describe different domains (under certain well-understood conditions). This is frequently necessary for
complex domains arising in industrial practice.

Its current restrictions are that it does not work for non-Lagrange elements or for mixed finite element
problems. Its extension to mixed finite elements is relatively straightforward (and has been achieved in
defcon, the author’s package for bifurcation analysis), but relies on some modifications to dolfin that are
not yet ready for merging. This may or may not be resolved by the time of the talk.

Contributions to support other element types and multigrid for H(div) and H(curl) problems would
be extremely welcome.
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The derivation and implementation of adjoint models for time-dependent, non-linear PDEs is a chal-
lenging task. A common strategy is to an apply algorithmic differentiation tool (AD) which (semi-
)automatically derives the adjoint model from the forward model. Specifically for finite-element models,
[1] proposed a high-level AD approach, which derives the adjoint by analysing and exploiting the high-
level mathematical structure inherent in finite element methods. This idea has shown to provide major
benefits compared to traditional low-level AD tools, including near to theoretically optimal performance
and natural support of parallelism. However, the high-level AD tool for FEniCS, dolfin-adjoint, lacks
important features such as differentiation with respect to Dirichlet boundary conditions and higher-order
derivatives.

To overcome these limitations, we propose a new algorithmic differentiation tool for FEniCS. The
core of this tool is formed by pyadjoint, a generic operator overloading AD tool written in Python.
pyadjoint considers the model as a sequence of arbitrary operations with inputs and outputs. This
abstraction can be seen as a generalisation of low and high-level AD tools: operations can be individual
floating point operations (as for traditional AD tools), entire systems of differential equations (as for
high-level AD tools), or a mix of both. The adjoint developer must overload each relevant model function
according to the pyadjoint API, and in particular provide implementations for their derivatives. With
this information pyadjoint records a tape of model operations at runtime and automatically derives and
executes the associated adjoint model. Specifically, the support for adjoint FEniCS model is achieved by
overloading of the FEniCS API, in particular the creating of new objects such as Functions, Constants,
and overloading operators such as assemble, project and solve, see figure 1.

Python code

1 from fenics import *

2 from fenics_adjoint import *

3

4 mesh = UnitSquareMesh(10 , 10 , 0.1, 0.1)

5 V = FunctionSpace(mesh , "Lagrange", 1)

6

7 u = TrialFunction(V)

8 v = TestFunction(V)

9

10 u_ = Function(V, name="PDE Solution")

11 f = Constant(1.0, name="Control")

12

13 a = inner(grad(u), grad(v))*dx

14 L = f*v*dx

15 bc = DirichletBC(V, 1, "on_boundary")

16

17 solve(a == L, u_ , bc)

18

19 J = assemble(u_**2*dx)

20

21 tape = get_working_tape ()

22 J.set_initial_adj_input(1.0)

23 tape.evaluate ()

24 dJdf = f.get_adj_output ()

(a)

(b)

Figure 1: (a) example FEniCS model with adjoint annotations, and (b) the recorded tape visualised as
a graph

This poster will present the initial implementation of this new AD tool and demonstrate its highlights:

• Automatic derivation of adjoints of FEniCS models with parallel support;



• Derivatives with respect to nearly any model input, including Dirichlet boundary conditions;

• Support for providing a user-defined Riesz-map for representing the gradient;

• Support for higher-order derivatives in development;

• Extensions to other models (such as Firedrake) possible;

• Small code base

The proposed AD tool is available as open-source under the LGPL 3 license and we warmly welcome
contributions.
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The first hybridization of a finite element method was proposed in 1977 for a numerical method for
solving the equations of linear elasticity [1]. As a sub-set of static condensation methods, its primary
advantage allows one to reduce the number of globally-coupled degrees of freedom. In practice, this
requires algebraically manipulating the local discretized systems during the equation assembly process to
produce the reduced global problem. Using conventional model development techniques, hybridization
of complex discretizations requires manual intervention in intricate numerical code, and this intervention
must be repeated every time the model is modified, extended, or debugged.

In contrast, the Firedrake [2] and FEniCS [3] projects take the discretized equations in symbolic
form as input, and automatically generates high performance parallel code from this mathematical spec-
ification. In this talk, we present a robust abstraction framework within Firedrake for specifying local
operations on finite element tensors. By introducing these symbolic operations, and generating code from
them, we successfully extend hybridized finite elements for automated simulation.

References

[1] B. M. Fraejis De Veubeke. Displacement and equilibrium models in the finite element method, Stress
Analysis, Wiley, New York, 145-197, 1977.

[2] F. Rathgeber, D. A. Ham, L. Mitchell, M. Lange, F. Luporini, A. T. T. Mcrae, G. Bercea, G.
R. Markall, and P. H. J. Kelly. Firedrake: automating the finite element method by composing
abstractions. ACM Trans. Math. Softw., 43(3):24:124:27, 2016.

[3] A. Logg, G. N. Wells, and J. Hake. Automated Solution of Differential Equations by the Finite
Element Method. Springer, 2012.



Gmsh 3.0 - Gmsh goes boolean!

Christophe Geuzaine, Université de Liège, cgeuzaine@ulg.ac.be
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In this talk I will give a brief overview of the Gmsh project, and present the new constructive solid

geometry features introduced in Gmsh 3.0.
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An acoustic metamaterial (AMM) is an engineered composite material, often constructed using a
periodic lattice, that behaves as an effective material with unconventional dynamic effective properties.
AMMs can manipulate and control acoustic and/or elastic waves in ways that are not possible with
conventional materials, and are therefore of interest for applications such as acoustic lenses that defy the
diffraction limit, material slabs that prevent certain frequencies from propagating, and acoustic cloaks
that redirect acoustic signals around an object [1]. Reconfigurable AMMs allow even greater control
over the direction of energy propagation by altering the structure through an external stimulus, such
as mechanical deformation, which fundamentally changes the effective dynamic properties [2]. In this
work, a periodic arrangement of pre-curved beams in a honeycomb configuration, commonly referred to as
negative stiffness honeycombs (NSH), is studied as a candidate reconfigurable AMM [3]. This work seeks
to explore the degree to which exotic dynamic properties and extreme changes in the modal dispersion
can be elicited by uniaxial mechanical deformation of the NSH.

The representative unit cell under consideration is shown in Figure 1(a). The nonlinear mechanical
deformation of the unit cell is modeled in FEniCS using the principle of stationary potential energy. In
this work, the St. Venant-Kirchhoff strain energy density is used:

W (E) =
λ

2
tr (E)

2
+ µtr

(

E
2
)

, (1)

where E is the Lagrangian strain tensor, and λ and µ are the first and second Lamé parameters, respec-
tively. The interior boundaries are stress free, while displacement (Dirichlet) boundary conditions are
enforced on the top and bottom boundaries, simulating a uniaxial compression of the NSH. Newton’s
method is used to solve the nonlinear problem, yielding an equilibrium displacement solution. An exam-
ple of the displacement field solution for a pre-strain of 3% is shown in Figure 1(c). The time-harmonic
acoustic problem is then considered by linearizing the equations of motion about the pre-strain configu-
ration, yielding the vector Helmholtz equation with non-constant coefficients. The resulting expression
is written in index notation as [4]:

(Lijkluk,l),j = ρω2ui, (2)

Lijkl =
∂2W

∂Fij∂Fkl

∣

∣

∣

u=ueq

, (3)

where L is the fourth-order mixed elasticity tensor, F = ∇~u + I is the deformation gradient, ~u is the
acoustic displacement vector, ~ueq is the equilibrium displacement vector, ρ is the density, and ω is the
angular frequency. The elasticity tensor can be easily constructed in FEniCS using the diff function:

Python code

1 I = Identity(2)

2 F = grad(u_eq) + I # Equilibrium deformation gradient

3 F = variable(F) #redefine as a variable

4 C = F.T*F #Right Cauchy -Green deformation tensor

5 E = 0.5*(C-I) # Lagrangian strain tensor

6 W = (lmbda/2*(tr(E))**2 + mu*tr(E*E)) #St. Venant -Kirchhoff strain energy density

7 S = diff(W,F) #First Piola - Kirchhoff stress tensor

8 L = diff(S,F) #Mixed elasticity tensor

Due to the periodicity of the geometry, the Bloch wave theorem is used to calculate the vibrational modes
of the NSH. The assumed form of the acoustic displacement is:

~u( ~X) = ~U( ~X)ei
~K·

~X , (4)



(a) (b)

(c) (d)

Figure 1: (a) Unit cell with irreducible Brillouin zone overlaid. (b) Dispersion plot displaying the first
four eigenfrequencies for the undeformed NSH. (c) Magnitude of the displacement for the deformed unit
cell. (d) Dispersion plot displaying the first four eigenfrequencies of the deformed NSH.

where ~U( ~X) is a periodic function of the unit cell, and ei
~K·

~X accounts for the phase change across each
unit cell. Due to the simplicity of defining periodic boundary conditions in FEniCS, the periodic function
~U( ~X) is sought rather than solving for the acoustic displacement field ~u and imposing Floquet boundary
conditions. The weak form of Eq. (2) is derived by the Hermitian inner product of both sides with a test
vector v. Application of Green’s first identity yields the following integral equation in index notation:

∫

Ω

[Lijkl (Uk,lVi,j +KlKjUkVi)] dΩ+ i

∫

Ω

[Lijkl (UkKlVi,j − Uk,lKjVi)] dΩ = ρω2

∫

Ω

UiVi dΩ. (5)

Each term of the above equation is discretized and assembled into a compressed sparse column matrix
to yield the following general eigenvalue problem:

AU = ω2BU (6)

A = Ar + iAi, (7)

where Ar and Ai are the matrix discretization of the first and second term of Eq. (5), respectively. The
complete band diagram can be characterized by solving Eq. (6) for Bloch wave vectors that span the
irreducible Brillouin zone, overlaid on the unit cell in Figure 1(a), which is determined by the reciprocal
lattice [5]. The effect of pre-strain on the dispersion properties of the NSH structure is shown in Fig-
ure 1(d). One clearly observes that the band structure is significantly altered due to the application of a
small uniaxial pre-strain.

This talk will highlight the use of FEniCS to compute the dispersion properties of NSH, as well
as describe how this model can fit into a design framework for finding optimal NSH configurations for
particular applications.
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Context. Image correlation/registration is playing an increasing role in many domains such as biomed-
ical engineering [1]. Despite significant progress in the past decades, robustness, efficiency and precision
of existing methods and tools must still be improved to translate them into medical and engineering
applications. This abstract describes a finite element-based image correlation method with, as regular-
ization, a novel continuum large deformation formulation of the equilibrium gap principle (introduced in
[2] at the discrete level for linearized elasticity).

Methods. Let us denote I0 & It as the intensity fields of two images representing an object occupying
the domains Ω0 & Ωt in the reference and deformed states, respectively. The problem is to find the
mapping ϕ between Ω0 & Ωt, or equivalently the displacement field U (ϕ (X) = X + U (X)):

find U = argmin{U∗}

{

J2 (U∗) =
1− β

2

∫

Ω0

(

It ◦ ϕ
∗
− I0

)2
dΩ0 + βψreg (U∗)

}

, (1)

where ψreg is required to regularize the otherwise ill-posed problem, and β is the regularization strength.
Many regularizers have been proposed. One common approach, called hyperelastic warping [3], is to use
the strain energy potential directly, i.e., ψreg,hyper = ρ0ψ, thus penalizing strain. Here we propose an
alternate regularizer, which essentially penalizes any deviation from the solution of an hyperelastic body

in equilibrium with arbitrary external loads: ψreg,equil = 1
2

∥

∥div
(

P
)∥

∥

2

L2(Ω0)
, where P = ∂ρ0ψ

∂F
is the first

Piola-Kirchhoff stress tensor. However, we discretize Problem (1) using standard Lagrange elements, so
that P belongs to L2 (Ω0) but not H (div; Ω0). Thus, the following equivalent norm is used instead:

ψreg,equil =
∑

K

1

2

∥

∥div
(

P
)
∥

∥

2

L2(K)
+
∑

F

1

2h

[[

P ·N
]]2

L2(K)
, (2)

where K denotes the set of finite elements, F the interior faces, h a characteristic length of the mesh.

Results on synthetic data. Here we consider the simple problem of a uniformly compressed square
domain, and study the influence of the regularization strength β on the computed strain. Figure 1 shows
the initial and final images superimposed with the undeformed and deformed mesh obtained.

