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Abstract
The distributed and heterogeneous frame-

work in the 5G heterogeneous network (Het-
Net) makes it vulnerable to attacks of different 
kinds. Nodes for improving the network security 
are therefore important to eliminate such criti-
cal threats. Without cooperation or with limited 
cooperation, these nodes are substantially restrict-
ed in their protecting capacity due to specific 
characteristics such as heterogeneity, hierarchy, 
and wide range in the 5G HetNet. In this article, 
we propose a federated learning empowered 
end-edge-cloud cooperation-based framework for 
enhancing 5G HetNet security. In this framework, 
nodes equipped with attack detection mecha-
nisms are distributed in the end, edge, and cloud 
of the 5G HetNet. We then design cooperative 
training schemes to realize the full potential of 
these nodes in detecting attacks. Illustrative results 
demonstrate the superior performance of our 
proposed scheme compared to three different 
benchmark schemes.

Introduction
5G heterogeneous networks (HetNets) can con-
nect a large number of nodes with different radio 
access technologies to provide universal high-rate 
coverage and seamless user experience. This dis-
tributed and heterogeneous framework of the 5G 
HetNet makes it vulnerable to attacks of different 
kinds such as denial of service (DoS), malware 
propagation, and malicious port scanning. The 
security issue is therefore an important concern 
in 5G HetNets. In this regard, we have observed 
some notable recent work to enhance the secu-
rity in 5G HetNets. Secure frameworks for 5G 
wireless sensor networks and the 5G Internet of 
Things (IoT) were presented in [1, 2], respectively. 
The authors in [3] proposed a self-adaptive archi-
tecture for inspecting network flows in 5G mobile 
networks. Specialized schemes in distributed or 
centralized form were presented to improve the 
security of 5G HetNets in [4, 5]. Another group 
of work in this direction includes new enabling 
technologies, such as blockchain, cyber insurance, 
and artificial intelligence, to detect the anomalies 
[6, 7], and to enhance the security of 5G HetNets 
[8, 9].

It is a good approach to embed such tech-
niques on appropriate nodes in 5G HetNets to 
provide enhanced attack detection capability. 
These nodes can be distributed in the access 
networks or the backbone of a 5G HetNet, and 

can be user nodes or dedicated nodes such as 
intrusion detection nodes. In general, these nodes 
are non-cooperative or have limited cooperation 
with each other. Few studies have attempted to 
address this issue. For instance, in [10, 11], the 
authors used federated learning to provide secure 
data sharing and to prevent user data leakage 
against attackers. In [12], the authors proposed 
a distributed machine-learning-based scheme for 
detecting cyber attacks in fog-to-things comput-
ing. Intelligent-module-based proactive network 
monitoring for security and protection of comput-
ing infrastructures was presented in [13]. These 
studies were conducted for specific network or 
application scenarios, and are therefore of limited 
use beyond those environments. This leads to the 
fact that the nodes are substantially restricted in 
the potential of enhancing the security in 5G Het-
Nets, which is a mixture of wide-range HetNets 
and emerging applications.

Federated learning [14] is a distributed learning 
method allowing multiple parties to train a shared 
model by aggregating locally computed gradient 
updates without specific limitations on the loca-
tion, technology, and architecture of the partici-
pants. Inspired by the ability of federated learning 
to integrate the learning capability of distribut-
ed, heterogeneous, and wide-range networks, we 
propose a federated learning empowered end-
edge-cloud cooperation framework for enhancing 
5G HetNet security. In our proposed architec-
ture, nodes for attack detection are distributed 
in the 5G HetNet, including nodes from access 
networks (the end), the gateways of access net-
works (the edge), and the 5G backbone network 
(the cloud). We present the detailed schemes of 
the local training process at the end nodes and 
the edge nodes, respectively. Then, based on fed-
erated learning, we design cooperative training 
schemes among the end, the edge, and the cloud 
to improve their models for enhanced attack 
detection, and thus to realize their full potential in 
detecting attacks. Illustrative results demonstrate 
the performance of our proposed architecture 
and schemes, and show considerable improve-
ment in detecting accuracy and training speed 
compared to three different benchmark schemes.

