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Introduction
Important features in cardiac mechanics that cannot easily

be measured in the clinic, can be computed using a com-

putational model that is calibrated to behave in the same

way as a patient’s heart. To construct such a model, clinical

measurements such as strain, volume

and cavity pressure are used to personalize the mechanics

of a cardiac computational model. The problem is formu-

lated as a PDE-constrained optimization problem where the

minimization functional represents the misfit between the

measured and simulated data. The target parameters are

material parameters

and a spatially varying contraction parameter. The minimiza-

tion is carried out using a gradient based optimization algo-

rithm and an automatically derived adjoint equation. The

method has been tested on synthetic data, and is able to

reproduce a prescribed contraction pattern on the left ven-

tricle.

Methods
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Triangulated data points for left ventricular endocardial and epicardial surfaces(B) are

extracted from 4D echocardiography(A). Together with these surfaces we are also given

a strain mesh(B) that can be used to identify the location of particular regions of the

LV. We use Gmsh to mesh these surfaces together in order to obtain a linear tetrahedral

mesh(C). The strain mesh is used to mark the cells so that each cell is assigned one

value according to the AHA-zone representation(D). We assign fiber orientations(D)

using the rule based method proposed by Bayer et al.

Pre–processing

.We use measured left ventricular cavity volume and 4D regional strain obtained from 4D echo,

and invasive left ventricular pressure measurement to personalize the mechanics. Pressure

measurements are incorporated as a Neumann boundary condition on the endocardium, while

strain and volume measurements are incorporated into an objective misfit functional.

.The average regional strain is measured in the circumferential(ec), radial(er) and

longitudinal(el) direction relative to the left ventricle. The left ventricle Ω, is partitioned

into 17 regions, Ω =
⋃17
k=1 Ωk. The average regional strain over the region Ωj in the direc-

tion ek can be approximated as ε̃k,j = Gj(e
T
k ∇u· ek) where Gj is the linear functional given

by Gj(f ) = 1
|Ωj |
∫

Ωj
f dx,, ek indicates a unit direction field, and |Ωj | the volume of segment

j . Let N be the number of discrete measurements during a cardiac cycle, and let NED be

the number of points from the beginning of the passive filling to end diastole. For point

i = 1, · · · , N we define the strain misfit functional as,

I istrain =

17∑
j=1

∑
k∈{c,r,l}

ωk,j
(
εik,j − ε̃ik,j

)2
.

The weights ωk,j are based on the quality of the strain measurement over the region Ωj in

the direction ek. The volume misfit functional is defined as

I ivol =

(
V i − Ṽ i

V i

)2

, Ṽ i = −
1

3

∫
∂Ωendo LV

(X+ u)· JF−TN dS.

where ∂Ωendo LV is the surface inside the left ventricular cavity. We combine the mismatch

between the strain and volume into one total mismatch functional of the form

I iα = αI ivol + (1− α)I istrain.
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.We use the passive filling phase to determine the material

parameter set m = (a, b, af , bf ) and the active contrac-

tion/relaxation phase to determine γ by solving the following

PDE-constrained optimization problems:

Passive filling phase Contraction/Relaxation phase

minimize
m

NED∑
i=0

I iα

subject to R(u, p) = 0.

minimize
γ(x,i)

I iα + λ‖∇γ‖2
L2(Ω)

subject to R(u, p) = 0,

x ∈ Ω, i = NED + 1, · · · , N.

.Here we have also included a regularization of the contraction parameter γ.

.The solver is fully parallelized and based on the opensource finite element framework FEniCS.

To solve the PDE-constrained optimization problem we use a gradient based optimization al-

gorithm where the gradient is computed by solving the automatically derived adjoint equation

using dolfin-adjoint.

Parameter estimation

We model the heart as a continuum body with a reference configuration taken at the

beginning of the passive filling phase. To model the active contraction of the heart we

introduce a single spatially varying parameter γ = γ(x, t), and apply the active strain

formulation.

.This is based on a multiplicative decomposition of the

deformation gradient,

F = FeFa,

where F is the isochoric part of the deformation gra-

dient, Fe is the elastic part, and

Fa = (1− γ)f0 ⊗ f0 +
1√

1− γ
(I− f0 ⊗ f0).

F

Fa Fe

.The myocardium is modeled as an incompressible, hyperelastic material. We use

a transversally isotropic version of the strain energy density function proposed by

Holzapfel and Ogden,

W(Ce) =
a

2b

(
eb(I1−3) − 1

)
+
af

2bf

(
ebf (I4,f0−1)2+ − 1

)
.

Here I1 is the first isotropic invariant of the elastic part of the right Cauchy-Green

tensor Ce = FTe Fe, I4,f0 = f0 · (Cef0) is the quasi-invariant with a preferred direction

along the fibers f0 and (·)+ = max{·, 0}.

.The force balance equations is found by solving for the minimum elastic energy:

Π =

∫
Ω

W(Ce) + p(J − 1)dV + boundary conditions, R(u, p) =

(
DδuΠ

DδpΠ

)
= 0

Mechanical Model

Results
To verify that the method works, we generate synthetic

data with prescribed parameters, and use strain and vol-

ume curves generated from this data as input to the

model. We add noise to the strain data to account for

drift. Below a summary of the maximum relative error us-

ing synthetic data for γ, displacement, volume and strain

is displayed for different parameter sets.
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We apply the method to the a patient with left bundle

branch block. We are able to match the volume and strain

curves very well. Below we see the resulting simulated

and measured volume, and the simulated and measured

longitudinal strain for the mid septal strain region. This

allows us to visualize regional activation and regional fiber

stress.
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