In case of hyperelastic warping, if the regularization strength is close to 1, the mesh does not deform.
And when regularization strength decreases, measured strain converges toward the exact value. For
noise-free images, it does converge exactly. For noisy images, there is an optimum where the mean strain
is close to the exact solution and standard deviation is still limited.

Conversely, with equilibrated warping, the registration is almost perfect over a wide range of regular-
ization strengths, even on noisy images.

Results on in vivo images. Here we consider 3D CSPAMM cardiac magnetic resonance images of a
healthy human subject. Figure 2 shows the resulting strains computed by both methods. Main features
of left ventricular deformation are well captured. Equlibrated warping produces larger absolute strain
values than hyperelastic warping, closer to expected values [1].

Conclusion. Equilibrated warping is a powerful method for non-rigid registration of images involving
large deformation. Penalizing the equilibrium gap regularizes the image correlation problem, even in
presence of noise, and without affecting strain measurement. The method has been implemented based
on FEniCS and VTK, providing an efficient tool for 2D & 3D images registration.
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Figure 1: Results on synthetic data. Left: hyperelastic (white mesh) vs. equilibrated (black mesh)
warping, for a regularization strength of 0.1. Right: influence of regularization strength on hyperelastic
(top) and equilibrated (bottom) warping strains. Ground truth is -15% homogeneous strain.
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Figure 2: Results on in vivo data, hyperelastic (red) vs. equilibrated (blue) warping. Top: Sequence of
3D CSPAMM images with superimposed mesh. Bottom: Sequence of local strain components.
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Multilevel Monte Carlo (MLMC) is an improvement upon traditional Monte Carlo methods. It is
designed to dramatically reduce the computational cost of solving certain stochastic partial differential
equations (SPDEs) and other problems involving uncertainty. MLMC is an embarrassingly parallel
technique. In theory any number of problem realisations could be solved in parallel. Reality forces
researchers to use computer systems with finite memory and processing cores. The problem we face is:
given the architecture of the computer system on which we wish to compute a stochastic approximation
using the MLMC method, how do we best assign system resources? To this end, we have developed the
C++ library podS. podS is designed to automatically and optimally allocate resources for an MLMC
problem over a variety of computer architectures, from laptop to supercomputer. The goal is to allow
researchers to focus on the problems they want to solve and not the intricacies of parallelising code on
different hardware.

We introduce podS and show examples of its use with FEniCS and Docker to compute approximations
of SPDEs. We also discuss the technical challenges that we faced designing the library.
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FEniCS and Firedrake [1] have demonstrated that code generation is a key technology in enabling
the productive exploitation of advanced numerical methods for complex systems of equations. However,
no existing high-level code generation systems facilitate the generation of optimal implementations of
high-order finite element methods.

The optimal algorithms for high-order finite elements rely on the exploitation of structure within the
finite elements. For example, the tabulation matrix Φ of a tensor product element can be written as the
outer product of the tabulation matrices Φ(1) and Φ

(2) of the factor elements, that is

Φ = Φ
(1)

⊗Φ
(2)

, Φ(p1,p2),(i1,i2) = Φ
(1)
p1,i1

Φ
(2)
p2,i2

.

This structure enables the reordering of assembly loop nests to avoid redundant computations, a technique
known as sum factorisation. Considering its implementation in either FEniCS or Firedrake, a particular
issue is that FIAT [2], the finite element library, is unable to express such structure within the elements.

Here we present FInAT [3], a smarter library of finite elements. While FIAT evaluates the element
basis as a table of numerical values, FInAT provides a symbolic expression for this evaluation. Thus the
tensor product structure is preserved, so that the form compiler or a suitable optimisation tool can sum
factorise the assembly kernel.

Through its integration with TSFC, FInAT is incorporated in the Firedrake system. TSFC [4] is the
form compiler in Firedrake, which together with COFFEE [5] can restructure the assembly loop nests to
produce sum factored algorithms with optimal complexity.
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Medical imaging in which a tracer is injected in the blood stream in order assess how the tracer
diffuses into the microstructure of the surrounding tissue is popular in diagnostics. In mathematical
models of this process, the viscous flow in the vasculature is coupled to the surrounding porous tissue.
These models are in principle well established, but a main challenge is that the vasculature form a dense
network of almost space-filling curves.

In this work, we reduce the order of such a model by replacing the 3D vessels with 1D line segments.
As the blood flow in the vessels we study is approximately Poiseuille and the vessels are already only a
few microns wide, this is a good approximation. This reduces the computational load, but introduces
some difficulties with coupling an 1D problem (fluid flow in the vessels) with a 3D problem (fluid flow in
the surrounding tissue).

Our approach follows that of [2] and [3] in which fluid flow is Poiseuille in the vessels and Darcy in the
surrounding tissue, and tracer distribution is driven by the convection-diffusion equation. In this work we
compare the modeling with well-known results from Tofts type of modelling in DCE-MR imaging used
for diagnostics of cancer. As FEniCS has limited support for coupling 1D and 3D problems, we use the
fenicsii package [1] developed by M. Kuchta.

In our talk, we give an overview of the underlying biological motivation, the mathematical formulation
of the coupled 1D-3D problem and the challenges involved in solving it in FEniCS. We close with a
discussion of our results.

Figure 1: The microvasculature in a 0.22 mm3 section of rodent cortex.
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Heiko Kröner, University of Hamburg, heiko.kroener@uni-hamburg.de,

Stephan Schmidt, University of Wuerzburg, stephan.schmidt@uni-wuerzburg.de,
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An analog of the total variation image reconstruction approach [7] for images f , defined on smooth
surfaces, is introduced, which can be used as a application for 3D scanner data of objects and their
textures. A field, where the texture is of great importance, is neuroimaging, where random noise enters
due to eddy-current distortions or physical motion during the magnetic resonance imaging (MRI) process
[2]. For this purpose, we consider the image reconstruction problem







Minimize
1

2

∫

S

|Ku− f |2 ds+
α

2

∫

S

|u|2 ds+ β

∫

S

|∇u|

over u ∈ BV (S),

(1)

where S ⊂ R
3 is a smooth, compact, orientable and connected surface without boundary. The observed

data f ∈ L2(S), parameters β > 0, α ≥ 0 and the observation operator K ∈ L(L2(S)) are given.
Furthermore, BV (S) denotes the space of functions of bounded variation on the surface S. A function
u ∈ L1(S) belongs to BV (S) if the TV-seminorm defined by

∫

S

|∇u| = sup

{
∫

S

u div η ds : η ∈ V

}

(2)

is finite, where V = {η ∈ C∞

c (intS, TS) : η is a vector field, |η(p)|2 ≤ 1 for all p ∈ S} with TS as the
tangent bundle of S. Note that BV (S) →֒ L2(S) and hence, the integrals in (1) are well defined.

The non-smoothness of TV-seminorm is dealt with a duality approach, see [1, 3, 4]. This leads to the
predual problem of (1), which is a quadratic optimization problem for the vector field p ∈ H(div;S) :=
{

v ∈ L2(S;TS) | div v ∈ L2(S)
}

with pointwise inequality constraints on the surface.
For the application, we concentrate on the classical denoising problem, where K = id holds, see

Figure 1. The numerical studies are based on geometries obtained by scanning real objects with the Artec
Eva 3D scanner. The scanner provides Wavefront .obj files, which contain a description of the geometry
via vertices and triangles. The surface texture is provided as a 2D flat bitmap file and a mapping of each
physical surface triangle into said bitmap. Thus, originally the textured object is described by a varying
number of pixels glued onto each surface triangle. Due to the impossibility of continuously mapping a
closed surface onto the flat bitmap, there are discontinuities in the bitmap. Essentially, two adjacent
triangles on the surface can be part of discontinuous regions in the texture file. In order to apply our
novel denoising scheme, the above mentioned Wavefront object including the texture needs to be made
available to the finite element library used to discretize the predual problem. One way of achieving this
is to provide the texture data f at each quadrature point. However, for ease of implementation and
processing within the finite element framework FEniCS, we converted the textured object into the finite
element setting. To account for both natural discontinuities in the texture as well as the discontinuity of
the surface-to-texture mapping, we chose a discontinuous Lagrange finite element representation of the
texture data f . Thus, u and f are elements of the DGr finite element space on the surface.

To carry out the texture preprocessing, we compute the spatial location for each degree of freedom of
the surface DG function f within the texture bitmap and use the respective gray value. For color textures,
this is realized via a vector valued DG function on the surfaces with values in the RGB color space. In
the original Wavefront object, each surface triangle will usually obtain data from multiple texture pixels.
Thus, in order to maintain a similar quality of the texture in the DG setting, higher order finite element
spaces are needed, depending on the quality of the scan. Although in the original Wavefront object,
the number of pixels per triangle may vary significantly, whereas we use a constant finite element order,
typically r = 2 or r = 3. Because we actually solve the predual problem via a interior-point method,



Figure 1: Test-case: noise free, noisy and denoised for β = 0.2 and β = 0.5. The scan-data are provided
by the Artec Group inc. (www.artec3d.com) under the Creative Commons Attribution 3.0 Unported
Licens

we need to find p ∈ H(div;S) before recovering the image u. We employ a conforming discretization
by surface Raviart–Thomas finite elements. The Raviart–Thomas element space RTr+1 is designed to be
the smallest polynomial space with RTr+1|K ⊂ Pr+1 for every triangle K such that the divergence maps
onto Pr [5]. For denoising, we have the relation u = id−1(div p+ f) . Except of the divergence, there is
no differentiation. Therefore we choose to discretize u ∈ DGr, p ∈ RTr+1 and f ∈ DGr.
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Electrochemical sciences (batteries, chemical cells, corrosion, metal oxidation) are mostly based on
Butler-Volmer kinetic relation [2], which couples electric current, j, passing through some interface with
an electrostatic potential jump, [[φ]], on the interface, i.e.

j · n ∝ sinh([[φ]]).

Additionally, in the real world problems, the interface of discontinuity evolves in time and is implicitly
given. This type of issue could be characterised as a nonlinear elliptic interface problem.

In this contribution we show very natural interpretation of this problem in terms of mixed Poisson
problem (saddle-point structure), where couple (j, φ) ∈ H(div)× L2 is sought for, such that

a1(j, τ ) + a2(j, τ ) + b(τ , φ) = F (τ ) ∀τ ∈ H, (1)

b(j, v) = 0 ∀v ∈ Q (2)

with a2 being our special nonlinear functional representing the jump condition.
We proof the existence and uniqueness for infinite dimensional problem for Butler-Volmer kinetic

relation (Lipschitz continuous and monotone).
From numerical point of view, stable finite element discretization of (1) and (2) requires the use of

elements satisfying discrete inf-sup condition. Here FEniCS [1] comes in handy, where H(div) conforming
families BDMk,BDFMk,RT k are available.

The implicit interface description is handled with characteristic level-set method (meshless technique).
This method belongs to group of diffuse-interface methods while thickness of the interface is proportional
to minimal element diameter.

The level-set function is evolved according to the normal component of a found solution, j · n, and
reinitialization [3] maintains its characteristic level-set property.

In summary, we are proposing a general scheme for a nonlinear electrochemical elliptic interface
problems and we show its well-posedness. With the aid of FEniCS, orders of convergence for steady case
and simple numerical examples are computed.
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Figure 1: Example of a one-dimenional numerical solution. Several mesh densities are plotted, where h

denotes a minimal element diameter.
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Monte Carlo methods are used to assess the effects of uncertainty in material parameters
in soft tissue models. We present a sensitivity derivative Monte Carlo method [1, 2] to provide
effectively statistical results. This technique reduces the error in the Monte Carlo estimator and
therefore the workload compared to the standard Monte Carlo approach. A global sensitivity
analysis is also performed to study how the uncertainty of the inputs influence the outputs and
to determine the uncertain parameters which have the most influence on the variance of a given
quantity of interest. We implement our forward and tangent linear model solvers using DOLFIN
[3] and we use the Python toolbox chaospy [4] to generate stochastic objects. Numerical results of
a FE stochastic analysis of brain deformation are presented and discussed. We implemented two
hyperelastic soft tissue models: a classical Mooney-Rivlin material and an anisotropic Holzapfel
and Ogden model [4].
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Mixed function spaces with subspaces defined over domains with different topological dimensions arise
in numerous applications. In [1] the Lagrange multiplier defined on domain boundary is used to enforce
Dirichlet boundary conditions on the solution of the Poisson problem. More recently, [4, 5] seek electric
potential of the extracellular/cellular domains in spaces of functions over R

d while the potential of the
membrane separating the two media is represented as function defined over d− 1 dimensional embedded
manifold. In reduced order modeling of interstitial flows [2] model tissue as a three dimensional structure
while the vasculature is modeled as a one dimensional curve.

Due to the dimensional gap between the domains variational forms stemming from these problems are
currently not supported in FEniCS and as such the platform cannot be used for the applications unless
various hacks are employed. In this talk we present our package (FEniCS)ii which offers set of primitives,
in particular the trace operator and assembler, allowing for proper discretization of the trace constrained
problems in FEniCS. The package is built on top of cbc.block [3] and therefore the assembled systems
are to be solved iteratively. For the above listed applications we shall discuss suitable preconditioners.
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Generating efficient finite element code for multiple architectural targets requires great flexibility. In
this work, we describe a chain of transformations that starts with UFL [1] and goes through TSFC [2]
to produce low-level code for computing the matrix-free action of bilinear forms. We convert TSFC’s
intermediate representation of an element-local kernel into an equivalent kernel in Loo.py [], which is a
transformation-based tool that allows tedious and error-prone conversion of high-level loop descriptions
into tight, low-level code in OpenCL, CUDA, or other device languages.

The element kernel requires several kinds of transformations before its compilation and use, all of
which demonstrate important features of Loo.py. For one, we “batch” the element kernel to iterate over
many cells. Then, we generate and fuse in additional kernels that scatter and gather between element-
level and assembled processor-global storage for each field. Beyond these, we may apply transformations
to produce intra-node parallelism, loop-unrolling, or other performance optimizations. The resulting
kernel can be invoked on each MPI rank as a kind of Firedrake “implicit matrix” and hence used inside
a Krylov method.
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We develop an app for solving Poisson’s equation with the finite element method using Microsoft’s
augmented reality glasses HoloLens, see e.g. [1]. The idea with the HoloLens app is to set up and
solve a Poisson problem in a real world room where the HoloLens user is located and then visualize the
computed solution in the room. The app works by first letting the HoloLens create a surface mesh of the
surroundings through a spatial scan, see Figure 1. The surface mesh is then used to construct a geometry
that defines the solution domain by a polyhedral representation of the room. A tetrahedral mesh is then
generated from the geometry. The user may provide problem data by placing sources in the room and
setting boundary conditions on the walls, floor, and ceiling. The finite element method is then used to
assemble the Poisson system before it is solved. Finally the computed solution may be visualized in the
room.

The development environment for HoloLens apps consists of the game engine Unity and the IDE
Microsoft Visual Studio. Projects are initially started in Unity and then exported to Visual Studio where
the coding takes place. The programming language used is C#. For the finite element assembly of the
system we use the FEniCS form compiler (FFC) to compute the element stiffness matrix. Not only does
this automatically take care of steps in going from the variational formulation to the linear system, but
it also makes it easier to generalize the app to other types of differential equations. Say for example that
we would like to know how a dangerous substance spreads in a room after a leak has sprung. The heat
equation could be used as a simplistic model for describing this situation, potentially making apps like
this useful in building planning and safety engineering.

Figure 1: Left: Microsoft HoloLens. Right: Conceptual demonstration of a spatial scan.
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We investigate an exactly mass conserving higher order interior penalty discontinuous Galerkin method
for the incompressible and variable density Navier-Stokes equations. Our intended application is low
viscosity flows with density fields containing large and sharp jumps such as simulation of multi phase
flows with a water/air free surface embedded in the computational domain. The equation system to be
solved is

ρ

(

∂u

∂t
+ (u · ∇)u

)

= ∇ · µ∇u−∇p+ ρg, (1)

∇ · u = 0, (2)

∂ρ

∂t
+ u · ∇ρ = 0. (3)

Sharp jumps in the solution gives rise to convective instabilities due to Gibbs phenomena. For our
application we see these instabilities clearly in the momentum equation when used with a discontinuous
density field. In most cases the simulations will almost immediately break down due to exponential
growth of the velocity in localised regions near the discontinuity due to the factor 1000 jump in density.

In the context of DG methods there are existing methods known as slope limiters for eliminating
these non-linear convective instabilities in scalar transport equations. We extend the existing work with
an approximate slope limiter for divergence free, solenoidal, vector fields and compare it with an existing
hierarchical Taylor based scalar limiter applied to each of the velocity components.

We investigate the combination of the solenoidal approximate limiter with the stable hierarchical
Taylor limiter and establish a higher order method for two phase flows that is mass conserving and has
no unphysical smearing of the fluid properties near the free surface as well as no Gibbs instabilities due
to the jump in density.
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UFL and the FEniCS problem solving language present a beautiful set of abstractions for succinctly
writing variational problems. This removes a large challenge in the development of complex models.
Preconditioning the resulting systems of equations is often still problematic. Where monolithic algebraic
approaches are available, life is simple: just hand off the Jacobian to your favourite solver library. Prob-
lems with coupled systems of variables do not usually fit this paradigm. The state of the art here is often
block preconditioning, relying on block factorisations and approximations of the block inverses. If we are
lucky, it is possible construct such block preconditioners algebraically (by manipulation of the assembled
Jacobian). But usually, we are not lucky.

In this talk, I discuss how we overcome this problem in Firedrake. Leveraging PETSc’s flexibility in
defining operators and preconditioners, and using UFL to simplify the assembly of any auxiliary operators
our preconditioner might need.

This approach allows the develoment of matrix-free iterative solvers with assembly of only the nec-
essary preconditioning blocks. Moreover, our approach is easily extensible, allowing development and
composition of complex preconditioners for subblocks as we add new couplings to our model. I will
illustrate the usage with examples from fluid convection and phase separation.
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1 Introduction

There is a growing consensus in the finite element community that state-of-the-art low-order finite element
(FE) technology requires, and will continue to require, too extensive computational resources to provide
the necessary resolution for complex simulations, even at the rate of computational power increase [1].
The requirement for precise resolution naturally leads us to consider methods with a higher order of grid
convergence than the classical second-order provided by most industrial grade codes. In particular, for
high-frequency time-harmonic simulations, high-order schemes allow to efficiently resolve the rapid small-
scale spatial oscillations of the solution and allow to alleviate the pollution effect [2]. However, with this
approach, the computational cost of solving the linear system of equations rapidly becomes overshadowed
by the cost of assembling the finite element matrix itself, as the order of the basis functions increases [3].
The aim of this abstract is to present a reformulation of the assembly procedure in a computationally
more efficient way.

2 Classical finite element assembly

By applying the classical FE scheme, the solution is computed using elementary integrals T e
i,j , where

each T e
i,j is giving the contribution of the degrees of freedom (DOF) i and j of the mesh element e. The

classical FE assembly algorithm computes on-the-fly the T e
i,j terms for every pair of DOF i and j on

every element e of the mesh. It is worth noticing that increasing the FE basis order will have two impacts
on the computation time: each element will have more DOFs and the numerical quadrature will require
more points. Both phenomena will substantially increase the assembly time, as shown in Figure 1.

Furthermore, when handling non-Lagrange basis functions, the orientation of the different functions
needs to be taken into account. This additional complexity is also classically treated on-the-fly during
the assembly, by analysing the orientation an edge (or face) on which a given basis function is defined.
Let us note that non-Lagrange bases are commonly encountered when constructing discrete subspace of
H(curl) in electromagnetic applications for instance.

3 Efficient assembly

The key idea of a fast assembly procedure is to compute all the T e
i,j terms using computationally efficient

BLAS3 operations, as proposed by [3, 4] for standard nodal Lagrange finite elements. The T e
i,j terms can

be computed by the product of two matrices. The first matrix will be composed of the Jacobian matrices
and non-linear terms evaluated at each quadrature point. The second matrix will be composed of only
the FE basis functions defined over the reference element and also evaluated at each quadrature point.

Unfortunately, in this approach, non-Lagrange basis functions cannot be treated because of the ori-
entation problem. To circumvent this limitation, the previous solution has been adapted to handle more
than one reference space, leading thus to more than one matrix-matrix product: one per possible orien-
tation. However, with this new solution, the orientations of the edges and faces cannot be determined
on-the-fly, and need to be considered during a pre-processing step. This can be efficiently achieved by ex-
ploiting a newly designed orientation dictionary structure and additional geometrical transformations [5].



4 Numerical results

Figure 1 presents the assembly times of the on-the-fly and matrix assembly procedures for an increasing
FE basis order. The FE matrix is assembled for a high-frequency electromagnetic cavity problem. The
tests were done on an Intel Xeon E5645 and by using the OpenBLAS implementation of the matrix-matrix
product with 6 threads. It is worth mentioning that the classical implementation also uses 6 threads for
the assembly. It can be seen from Figure 1 that the matrix procedure is much faster than the classical
one for high-order solutions. For instance, the speedup for a sixth-order problem, with more than 900.000
unknowns, is around 20.
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Figure 1: Assembly time and speedup for the classical and fast procedures
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The poster will present a particle-mesh method for simulating incompressible fluid flows. Building
upon particle-in-cell concepts, the method is formulated as an operator splitting strategy in which La-
grangian particles are used to discretize an advection operator, and an Eulerian mesh-based method is
employed for the consitutive modeling in order to account for the inter-particle interactions. An immedi-
ate advantage of this hybrid Lagrangian-Eulerian approach is that no additional stabilization techniques
are required in the advective limit.
Key to the presented methodology is the generic variational framework for the coupling between the
scattered particles and the mesh in terms of L2-minimization problems. These projections remain local
and can be efficiently combined with the hybridized Discontinuous Galerkin method for solving the con-
stitutive equations [1]. An efficient solution strategy for the HDG equations is presented by using a static
condensation procedure. The model is implemented using tools from the FEniCS-project [4].
As shown by means of various numerical examples the developed methodology overcomes various issues
which were to date persistent to particle-mesh methods, such as: the presented particle-mesh coupling
results in optimal spatial accuracy and the particle distribution remains uniform over time, even for
complicated problems such as the flow around a circular cylinder, Figure 1. Heuristic particle shifting
algorithms as often applied in existing particle(-mesh) methods (see e.g. [2, 3]) are thus not required.
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Figure 1: Flow past a circular cylinder: particle velocity field at t = 8 for Re= 100; a detailed view of
the particle distribution near the circular cylinder is shown at the right.
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Laser annealing (LA), with space uniform beams (over ∼cm2 areas) and nanosecond range pulses, is
the reference annealing technique in micro- and nano- electronics when strongly confined heating is needed
in the process flows. Indeed, due to its low in-depth thermal diffusion, laser anneal is nowadays widely
applied as a post-fabrication annealing step to activate isolated doped regions (e.g. back junctions) with a
null or strongly reduced heating of the other zones of the devices. The application of the process in future
electronic device generation is hindered by the difficulties in the process control. Indeed, LA process is
highly influenced by the interaction between electromagnetic (e.m.) field and complex device structures.
Models of laser annealing process have been developed by our team for particular limited applications
and implemented in academic or commercial package [1, 2, 3, 4]. However, several limitations remain
(see e.g. discussion in Ref. [5]) in the previous modeling approach for the general application in future
devices, characterized by complex structures with nm wide elements made of different materials/phases.

In the paper we present a FEniCS based tool (named LIAB: LASSE Innovation Application Booster),
in the development stage, for the simulation of LA process. This is a complex self-consistent problem,
where the heating is evaluated by mean of the time harmonic solution of the Maxwell equations and the
source term in the heat equation is

Slaser(t, r) =
ε
′′

2ρ
|Et−h|

2 (1)

Where ε
′′

is the imaginary part of the complex dielectric constant ε
′′

= ε
′

+ jε
′′

of the material and
Et−h is the time harmonic electric field E = Et−h × exp(−jωt + φ). The self consistency derives from
the dependence of the optical constant on the temperature field (varying in the range 300-2000K), the
phases and the alloy fraction.

The main features of the LIAB package include the following:

• Versatile Graphical User Interface for the structure design, the material assignment and the simu-
lation analysis;

• Interface with the FEniCS solver for the automatic generation of the mesh and the runtime control;

• Many materials calibration (optical and thermal properties and mass transport) as a function of
temperature and phases;

• Efficient coupling with Electromagnetic Simulation for the self-consistent source estimate (i.e. power
dissipation) in nano-structured topographies;

• Experimental validation in nanostructured samples;

• Multiple-dopant models simulating dopant atoms redistribution including diffusion solubility and
segregation;

• Alloy model e.g. SiGe (where melting point depends on the alloy fraction);

• Multiple phases (e.g. amorphous, liquid, crystal).

Some application cases will be discussed in order to demonstrate the potentiality of the package (see
attached figures). Possible future extension will be outlined in the framework of the development of the
FEniCS’s project.



Figure 1: Screenshot of the LIAB Graphical User Interface, a FINFET device is shown and the different
colors indicate the domains, which can be initialize with different materials properties.

Figure 2: Simulation example of the Laser Annealing process in a FINFET device structure, from left to
right the heat sources, the phase (liquid phase in blue, solid one in red) and temperature. Is also shown
the mesh used. The correlation between phase and heat source in the figure demonstrates the role of
self-consistency in the simulation.
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Esteban Sáez, Pontificia Universidad Católica de Chile, esaez@ing.puc.cl.

Hernán Mella, Pontificia Universidad Católica de Chile, hmella@uc.cl
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Introduction

The simulation of propagation of elastic waves in unbounded domain is still an open problem. In
the past years different kinds of absorbing boundary conditions (ABC) has been developed, such as
Gaussian taper method, high-order ABC and paraxial approximations. One of the most successful is the
perfectly matched layers (PML) method, which has been widely used in elastodynamics [3], acoustic [2],
poroelasticity [5] and other research fields. This method was first introduced by Berenger in the context
of electromagnetism, simulating the propagation of linear electromagnetic waves on unbounded domains
[1].

A PML is an absorbing layer model for linear wave equations that absorbs, quite efficiently, propa-
gating waves of all non-tangential angles of incidence and of all non-zero frequencies.

Theoretical framework

Following the work done by Kucukcoban & Kallivokas in [3], the modified mixed formulation of the
elastodynamics equations using the PML method, defined on the domain Ω = Ωf ∪Ωp that is composed
by the absorbing boundary layer Ωp and the truncated physical domain Ωf (see Figure 1a), are:

∇ ·
[

Ṡ
T
Λe + STΛp

]

= ρ(aü+ bu̇+ cu) on Ω (1a)

D[(aS̈+ bṠ+ cS)] =
1

2
[(∇u)Λp + Λp(∇u)T + (∇u̇)Λe + Λe(∇u̇)T ] on Ω, (1b)

with initial and boundary conditions

u = 0 on Γd × [t0, T [ (2a)

(Ṡ
T
Λe + STΛp)n = g on Γn × [t0, T [ (2b)

u = u̇ = 0 on Ω× {t0} (2c)

S = Ṡ = 0 on Ω× {t0} (2d)

where u and S are the displacements field and the stress history, the scalar functions a, b, c and the
tensors Λp and Λe are stretching functions defined on Ωp and D is a compliance operator. For further
details see [3].

(a) PML-truncated semi in-
finite domain

(b) Homogeneous domain
with explosive volumetric
source

Considering that the functions a, b, c, Λp and Λe only modifies the problem on Ωp, an hybrid
formulation can be stated using a Dirichlet-Neumann coupling.



∇ ·
[

µ(∇u+∇u
T ) + λI∇ · u

]

= ρü on Ωf (3)

Eq. 1 on Ωp (4)

subject to boundary, initial and interface conditions

u = 0 on Γd × [t0, T [ (5a)

[µ(∇u+∇u
T ) + λI∇ · u]n = g on Γn × [t0, T [ (5b)

u = u̇ = 0 on Ω× {t0} (5c)

S = Ṡ = 0 on Ωp × {t0} (5d)

u
+ = u

− on Γi × [0, T [ (5e)

[µ(∇u+∇u
T ) + λI∇ · u]n = −(Ṡ

T
Λe + STΛp)n on Γi × [0, T [ (5f)

Implementation

This problem can be easily implemented using the functionalities of the FEniCS libraries. In order to
illustrate this, in Figure 2 it is presented a snippet code of the UFL implementation of the weak form of
4.

Python code

1 # Truncated domain problem

2 F_f = rho*inner(a*N_ddot(u) + b*N_dot(u) + c*u, w)*dx \

3 + inner(N_dot(S).T*Lambda_e + S.T*Lambda_p , grad(w))*dx \

4 - inner(excitation , w)*ds(1)

5

6 # PML domain problem

7 F_p = inner(compliance(a*N_ddot(S) + b*N_dot(S) + c*S), T)*dx \

8 - 0.5*inner(grad(u)*Lambda_p + Lambda_p*grad(u).T + grad(N_dot(u))*Lambda_e \

9 + Lambda_e*grad(N_dot(u)).T, T)*dx

10

11 af , Lf = lhs(F_f), rhs(F_f)

12 ap , Lp = lhs(F_p), rhs(F_p)

Figure 2: UFL implementation of the weak forms

Results

One 2D numerical experiment was performed (Figure 1b), in which a volumetric explosive Ricker
source at the center of Ωf and homogeneous domain was considered.

(a) t = 0.85 s (b) t = 1.50 s
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In Figures 3a and 3b two snapshots of the displacements magnitude at different times are presented,
whereas in 3c and 3d the obtained results and a simulation with an enlarged domain are compared. In
3b the reflection of waves with the traction-free boundary and the attenuation of outgoing waves can be
appreciated.

Conclusions and perspectives

A widely used ABC was implemented in FEniCS using a mixed and hybrid formulation. This method
allow us to simulate semi-infinite mediums using truncated domains with a high level of accuracy and
low computational cost.
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The configuration of a so-called intrinsic beam model with shear deformation is defined by the position
vector x and the associated orientation tensor α ∈ SO(3). Let identify the position and orientation in
the deformed configuration with an appended prime, x′ and α′, with x and α the corresponding position
and orientation in the reference configuration. The corresponding linear form reads

∫

L

(δεT + δβM) ds =

∫

L

(δx′t+ϕδm) ds+
∑

i

δx′

iF i +ϕδiCi (1)

where s is the arc length and

ε = α′Tx′

/s −αTx′

/s

β = α′T ax(α′

/sα
′T )−αT ax(α/sα

T )

= αTΦT ax(Φ/sΦ
T )

(2)

are the generalized deformation measures energetically conjugated to the internal forces and moments
T and M ; the axial operator a = ax(A) is the operator extracting the vector a that characterize the
skew symmetric part of tensor A, i.e. a× = 1/2(AT +A); Φ = α′αT is the rotation tensor bringing α

into α′. Being α and Φ orthogonal, tensors α′

/sα
′T , α/sα

T and Φ/sΦ
T are skew-symmetric. Vectors

t and m are the the external forces and moments per unit length, respectively; vectors F i and Ci are
the concentrated external forces and moments. Finally, the virtual rotation vector ϕδ characterizes the
virtual rotation of the orientation tensor in the deformed configuration, ϕδ = ax(δα′α′T ) = ax(δΦΦT ).
The internal forces and moments, T and M , are functions of the generalized strains ε and β. A linear
constitutive law can often be assumed.

The rotation tensor Φ belongs to the Special Orthogonal Group SO(3). Tensors fields belonging to
the intrinsically nonlinear group SO(3) needs to be treated differently than vectors/tensors that belongs
to linear spaces, such as the position or displacement fields. Thus, the solution of linear forms involving
finite rotations can be challenging when using finite element libraries that assume – from the ground
up – that all unknown fields do belong to a linear space. In a nutshell, a parametrization of SO(3) is
often chosen, and the parameters are interpolated using standard finite elements, that are linear with
respect to the unknown field. The rotation vector ϕ is one of the most often chosen parametrization.
The corresponding rotation tensor α can be computed using the exponential map,

Φ = exp(ϕ×) =
∞
∑

n=0

1

n!
(ϕ×)n = I +

sinϕ

ϕ
ϕ×+

1− cosϕ

ϕ2
ϕ×ϕ× (3)

with ϕ the norm of ϕ; the virtual rotation vector ϕδ can be computed from the variation of the rotation
parameter δϕ as ϕδ = Γ (ϕ)δϕ, with tensor Γ defined by

Γ (ϕ) = dexp(ϕ×) =
∞
∑

n=0

1

(n+ 1)!
(ϕ×)n = I +

1− cosϕ

ϕ2
ϕ×+

ϕ− sin(ϕ)

ϕ3
ϕ×ϕ×; (4)

Equation 1 and its linearization need to be written as a function of ϕ, with test and trail functions δϕ and
∂ϕ, respectively; tensor Γ enters the formulation because ϕδ = Γ δϕ, ϕ∂ = Γ ∂ϕ and ax(Φ/sΦ

T ) = Γϕ/s.
The parametrization is singular for 2π: given an orientation tensor α the corresponding rotation vector
is defined up to a coaxial rotation of 2π; furthermore, and more importantly, tensor Γ is singular for
ϕ = 2π. Note also that the coefficients sin(ϕ)/ϕ, (1 − cos(ϕ))/ϕ2 and (ϕ − sin(ϕ))/ϕ3 need to be
evaluated near ϕ = 0 using their Maclaurin series; the expansion must be truncated to an order that
is high enough to guarantee the sought precision not only for the coefficients themselves, but also for
their second derivative, that is required to compute the linearization ∂δβ of δβ = αT δ(ΦT ax(Φ/sΦ

T )) =
(α′TΓϕ/s)×α′TΓ δϕ+α′T

⊗ϕ/s : δΓ +α′TΓ δϕ/s.
Summing up, and after writing a python library that allows to deal with finite rotations and the above

sketched parametrization, the above formulation can be implemented in FEniCS provided that
1



Figure 1: Wrench beam testcase, first load steps.

• the expressions of Φ and Γ are computed correctly, with a truncated Macalurin series for ϕ ≈ 0;

• the magnitude of the rotation vector is kept lower that 2π, with ideally ϕ ∈ [−π, π].

The first requirement can be accomplished by resorting to Uflacs’ excellent handling of conditional ex-
pressions. For example, coefficient sin(ϕ)/ϕ can be computed as

Python code

1 def a(phi2): return conditional(le(phi2 , ath), aexp(phi2), sin(sqrt(phi2))/sqrt(phi2))

where phi2 = ϕ2, ath is the threshold for switching from the Maclaurin series to the trigonometric
expansion, and aexp(phi2) computes the Maclaurin truncated series. Using these conditionals withing
the library methods written to compute Φ and Γ allows to easily write the linear form Eq. 1 and have
the corresponding bilinear form automatically generated.

Dealing with the second requirement is a bit more tricky. The chosen approach is suitable if the
rotation field is approximated using Lagrange elements. In other words, it is doomed to fail for e.g.
Nedelec elements. First of all, a C++ Expression computes either the rotation vector ϕ or, if ϕ > π, its
complementary vector ϕc = ϕ(1 − 2π/ϕ). This Expression is used to replace the values of ϕ with its
complementary rotation angle when ϕ > π. This well known trick [1] allows to keep the rotation vector
magnitude under control, and works perfectly well if all the rotation vector unknowns of an element get
changed into their complementary. Unfortunately one must take care of the elements for which only some
of the nodal rotation vector unknowns have been changed into their complementary, see e.g. [2]. This
would result in an incorrectly interpolated field. To fix this problem, a custom Assembler is required,
whose assemble method checks, for each element, whether only some of the rotation vector unknowns have
been changed. If this is the case then it changes back, in place, the data that gets passed to the element’s
tabulate_tensor. Then, after calling tabulate_tensor, is modifies the assembled vector/tensor in order to
account that the locally changed rotation vector unknowns are actually a function of the complementary
vector. This is accomplished by accounting for the derivative of the complementary vector

∂ϕC

∂ϕ
=

(

1 +
2π

ϕ

)

I −
2π

ϕ3
ϕ⊗ϕ,

either on the left for the test functions δϕ or on the right for the trial functions ∂ϕ.
This rotation handling strategy is not free from problems, see e.g. [3] and references therein. Nonethe-

less, the resulting finite elements, whose complex Jacobian matrix is computed automatically, are able
to withstand finite rotations of any magnitude and to correctly solve complex nonlinear problems. As an
example, the very first deformed configurations of a classic benchmark test are plotted in Fig. 1.

The library is general enough to be suitable for the implementation of intrinsic shell models with the
so-called drilling degree of freedom. In this case, however, special care should be given to alleviate the
shear locking problem, that is rather easily dealt with for beam finite elements.
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The application of phase field models to shape optimization allows for the implicit treatment of the
topology of the work piece. Gradient descent approaches lead to an Allan-Cahn gradient flow type
problem. We treat additional constraints of the model either with a projection step in each iteration
or with Lagrange multipliers in an augmented linear system. Adaptive methods for the resulting time-
stepping and the underlying finite element mesh considerably speed up the computation. Furthermore,
additional adaptive choices of key model parameters allow for robust convergence in practice.

The modeling of material and load uncertainties leads to a stochastic cost functional for the optimiza-
tion which requires a proper risk measure in turn. The conditional value at risk is here a practical choice
which allows to modifier the robustness of the resulting shape by some risk parameter. The resulting
stochastic gradient descent solves an augmented optimization problem with Monte Carlo sampling or
tensor reconstruction where we employ parallel computations.

Figure 1: Bridge example and solutions for various degrees of robustness (left) and solutions in three
dimensions for various examples (right).
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We present a space-time cut finite element method for parabolic PDEs on overlapping meshes, imple-
mented using the FEniCS multimesh functionality. This work extends the space-time method developed
in [1] to two and three spatial dimensions and to more than two meshes.

Here the concept of overlapping meshes means that the computational domain consists of two or
more overlapping meshes, and each mesh has a prescribed time-dependent movement. An example where
such use of overlapping meshes could be advantageous over traditional methods, is when the domain
contains a moving object, see Figure 1. The idea is first to generate one mesh around the object and
background mesh for the empty solution domain. The mesh-enclosed object is then brought back into the
comutational domain by placing it “on top” of the background mesh. Finally the mesh enclosed object
can be moved around in the domain as seen in Figure 2. By using overlapping meshes, mesh generation
only has to be done initially as opposed to traditional methods where a new mesh has to be generated
when the old mesh becomes too deformed.

Figure 1: An application where traditional methods render a mesh unsuitable for computations.

Figure 2: Alternative approach to the same application with overlapping meshes.

Finite element methods may then be derived for the overlapping mesh environment by using Nitsche-
based techniques to account for the interface between two meshes. Using cG(p) elements in space and
dG(q) elements in time, we let Vh be a corresponding finite element space that permits a discontinuity
on the interface between two meshes.



The finite element variational formulation used here reads: Find uh ∈ Vh such that for all v ∈ Vh,

2
∑

i=1

N
∑

n=1

(

(

[[uh]]n−1, v
+
n−1

)

Ωi(tn−1)
+

∫

tn

tn−1

(

u̇h, v
)

Ωi(t)
+

(

∇uh,∇v
)

Ωi(t)
dt

)

+

N
∑

n=1

(
∫

Γn

−n̄t[uh]vσ − 〈∂n̄xuh〉[v]− 〈∂n̄xv〉[uh] + |n̄x|γh−1
K

[uh][v] ds̄

)

=

2
∑

i=1

N
∑

n=1

∫

tn

tn−1

(

f, v
)

Ωi(t)
dt.

(1)

Here, Ω1 denotes the non-overlapped part of the background mesh, Ω2 denotes the moving and overlapping
mesh, Γn denotes the space-time interface between the meshes on the time interval (tn−1, tn], and n̄ =
(n̄t, n̄x) denotes the unit vector normal to the space-time surface Γn.

The method presented above has been implemented in FEniCS using the multimesh functionality. The
first step is to replace the integral in time with a suitable quadrature rule. Afterwards, the individual
parts of the variational form are expressed with Python code, mimicking the mathematical syntax and
making use of the multimesh integral types dX and dI. For example,

2
∑

i=1

∫

Ωi

∇uh · ∇v dx inner(grad(u_h), grad(v_h)) * dX

∫

Γ

〈∂n̄xuh〉[v] ds avg(inner(nbar_x , grad(u_h))) * jump(v) * dI

With this implementation in FEniCS, we further investigate the aspects of using space-time cut-FEM
for time-dependent problems. An interesting matter is for example how the speed of the moving mesh
influences the error convergence. In [1], a drop in the order of convergence with respect to the time-step
was observed when the mesh speed became sufficiently high, as shown in figure 3. Previously, numerical
experiments for this method have been limited to the case with one spatial dimension, cG(1) elements
in space, and dG(0) and dG(1) elements in time. In the present work, we study the numerical error
convergence in two or three spatial dimensions, and we also consider higher order elements in time.
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Figure 3: Left: A cG(1)–dG(1) space-time finite element solution uh for a heat equation problem in one
spatial dimension and with one overlapping mesh. Right: The order of convergence of the error with
respect to the time-step versus the speed of the overlapping mesh using dG(1) in time for a problem in
one spatial dimension.
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1 Introduction

The heart is a dynamic organ capable of changing its shape in response to the body’s demands. For
example, the human heart continuously adapts in size and geometry to meet greater blood flow needs of
the growing body during normal development. In this case, a gradually imposed volume overload leads
to progressive chamber enlargement. Another example of a normal physiological growth can be found in
the athlete’s heart, where a sustained elevated chamber pressure results in the chamber wall thickening
and an overall increase in cardiac mass. Growth processes, however, can also be maladaptive as found in
many cardiovascular diseases where structural changes in the heart progressively decompensate cardiac
function.

In order to better understand this balance between adaptive and maladaptive cardiac growth, we ex-
amine the effect of known growth stimuli using a mechanical model of the heart. We perform a sensitivity
analysis of existing growth models in order to assess the relative importance of model parameters and
respective mechanisms. This work can eventually lead to simplifications in the model systems for pre-
diction of growth, or help in localizing shortcomings that need to be addressed in the existing modeling
frameworks.

2 Methods

In order to simulate the motion of the heart throughout the cardiac cycle, we use a nonlinear finite
element (FE) model of a realistic left ventricle (LV) coupled to a lumped-parameter model of the systemic
circulation. Under the quasi-static assumption, this problem is reduced to finding the displacement u,
hydrostatic pressure p and LV pressure pLV that minimize the incompressible strain energy functional Π
parameterised by the LV volume VLV [1]:

Π(u, p, pLV ;VLV ) =

∫
Ω

Ψ(Fe) + p(det(Fe)− 1) dx + pLV (V (u)− VLV ). (1)

The muscular tissue of the heart is modeled as a transversely isotropic hyperelastic material via the
strain energy density Ψ [2]:

Ψ(Ce,m) =
a

2b
(eb(I1−3) − 1) +

af

2bf
(ebf (I4,f0 )

2
+ − 1), (2)

where m = (a, b, af , bf ) is a set of passive material parameters, Ce is the elastic right Cauchy-Green

tensor, I1 =trCe and I4f = f0(̇Cef0). By introducing an activation parameter γ representing the active
shortening in the fiber direction f0 at zero-load, the model incorporates muscle contraction using the
active strain approach, which is based on a multiplicative decomposision of the deformation gradient
F = I+Grad(u) into an elastic and an active parts F = FeFa with Fa defined as:

Fa = (1− γ)f0 ⊗ f0 +
1√
1− γ

(I− f0 ⊗ f0). (3)

The dynamic changes in the ventricular blood pressure and volume over the entire cardiac cycle are
modeled by a three-element Windkessel model described by a system of ordinary differential equations
[3]. At each time step, the coupling between the FE model and the circulatory model is achieved through



an additional Lagrange multiplier pLV which represents the LV cavity pressure. The problem (1) is solved
such that the simulated LV cavity volume V (u) matches the target volume value VLV obtained from the
circulatory model.

Growth process in the heart wall is modeled by deforming the reference unloaded geometry to a new
grown configuration, again through a multiplicative decomposition of F into an elastic and, this time, a
growth part, where F = FeFg. The constitutive laws for finite growth can be expressed using a generic
format for the growth tensor Fg = θf f0 ⊗ f0 + θss0 ⊗ s0 + θnn0 ⊗ n0. The evolution of the local tissue
growth parameter θgθgθg = [θf , θs, θn]

T can be defined in terms of a growth activation function φφφ(Fe) and a
growth rate function k(θgθgθg) which specifies the speed and nonlinearity of the growth process [4].

Using the above described model it is possible to simulate various physiological conditions together
with the associated structural adaptation of the heart walls in response to change in loadings. In each
case, a growth model can be chosen depending on the nature of the considered physiology. The sensitivity
of the system’s grown state to the prescribed growth model can then be estimated. For this, we define
an objective functional J(u), the model output of interest, which is to serve as a qualitative and/or
quantitative measure of how well the growth model reproduces the expected behavior. More specifically,
if we are to compare the model response to a real measurement, then the objective functional can be
defined as the mismatch between the simulated u and the measured uexp grown states at a reference
time tref :

J(u) =

∫
Ω

|u− uexp|2 (tref ) dx. (4)

Finally, the sensitivities of J to θθθ, where θθθ is a set of growth parameters specific to a given model, are

defined as dJ(u)
dθθθ

.
The solver has been developed within the FEniCS [5] framework and the functional gradients are

computed by solving an automatically derived adjoint equations [6].

3 Results

We first focus on implementing and testing a strain-driven growth law to simulate a volume overload
state of the left ventricle. To achieve this, the initial physiological equilibrium of the heart is altered by
increasing a diastolic filling pressure. This initiates cardiac growth that continues until a new equilibrium
state is reached.

The model is able to reproduce qualitatively experimental observations reported in the literature, such
as LV cavity dilation due to fiber over-stretching and a gradual increase in myocardium volume. At the
next step, we perform a sensitivity analysis of the model with respect to the growth model parameters
and evaluate its performance in reproducing the expected growth behavior.
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To better understand plant growth and development it is important to analyse how the microscopic
structure of plant tissues impacts their mechanical properties. The elastic properties of plant tissues are
strongly determined by the mechanical properties of the cell walls surrounding plant cells and by the
cross-linked pectin network of the middle lamella which joins individual cells together. Primary cell walls
of plant cells consist mainly of oriented cellulose microfibrils, pectin, hemicellulose, proteins, and water.
Since the turgor pressure acts isotropically, it is the microstructure of the cell walls, e.g. the orientation
of the cellulose microfibrils, which determines the anisotropic deformation and expansion of plant cells.
Also it is supposed that calcium-pectin cross-linking chemistry is one of the main regulators of plant cell
wall elasticity and extension [1]. Pectin is deposited into the cell walls in a methylesterified form. In
the cell walls and middle lamella, pectin can be modified by the enzyme pectin methylesterase, which
removes methyl groups by breaking ester bonds. The de-esterified pectin is able to form calcium-pectin
cross-links, and thus stiffen the cell wall and reduce its expansion.

Here we investigate the impact of the orientation of cellulose microfibrils on the elastic deformations
of plant cell walls and tissues using multiscale modelling and numerical simulations. Equations of linear
elasticity coupled with reaction-diffusion equations for chemical processes are used to model mechanical
properties of plant cell walls:

div
((

EM (b)χΩM
+ EFχΩF

)

e(u)
)

= 0 in Ω,
(

EM (b)χΩM
+ EFχΩF

)

e(u)ν = F on ∂Ω,

∂tb− div (Db∇b) = Rb(b, e(u)) in Ω,

Db∇b · ν = Pb on ∂Ω,

(1)

where Ω denotes a part of a plant cell wall or a domain composed of parts of eight cells connected by
the middle lamella. In the microscopic problem we distinguish between mechanical properties of cell wall
microfibrils, with elasticity tensor denoted by EF , and cell wall matrix and middle lamella, with elasticity
tensor denoted by EM (b). We also assume that the mechanical properties of the cell wall matrix and
middle lamella depend on the density of calcium-pectin cross-links b. The dynamics of the density of
calcium-pectin cross-links is described by the reaction-diffusion equation with reaction terms dependent
on the elastic deformations of the plant cell walls. Here the parts of the domain Ω occupied by microfibrils
and cell wall matrix and middle lamella are denoted by ΩF and ΩM , respectively.

In the microscopic model of plant cell wall biomechanics three different scenarios for the orientation
of the microfibrils in the cell walls are considered, see Fig. 1. We also consider the situation where
the microfibrils are rotated through the thickness of the cell wall. Using homogenization theory, the
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Figure 1: Schematic of the Representative Volume Element (RVE) Y for three configurations of microfib-
rils in the plant cell walls, considered here.



(a) (b)

Figure 2: A depiction of the displacements in the x2-direction with two different configurations of mi-
crofibrils in the upper and lower parts of the cell walls [3].

macroscopic model for plant cell wall and tissue biomechanics is derived from the microscopic description
of the elastic properties of the cell wall microfibrils and wall matrix [2]. To determine macroscopic
elasticity tensor for the plant cell walls the so-called ‘unit-cell’ problems

{

divy
[(

EM (b)χYM
+ EFχYF

)

(ey(w
kl) + b

kl)
]

= 0 in Y,
∫

Y
w

kl dy = 0, w
kl is Y -periodic,

(2)

with b
kl = 1

2
(bk ⊗ b

l + b
l ⊗ b

k) and k, l = 1, 2, 3, where (b1,b2,b3) is the standard basis in R
3, are

solved numerically. Here Y denotes the Representative Volume Element (RVE) that corresponds to the
configurations of the cell wall microfibres considered here, Fig. 1.

Using the numerical results for the effective elasticity tensor, we consider numerical simulations for
the macroscopic model for mechanical properties of the plant cell walls and tissues for different microfibril
orientations in different parts of the cell walls, Fig. 2. Using numerical simulations for the macroscopic
equations derived from the microscopic model (1) the impact of the orientation of microfibrils on the
dynamics and spatial patterns in the distribution of calcium-pectin cross-links is analysed.

The numerical simulations were performed using FEniCS [4]. This involved discretizing the domain
using a nonuniform mesh and applying the continuous Galerkin method to solve the equations of linear
elasticity and reaction-diffusion equations. Semi-implicit time discretization scheme is applied to the
coupled system of linear elasticity and reaction-diffusion equations. The resulting linear system was
solved using the iterative Krylov solver, i.e. the general minimal residual method (GMRES), with an
algebraic multigrid preconditioner.
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This work presents a python package built on top of FEniCS, FEniCS Mechanics, developed to
carry out computational mechanics simulations. The goal of this package is to facilitate defining and
numerically solving mechanics problems through creating a rapid prototyping environment for users
of all programming levels and mechanics knowledge. Problems in continuum mechanics are generally
described by the weak form for the balance of linear momentum,

∫
R

ξ · ρa dv +

∫
R

∂ξ

∂x
·T dv =

∫
R

ξ · ρb dv +

∫
Γq

ξ · t̄ dv, (1)

where R denotes the current configuration of the body, ρ the density of the material, a the acceleration,
T the Cauchy stress tensor, b the body force applied, t̄ a prescribed Cauchy traction on Γq ⊂ ∂R,
and ξ an arbitrary, kinematically admissible, vector field. Note that Equation (1) is applicable to any
continua since a constitutive relation is yet to be specified. This facilitates the implementation of various
materials within the same framework. The user can also turn incompressibility on, triggering a mixed
function space formulation that results in a block system. Furthermore, inverse elastostatics has been
implemented as described by Govindjee and Mihalic [1]. This method is used to determine the unloaded
geometry when the loaded configuration under a given load is known. In addition to supporting fluid
and solid mechanics problems, the simulations can be specified as quasi-static or time-dependent, where
a generalized-α method is used for time integration.

The input provided by the user is a python dictionary defining the problem. This dictionary contains
the subdictionaries material, mesh, and formulation. The constitutive equation and relevant material
parameters are given in material. Mesh information, as well as function space discretization is given
in mesh. Lastly, boundary conditions, time integrating parameters, domain formulation, and initial
conditions are given in formulation. The user then creates a problem object by providing this dictionary.
During instantiation of this object, the values in the configuration dictionary, and their combination, are
checked to ensure they are consistent with physical processes. Then, a solver object can be created and
used to compute the solution to Equation (1).

To illustrate a simple use of this package, consider the quasi-static loading of an incompressible unit
cube modeled as a neo-Hookean material. The material parameters are κ = 10 GPa, and µ = 1.5 MPa,
where κ and µ are the bulk and shear moduli of natural rubber, respectively. The cube is clipped at
x = 0 m, while a traction of t̄ = (1 MPa)e1 is applied at x = 1 m. The code for this problem is given
below:

Python code

1 import dolfin as dlf

2 import fenicsmechanics as fm

3

4 config = {’material ’: {

5 ’const_eqn ’: ’neo_hookean ’, # constitutive equation

6 ’type’: ’elastic ’, # choose between elastic and viscous

7 ’incompressible ’: True , # toggle incompressibility

8 ’density ’: 1.0,

9 ’kappa ’: 10e9 , # bulk modulus [Pa]

10 ’mu’: 1.5e6}, # shear modulus [Pa]

11 ’mesh’: {

12 ’mesh_file ’: ’mesh.h5’, # mesh file in xml or hdf5 format

13 ’mesh_function ’: ’mesh_function.h5’,



14 ’element ’: ’p2 -p1’}, # finite element choices ,

15 # p1 , p2 , p2 -p1 , etc.

16 ’formulation ’: {

17 ’time’: {’unsteady ’: False}, # quasistatic or unsteady using gen. alpha

18 ’domain ’: ’eulerian ’, # lagrangian or eulerian

19 ’inverse ’: False , # toggle inverse finite elastostatics

20 ’bcs’: {

21 ’dirichlet ’: {

22 ’displacement ’: [dlf.Constant([0.,0.,0.])],

23 ’regions ’: [1]}, # surface tags

24 ’neumann ’: {

25 ’regions ’: [2], # surface tags

26 ’types ’: [’cauchy ’], # choose between piola , cauchy ,

27 # and pressure

28 ’values ’: [dlf.Constant([1e6 ,0.,0.])]} # traction vector [Pa]

29 }}}

30

31 problem = fm.SolidMechanicsProblem(config) # set up solid mechanics problem

32 solver = fm.SolidMechanicsSolver(problem) # set up solid mechanics solver

33 solver.full_solve(fname_disp=’results/displacement.pvd’) # Solve PDE and save

Running the above script in parallel yielded the results shown in Figure 1a, where the maximum dis-
placement is 0.263 m.

(a) Elongation of a unit cube (1m×1m×1m) with the
unloaded configuration shown in transparent gray. (b) The idealized left ventricle in its unloaded (left)

and loaded (right) states.

The code has been verified using several test cases and comparing simulation results against in-house
computational tools, as well as against demos within FEniCS repositories. Furthermore, inflation of an
idealized left ventricle was compared with results obtained from other groups [2], and is shown in Figure
1b. The simulation of the left ventricle was accomplished with minimal changes to the configuration
dictionary shown above.

FEniCS Mechanics will be available through git repositories once further quantitative verification is
performed for quality assurance. This code makes modeling of custom mechanics problems even more
accessible to those with a limited programming background or knowledge of mechanics.
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The FEniCS project has embraced the use of containers for Continuous Integration, and for distri-
bution of pre-configured images for users. However, there is another area where docker containers hold
great promise: High Performance Computing (HPC) [1].

Because of privilege restrictions on HPC, it is necessary to use a different runtime, such as Shifter or
Singularity, rather than Docker. Performance can be very good, even for MPI jobs, provided that the
right MPI libraries are used.

Finally, Microsoft Azure now provides Virtual Machines (VMs) with Infiniband interconnect. Here,
we have full control, and can use Docker without restriction. Additionally, there is a useful project called
Batch Shipyard [2] which simplifies the deployment of Docker on Azure. The performance is very good
for medium sized problems.

References

[1] J.S. Hale, L. Li, C.N. Richardson, G.N. Wells, Containers for portable, productive and performant

scientific computing https://arxiv.org/abs/1608.07573

[2] Park, A. Batch Shipyard https://github.com/Azure/batch-shipyard



Analytic Metric-Based Adaptation Using a Continuous Mesh

Model

Ajay Rangarajan, RWTH Aachen, rangarajan@aices.rwth-aachen.de,

Georg May, RWTH Aachen, may@aices.rwth-aachen.de,

Vit Dolejsi, Charles University, dolejsi@karlin.mff.cuni.cz

Keywords: Adaptation, Anisotropy, Metric, Discontinuous Galerkin

Anisotropic adaptive meshing is widely recognized as an important tool in the numerical solution of
convection-diffusion problems. In most flow problems we are not interested in the flow properties in the
entire domain but instead we would like to know more about the flow in a smaller region. Using the
anistropy and size information from the underlying solution we can adapt towards an optimal mesh.

Moving from solution to an optimized mesh happens through error estimates based on the higher
order derivatives. Here we present a generalized mesh adaptation and mesh optimization method for
discontinuous Galerkin Schemes using a metric-based continuous mesh model [1]. The rationale behind
the new error model is to incorporate as much as possible analytic optimization techniques acting on the
continuous mesh, as opposed to numerical optimization acting on the discrete mesh. The metric based
approach facilitates changing and manipulating the mesh in a general non-isotropic way. The metric is
a symmetric positive definite matrix that encodes the information required to construct a mesh element
as shown in Fig. 1

θ

h1

h2

Figure 1: Relating metric and triangle

We also discuss target-based adaptation in this context. This is important in a variety of applications,
where one is interested in computing certain solution-dependent functionals rather accurately, as opposed
to minimizing the global error norm. To incorporate target-based adaptation we extend previous con-
tinuous mesh models to a weighted-norm optimization, where the weight comes from an adjoint solution
providing sensitivities with respect to some relevant target functional [2].

Additionally, high-order consistent numerical schemes using piecewise polynomial approximation call
for hp-adaptation to maximize efficiency. We present a two step algorithm using the continuous error
estimate to produce a close-to-optimal hp mesh [3].

We present the formulation of the methods as well as numerical experiments in the context of
convection-diffusion systems of the form:

q = ∇u

∇ · (Fc(u)− Fv(u,q)) = s(u,q)



with the appropriate boundary conditions. An example mesh produced using the analytic optimization
is shown in Fig. 2

(a) Uniform mesh (b) Adapted mesh

Figure 2: Mesh produced using analytic optimization
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Cardiac tissue is commonly modeled using the classical monodomain or bidomain models. These
models have provided valuable insight in cardiac electrophysiology; in particular, the models have been
useful tools for understanding the nature of excitation waves and how these waves are affected by mutation
or by illness, and also how drugs can be applied to alleviate disease. However, the classical models of
cardiac tissue fundamentally assume that the discrete nature of cardiac tissue can be represented by
homogenized equations where the extracellular space, the cell membrane and the intracellular spare are
continuous and exist everywhere. This is a bold assumption.

In this talk, we will discuss a more accurate model of cardiac tissue based on a geometrically explicit
representation of the extracellular space, the cell membrane and the intracellular domain. This EMI
model of cardiac tissue combines elliptic equations in the extracellular and in the intracellular domains
with a system of nonlinear equations modelling the electrochemical processes across the cell membrane.
We will present the EMI equations, propose new families of mixed finite element methods for these
equations, analyze these families of methods in terms of inf-sup stability and a priori convergence, and
show some numerical results using FEniCS of course.

Figure 1: Membrane potential and surrounding extracellular potential for a simulation of two connected
cylinder-shaped cells
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Computational magnetics is concerned with the numerical solution of the magnetostatic or magneto-
quasistatic approximation of Maxwell’s equations. Popular application examples are electrical machines,
magnets and transformers. In this work, we focus on the stationary nonlinear problem

∇×
(

ν(|∇ × ~A|)∇× ~A
)

= ~J, in Ω (1)

~A× ~n = 0, on ∂Ω, (2)

on a domain Ω, with outer unit normal ~n, where ~A and ~J refer to the magnetic vector potential and the
source current density, respectively. In many applications it is important to take into account the nonlin-
earity, i.e., the dependency of the magnetic reluctivity ν on the solution, originating in the ferromagnetic
behavior of iron or steel parts.

The solution is sought in the space H(curl,Ω) and the primary numerical method for this class of
problems is the finite element method with Nédélec’s elements. A numerical challenge, in addition to the
nonlinearity, is the following: often the behavior of the device is fully characterized by the homogeneity of
the solution in a small part of the computational domain Ω. Furthermore, the numerical accuracy in this
region has to be very high, as for instance in particle accelerator magnets, very small inhomogeneities may
have significant effects on the beam quality. Fig 1 depicts the computational model of a Stern-Gerlach
deflection magnet, where Ω0 is given by the beam area. In view of the high (local) accuracy requirements
an h-p adaptive approach is promising, but remains difficult to realize. Additionally, several quantities of
interest demand for a higher differentiability of the solution. For instance the field quality of deflection
type magnets can be quantified with

Q( ~A) =
1

|Ω0|

∫

Ω0

∂x1
|∇ × ~A| dx, (3)

where x1 represents the horizontal component in Figure 1. The expression for Q is not well-defined, even
for higher order finite elements, and further post-processing is required.

air iron

beam area

Figure 1: Picture from [3]. Computational model of a Stern-Gerlach magnet with coil, air, iron and the
beam area Ω0.

In this work we use defect correction to improve both the accuracy and differentiability of the finite
element solution [1, 2]. The defect correction approach is summarized as follows: in a first step, the
finite element solution is projected to a space of higher regularity. Typically, splines are employed to this
end. However, spline reconstructions are limited to structured grids and we use radial basis functions



instead [3]. More precisely, in the two-dimensional case with finite element solution uh, we determine the
coefficients α of

πhuh(~x) =
N
∑

i=1

αiΦ(|~x− ~xi|) + p(~x), (4)

with reconstruction operator πh, by enforcing interpolation at the finite element nodes ~xi. The radial basis
functions Φ considered in this work are polyharmonic splines, such as thin-plate spline Φ(r) = r2 log(r),
cubics Φ(r) = r3 and quintics Φ(r) = r5. The polynomial p above is needed to ensure the existence
of a unique solution of the interpolation problem. This reconstruction is then used in an extrapolation
step to obtain a higher accuracy of the solution. The remaining error, after extrapolation, can be
estimated using the adjoint equation, see, e.g., [4] and the references therein. After defect correction,
the accuracy is determined by the approximation properties of the reconstruction operator πh. This will
be discussed theoretically and illustrated by numerical examples. In a last step, we localize the defect
correction approach, to account for the local field homogeneity requirements of computational magnetics
applications, outlined above. In this way, there is no need to implement a local p-refinement. The post-
processing is very general as we only need to access the degrees of freedom of the method and assemble
new right-hand-sides. Its main drawback lies in the computational cost for the reconstruction. On a
structured grid, this cost is often negligible. On an unstructured grid, the cost can become high when the
domain of reconstruction is large. This is due to the fact, that a dense system of equations needs to be
solved when using radial basis functions, which makes the localization of the defect correction even more
appealing. A further remedy consists in using a fast multipole acceleration of the radial basis function
reconstruction.

Several numerical examples will be given for illustration. All simulation results are based on FEn-
iCS and implementation details for computational magnetics examples will be discussed in this context.
Higher order Nédélec’s elements are readily available, but more effort is needed to implement the nonlin-
earity, which is given by monotonic cubic splines in general. We also give details of the defect correction
scheme and discuss computational costs. Current implementations can handle three-dimensional prob-
lems, but the defect correction scheme is limited to two-dimensions. Nevertheless, we sketch the extension
to three-dimensional and time-dependent problems.
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[3] U. Römer, S. Schöps, H. De Gersem: A defect corrected finite element approach for the accurate
evaluation of magnetic fields on unstructured grids, Journal of Computational Physics, 335 (2017),
688-699.

[4] N.A. Pierce, M.B. Giles: Adjoint and defect error bounding and correction for functional estimates,
Journal of Computational Physics, 200 (2004), 769-794.



Implementation of Diffuse Interface Models in FEniCS
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Diffuse interface models have been successfully used as a tool for mathematical description of the
motion of several immiscible fluids and their mutual interaction. Multicomponent flows of this type are
of interest in many engineering applications.

The diffuse interface models usually couple the system of fourth-order partial differential equations
of Cahn-Hilliard type together with incompressible Navier-Stokes equations. We have recently developed
a variant of the model that is applicable also in a general non-isothermal setting. The coupling allows for
consistent incorporation of surface tension effects into the model. The interface between the components
is in this case treated as a thin layer across which the components are allowed to mix. The main challenge
in numerical simulations is the very fine spatial resolution required for capturing the dynamics of the
interface.

Several variants of diffuse interface models have been implemented and tested using the FEniCS
project [1] and FENaPack [2], which is an open-source package implementing preconditioners for Navier-
Stokes equations. A particular variant of the model has been applied in a practical problem of simulating
the float glass process (Pilkington process), see [3].
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We are concerned with the discontinuous Galerkin method (dG) for the numerical solution of the
Poisson problem with nonlinear Newton boundary condition in bounded two-dimensional polygonal do-
mains. Such boundary condition models a polynomial behavior at the boundary which can be used in
modeling of electrolysis of aluminium (see e.g. [1]). Similar nonlinear property of the solution on the
boundary is observed also in radiation heat transfer problems or in nonlinear elasticity.

We consider the following boundary value problem: Find u : Ω → R such that

−∆u = f in Ω, (1)

∂u

∂n
+ κ|u|α u = ϕ on ∂Ω,

where f : Ω → R and ϕ : ∂Ω → R are given functions and κ > 0, α ≥ 0 are given constants.
In paper [2], the dG discretization of problem (1) is analyzed and theoretical a priori error estimates

for the error are derived. The discretization error is measured by the so called dG norm, which consists of
the H1(Ω)−norm augmented by additional contributions over the edges of the mesh elements penalizing
the discontinuity of the discrete dG solution.

We assume that the exact solution u ∈ Hs(Ω), s > 2, and the dG discretization with discontinuous
piecewise polynomial functions of degree p is used. When the solution u is non-zero at least on a part
of the boundary with positive d− 1 measure, it is proven in [3] that the dG method reaches the optimal
rate of convergence measured in the dG norm O(hr), where r = min{p, s− 1}. When u ≡ 0 on the whole
boundary then the theoretical convergence rate is decreased to O(h

r

α+1 ) due to the nonlinearity of the
problem.

We present experiments, computed by the FEniCS software, performed in order to verify the opti-
mality of these theoretical bounds and convergence rates. The decrease of the error both for problems
with smooth solution and for irregular solutions in non-convex domains is examined. We measure the
dependence of the experimental order of convergence on the regularity of the solution and also on the
parameter α of the nonlinearity of the problem.

It seems that the convergence behaves similarly to the theoretical estimates in these experiments.
Only, in the case when u|∂Ω = 0, we observed that the L2(Ω)−norm was the major part of the error

decreasing as O(h
r+1

α+1 ) while the H1(Ω)−seminorm decreased with the optimal order r. Hence, it seems
that the error estimate of order O(h

r

α+1 ) proved in [2] is not optimal. An optimal error estimate based
on the analysis of the L2(Ω) norm is our goal for further work.
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We discuss loop fusion techniques implemented in PyOP2 which speeds up the global assembly of
linear and bilinear forms in Firedrake. The techniques involve direct fusion, applied to mixed finite
elements, and indirect fusion, applied to Discontinuous Galerkin finite elements. We will also present
preliminary results with several representative assembly kernels.
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A fully automatic framework for conducting shape optimization using UFL and FEniCS is discussed.
Such problems encompass a wide variety of problems such as finding drag optimal shapes in fluids or
reconstructing inclusions by measuring reflections of waves within the area of non-destructive testing.
Because the physics are usually modeled via partial differential equations (PDEs), shape optimization
usually forms a special sub-class of problems within PDE constrained optimization, where the domain of
the PDE is the design unknown.

Thus, the directional derivative of the objective J with respect to perturbations V of the input mesh
Ω is necessary. Under sufficient regularity assumptions, tangential calculus can be used to find a surface
representation of such derivatives. However, this usually requires applying the divergence theorem on
surfaces.

The main goal of this talk is to present an automatic derivation of the shape derivative by first
formulating the problem in the Uniform Form Language (UFL) and then processing the expression by
a semantic analysis, which automatically applies the formal differentiation rules of shape calculus. In
addition to applying the divergence theorem on surfaces, more complex transformations need to be applied
when dependencies on the curvature or normal are present or when higher order derivatives are desired.
An example of a UFL-tree representation of such a derivative with dependency on the normal n is shown
in Figure 1.

exterior facet integral

Product
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Product

Indexed

Argument MultiIndex

Indexed
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sub-branch

MultiIndex
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Figure 1: UFL tree representation of the surface form of a shape derivative. The shape derivative dn of
the normal n can then be combined via independently processed subtrees.

Having a UFL-tree as an output means the result of the automatic differentiation procedure can
immediately and automatically be discretized into a full numerical solution framework via FEniCS. The
talk features examples of automatically created Newton-like solvers for problems in drag minimization in
fluid flow and wave reconstructions. Because there are surface representations of such derivatives, this
differentiation procedure also nicely interfaces with FEniCS and its capability to solve PDEs on manifolds,
which is augmented with different approaches to compute curvature and other surface intrinsic quantities.
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Stéphane P.A. Bordas, University of Luxembourg, stephane.bordas@uni.lu

Keywords: computational biomechanics pipeline, segmentation, mesh smoothing, bone augmentation

operation, FEniCS Project, uncertainty quantification, model-order reduction.

It is increasingly recognised that simulation tools can be useful in aiding physicians making critical
medical decisions.

In this work we propose an image to finite element analysis pipeline for patient-specific simulation and
demonstrate its effectiveness by simulating a Kyphoplasty operation on a fractured vertebra. Computing
the von-Mises stress allows us to identify the region of the risk of fracture after the bone augmentation.

The pipeline consists a pre-processing of medical images segmentation using the open-source software
3DSlicer [Fedorov et al. 2012]. Then, the tetrahedral mesh quality is enhanced by modern smoothing
technique within PyMesh [Zhou et al. 2016].

Finally, we use the FEniCS to compactly express and efficiently solve the elasticity model using the
finite element method.

In addition, we enhance the classical pipeline with two cutting-edge numerical approaches: model
reduction and uncertainty quantification. We feel is is increasingly important to understand the sensitivity
of biomechanical models to underlying uncertainties in parameters, e.g. boundary conditions, material
properties. However, the cost of such an analysis is computationally expensive, because it demands that
the same model be run with many different realisations of the parameters.

To overcome this issue and obtain a near-real-time simulation, we introduce the model reduction
technique.
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We present reliable and sharp two-sided a posteriori estimates for high-order discretisations of the

Poisson problem using functional-type arguments. The resulting scheme is implemented in FEniCS.
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We consider multi-level Monte Carlo methods (MLMC) [1] for accelerating the computation of stochas-
tic eigenvalue problems arising from PDEs in the presence of uncertainty. Eigenvalue problems are impor-
tant in a number of applications where randomness in the underlying system has a significant impact on
the response, such as structural vibration. In these systems, designing to coincide with or avoid natural
frequencies is important.

Monte Carlo (MC) methods can quantify the impact of uncertainties on eigenvalue problems in a
simple way, but are considered to be too expensive in many practical cases. We propose employing
MLMC methods to accelerate the computation of the statistics of eigenvalue problems to make MC
techniques viable. MLMC methods compute the expectation and variance of the quantity of interest, Q,
by solving the governing equation on grids of varying fidelity. The expectation of Q at the finest level,
L, is calculated using the following telescopic sum:

E[QL] = E[Q0] +

L∑

l=1

E[Ql −Ql−1] (1)

where increasing l represents levels of increasing mesh refinement. More expensive ‘finer grids’ are sampled
less often than coarser grids because the variance of the ‘finer’ levels is smaller than the variance between
the ‘coarser’ levels. This achieves equivalent accuracy as MC methods but at a much lower cost. The
total variance of the estimator can also be calculated by summing the variance of the estimator at each
level.

We consider uncertainty in our systems from random coefficients in the governing equations. We solve
the eigenvalue problem using a discrete realisation of the random field and add point masses to the weak
form of the equation. This is similar to the approach used in other random vibration research, e.g. [2].
We discuss the development of the FEniCS PointSource code, which now enables correct addition of the
point sources to mass matrices.

We use the SLEPc eigenvalue solver combined with the FEniCS libraries to compute the natural
frequencies for each random realisation and schedule and run the MLMC algorithm using the podS
library in parallel on HPC and Microsoft Cloud facilities.

We argue that the demonstrated efficiency gains of the multi-level method make the approach compet-
itive with alternatives to MC for eigenvalue problems. This enables us to compute quantities of interest
when the underlying system has many degrees of freedom without having to make assumptions that
reduce the accuracy of the result.
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Mathematical modeling and numerical solution of the applied problems in highly heterogeneous media
is a actual, necessary and interesting task. A classical numerical method for solving such problems should
use a computational grid that resolve all small heterogeneities. For such problems, a numerical homoge-
nization or multiscale methods are used. For the processes in a periodic heterogeneous media, where the
length of the period is small in comparison with other parameters of the problem, the asymptotic ho-
mogenization methods is used to construct coarse-scale approximation and calculate effective properties
that takes into account small scale heterogeneities. Nowadays, a multiscale methods are becoming popu-
lar, for example, heterogeneous multiscale method (HMM), multiscale finite element method (MsFEM),
variational multiscale method (VMS) and others. Multiscale methods should combine the simplicity and
efficiency of a coarse-scale models, and the accuracy of microscale approximations.

Figure 1: Multiscale model reduction using GMsFEM

In this work, we construct a reduced order model using the generalized multiscale finite element
method (GMsFEM). This method involves two basic steps: (1) the construction of multiscale basic
functions that take into account small scale heterogeneities in the local domains and (2) the construction of
the coarse scale approximation [1]. For the construction of the multiscale basic functions we solve spectral
problems in local domains. Spectral problems help to identify the most important characteristics of the
solution. In contrast to the available techniques, this method allows to avoid the limitations associated
with idealization and limitations on the applicability of the method [2]. This method also more general
technology that takes into account the different scale processes. The construction of basic functions occurs



independently for each local domain, doesn’t require the exchange of information between processors,
and has a high parallelization efficiency. Using constructed multiscale basic functions, we construct a
mathematical model on a coarse grid that allows to significant reduce the solution time, the amount
of used memory, and can be used to perform calculations for a given configuration of heterogeneous
properties.

We consider several applied problems with different types of heterogenuities. As first problem, we
consider gas filtration in the fractured poroelastic medium and present multiscale method for solution of
the problem on a coarse grid [3]. Next, we consider wave propagation in the elastic fractured media [4],
and finally present multiscale method for the solution of the pore-scale electrochemical processes in the
litium-ion batteries.
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Shape optimization has received significant interest from both a theoretical and an applied point of
view over the last decades. The approaches used can roughly be categorized into those based on using
a parametrization for the shape or its deformation and then applying an optimization algorithm to the
discretized problem (discretive-then-optimize) and those that formulate the problem as optimization over
an infinite-dimensional space of shapes or deformations and then discretize afterwards (optimize-then-
discretize). We follow the latter approach and search for diffeomorphisms T ∈ [W 1,∞(Ω)]d that deform
an initial shape Ω. The optimization problem then reads as follows

minimize
T∈X∩K

J(T (Ω)). (1)

We choose X = {T ∈ [W 1,∞(Ω)]d : T is a W 1,∞-diffeomorphism} as the space of admissible deformations
as Lipschitz regularity of the domain is needed by many problems in which a PDE constraint is included
in the optimization problem.

Furthermore we want to include certain geometric constraints; this is represented by the require-
ment T ∈ K. A classical example for a geometric constraint that is often considered is volume/mass
conservation, i.e. K = {T ∈ X : vol(T (Ω)) = vol(Ω)}. In our work we investigate constraints of the form

K = {T ∈ X : T (∂Ω) ⊂ C} (2)

for some convex set C ∈ R
d. A classical application where this is relevant is wing design in Formula 1,

where the teams are given bounding boxes in which the wing needs to be contained.

Figure 1: Shape at different stages of an optimization subject to box constraints.

In order to include this constraint, we begin by considering the indicator function φ : L2(∂Ω) → (−∞,+∞],
defined via

φ(T ) =

{

0, if T (∂Ω) ⊂ C

+∞, otherwise,
(3)

and observe that (1) is equivalent to

minimize
T∈X

J(T (Ω)) + φ(T ). (4)

In [Ito] it was shown that the Moreau-Yosida regularization of φ given by φc for c > 0 has the following
useful properties:

1. T 7→ φc(T, λ) is convex and Lipschitz-continuously differentiable;

2. for any λ ∈ L2(∂Ω), φc(T, λ) ↑ φ(T ) as c → ∞;



3. under some additional assumptions: T ∗ solves (4) if and only if (T ∗, λ∗) are a solution of

λ∗ = φ′
c(T

∗, λ∗) (5)

and T ∗ minimizes
minimize

T∈X
J(T (Ω)) + φc(T, λ

∗). (6)

This gives rise to three optimization approaches:

1. Find minimizers of J(T (Ω)) + φc(T, 0) for increasingly large c > 0 (similar to the approach used in
[Keu]).

2. Alternate between minimizing (6) and updating λ according to (5).

3. Apply a semi-smooth Newton method to (5) and (6) to solve for T ∗ and λ∗ simultaneously.

We implement our methods in Firedrake and present synthetic examples without PDE constraint as
seen in Figure 1 as well as the minimization of the Drag/Lift ratio of an airfoil, as seen in Figure 2, as
an example for a PDE constrained problem.

Figure 2: Left: initial airfoil; middle: optimized airfoil without constraints; right: optimized airfoil with
constraints.
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The ongoing pursuit for higher power densities in electronic components such as CPUs, graphics
cards, and other devices poses severe demands on cooling solutions. Air-cooled heat sinks are becoming
increasingly inadequate and being replaced by liquid cooling counterparts. To explore the currently
untapped potential of liquid-cooled microchannel heat sinks, topology optimization is used in this work.
Using this methodology, novel tree-like microchannel layouts with superior performance over parallel
channel layouts can be achieved automatically.

This work starts from earlier topology optimization studies for optimal cooling topologies for pressure-
driven liquid-cooled microchannel heat sinks [1]. From a physical point of view, optimized designs should
incorporate a large amount of very fine channels, since this is beneficial towards the heat transfer to the
fluid. Additionally, for a fixed pressure drop over the heat sink, these channels should be fairly short
to limit friction losses. Consequently, optimized designs include a combination of small channels with
excellent heat transfer characteristics and larger channels acting as fluid distributors and collectors to
limit the pressure drop, as seen in figure 1. In this figure, black zones correspond to solid walls and white
to liquid channels. The left and right side are the fluid inlet and outlet respectively, and the top and
bottom are fixed solid walls.

Figure 1: Example optimized heat sink design.

The optimization problem is solved on a discretized finite volume mesh based on the conjugate heat
transfer equations. By introducing a material with imaginary properties into the simulation, material
properties in every cell are updated during the optimization procedure. Within this procedure, the
fictitious material is pushed towards either solid or fluid, in the final optimized design. This numerical
solution procedure brings with it a number of issues, most notably, the appearance of channel dimensions
that equal the coarseness or fineness of the design grid used in the optimization. Consequently, optimized
designs exhibit a high degree of grid dependence. Moreover, on the one hand an accurate solution of
state variables asks for a fine resolution, while on the other hand designs optimized on those fine grids
are not manufacturable as a result.

In order to avoid such grid dependent designs and fabrication limits violation, regularization methods
are employed. These methods originate from structural topology optimization research, where similar
problems have been encountered [2]. Among multiple existing approaches, parameter space reduction [3]
and mesh-independent filtering methods [4] are tested in this work.



We assume here that the microchannel heat sinks are fabricated using silicon etching techniques
such as deep reactive ion etching. In order to ensure manufacturability, a lower threshold is imposed
on the width of the smallest channels, equal to etching dimensions that lie comfortably within current
technological limits. This threshold is subsequently translated into specific parameters used in each of
the regularization methods. Optimized designs are deemed manufacturable if all feature sizes are above
this selected lower threshold. Grid independence is verified by simulating the optimization problem with
varying grid coarseness and comparing the resulting topologies.

Testing of the two regularization methods indicates that using parameter space reduction, grid in-
dependent optimized designs can be realized, and manufacturability can be guaranteed. However, the
design space is limited by the coarseness of the design grid, resulting in features such as staircase designs.
Mesh-independent filtering methods allow for smoother solid-liquid interfaces using finer design grids,
but simulations show that although there is a moderate level grid independency in the optimized designs,
the filtering methods fail to ensure manufacturability for any given design. Reasons for this undesirable
behavior include the non-convexity of the optimization problem, which has a tendency to get stuck in
different local minima, and the fact that the filter methods appear not to completely remove the high
frequencies in the design.

In conclusion, it appears that parameter space reduction performs favorably compared to mesh-
independent filtering methods with respect to manufacturability of optimized designs and both methods
display a similar level of grid independence. However, both methods have their own specific advantages
and disadvantages.
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There are over 100,000 heart valve surgeries done each year in the U.S. costing over $20 billion [1].
Bioprosthetic heart valves(BHV) are the most popular surgical replacements, but the life expectancy
remains stuck at 10-15 years. One of the most crucial effects involved in the mechanical failure of BHVs
is permanent set(PS); especially in the early stage (2-3 years). PS cause the geometry of BHVs to change
permanently over time, resulting in extraneous stress on the leaflets. While this process does not damage
the tissue, it accelerates the rate of failure. PS is a result of the scission-healing of exogenously crosslinked
matrix. This allows the unloaded configuration of the matrix to evolve while convecting the underlying
collagen fiber architecture(CFA). Thus, we developed a structural constitutive model for the exogenously
crosslinked BHVs biomaterials based on the PS mechanism [2]. The results show that PS alone can
capture and more importantly predict how the shape and mechanical response leaflet biomaterial change
during the early stage.

In this work, we developed a numerical implementation of our PS model to simulate BHV leaflet
tissues under cyclic loading (Fig. 1). The simulations were performed quasi-statically. At each time
step, we simulate the loaded state using the elastic part of the PS model implemented in FEniCS.
The time dependent updates to the material model is done using a finite difference approach and a
full implementation of the PS constitutive model in Python and C++. To facilitate the Finite Element
simulation, we developed a simplified material model based on the non-covariant Hencky strains presented
by Criscione et al. [3] to match the mechanical response of the elastic part of the full model,

Ψ(C) =
∑

i,j,k

cijkγiγjγk

γi = ln(mT
· F ·m), γj = ln(sT · F · s), γk = (mT

· F ·m)−1
m

T
· F · s,

(1)

where F is the applied deformation, m is the preferred direction of the collagen fibers and s is the cross-
preferred direction, and cijk are the material constants. This is a necessary step as structural models
have substantial computational cost. Finite Element simulation is ran at each time step to determine the
loaded state, which is then added to the strain history. This is then used to determine the evolution of
the reference configuration and material constant using the discretized PS model (Fig. 2A),

S = φmExp

[

−k

n
∑

i=1

a(i)

]

S̄ (FPS, I,C) + φm

n
∑

j=1

ka(i)Exp

[

−k(

n
∑

i=1

a(i)−

j
∑

i=1

a(i))

]

S̄ (FPS,A(i∆s),C) ,

(2)
where φm is the total mass fraction, S̄ is the stress of the material relative to the strain history A(t), k is
the rate constant of PS, FPS is the deformation due to PS, a(i) is the step size in time as a function of the
iteration i, and the exponential functions are the relative mass fraction of each part of the constrained
mixture. The step size in time, a(i), is accelerated based on the expected deformation due to PS (Fig.
2B), where less PS results in larger time step. The geometry of the Finite Element mesh is then updated,
and a new set of material parameters for the simplified model is generated at each integration point.
This process is then repeated for the next iteration until the end of the simulation. The model geometry
is change depending on when simulation experimental studies on BHV leaflet tissue patches, or BHV
leaflets or intact valves.

To validate the numerical implementation, we simulated the experimental studies we used to establish
the PS constitutive model form, where exogenously crosslinked bovine pericardium patches are cycled
under strain control [4] or stress control [5], and with the preferred collagen fiber direction or orthogonal to
the preferred collagen fiber direction. Next we performed parametric simulations under different loading
conditions such as uniaxial extension, biaxial extension, simple shear, pure shear, and combinations of
each, stress vs strain boundary conditions, heterogeneous vs homogeneous collagen fiber architecture,
aligned vs spread fiber splays, collagen fiber crimp, and direction of collagen fiber alignment.



Figure 1: Numerical implementation using FEniCS, python and C++

Figure 2: A) Updating the strain energy function using the constrained mixture approach and the transfer
of mass fraction between reference states. B) Accelerating the time step size based on the expected size
of the PS deformation. C) An example of the iteration vs simulated time.

We have developed a time dependent numerical implementation of our PS model using the FEniCS
framework, and performed parametric studies to examine different loading conditions and collagen fiber
architecture on the effects of PS. The results show the potential impact of PS on BHVs and we moved
one step closer to simulating intact BHVs under cyclic loading using the FEniCS framework.
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