The rest of this article is organized as follows. 
We present the cooperative architecture for 5G 
HetNet security in the following section. Then 
we describe the detailed local model training 
schemes in the end and at the edge, respectively. 
The federated learning empowered cooperative 
model training among the end, edge, and cloud is 
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then highlighted. Following that, we illustrate the 
performance of our proposed cooperative frame-
work through extensive numerical results. Finally, 
we conclude this article.

our proposed ArchItecture for 
5g hetnet securItY

The 5G HetNet has an end-edge-cloud hierar-
chical structure, and is thus vulnerable to various 
security threats distributed in the wide range of 
the HetNet. To address the security issues in such 
a distributed and heterogeneous framework, we 
propose a federated learning empowered end-
edge-cloud cooperation architecture for 5G Het-
Net security. As shown in Fig. 1, attackers inside 
or outside 5G HetNet may launch attacks such 
as (distributed) DoS, port scanning, and malware 
propagation via wireless or wired channels in the 
backbone or access networks. To detect such 
attacks effi  ciently, nodes for detecting the attacks 
are distributed in three diff erent layers of the 5G 
HetNet, that is, attack detecting nodes in the 
end, in the edge, and in the cloud, respectively. 
Model training cooperation among the layers can 
be conducted for enhanced capacity of attack 
detection. To highlight the attack detecting nodes, 
we only show the nodes with security function 
and omit other nodes from Fig. 1. The detailed 
description of the architecture is as follows.

AttAck detectIon In the end, edge, And cloud
Attack Detection in the End: The attack detection 
in the end, generally deployed in some power-
ful end nodes or devices in an access network, is 
responsible for detecting the attacks in this local 
access network. In our proposed architecture, the 
end node employs deep reinforcement learning 
(DRL) to train models for attack detection. Due 
to limited resources such as computing power or 
available training data, the end node will send the 
result from its local training to its responsible edge 

node to create an aggregated model with higher 
accuracy and wider adaptation. This can partic-
ularly benefi t the end nodes when the nodes do 
not have enough computing resource to learn the 
whole dataset of this access network, or each end 
node has partial knowledge on the security of the 
access network and wants to have full knowledge 
on the security of this access network.

Attack Detection in the Edge: The edge is 
the intermediary between the end and the cloud. 
Attack detection in the edge is generally placed at 
the intersecting nodes of the local access network 
and the 5G backbone network. Consequently, the 
edge node has full knowledge on the security of 
the access network and partial knowledge on the 
security of the backbone network, and can detect 
the attacks at a higher level than an end node. In 
our proposed architecture, the edge node exe-
cutes the following three functions:
• With federated learning, the edge node 

can help the end nodes in its coverage to 
improve the accuracy and training speed of 
their attack detecting models. Specifically, 
the edge node collects the model training 
results of the end nodes, conducts federated 
learning, achieves the integrated model, and 
returns it to the end nodes.

• The edge should execute its own deep learn-
ing module, which is diff erent from the DRL 
module in the end, to detect the attacks in 
the local access network while connected to 
the backbone network.

• Directly connected to the backbone of a 5G 
HetNet, the edge node also faces the threat 
of various attacks originating from anywhere 
in the backbone network. It is essential to 
enhance the accuracy of the trained model 
for attack detection in each edge node by 
integrating the parameters from other appro-
priate edge nodes. Consequently, the edge 
node will participate in the federated-learn-
ing-based cooperation via the cloud.

FIGURE 1. Federated learning empowered end-edge-cloud cooperation architecture for 5G HetNet security.
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Attack Detection in the Cloud: Attack detec-
tion in the cloud can be deployed on some ded-
icated servers or a data center inside the 5G 
backbone network, with a global perspective on 
the security of the whole network. The cloud can 
execute attack detection itself, as well as help the 
edge nodes to train more powerful models for 
attack detection. In this article, we concentrate 
on the latter function of the cloud. That is to say, 
the cloud collects the model parameters from 
the edge nodes, conducts parameter aggregation 
based on federated learning, and helps the edge 
nodes with enhanced models for attack detection.

Model trAInIng cooperAtIon AMong MultIple lAYers
In our proposed architecture, the nodes for 
attack detection in diff erent layers cooperate with 
each other based on federated learning. With 
the parameter aggregation in the edge, the end 
nodes can improve the accuracy of the detecting 
models and speed up the training process. Mean-
while, the edge nodes send their model param-
eters to the cloud for aggregation in federated 
learning. According to the similarity of the edge 
nodes’ network environments, the cloud can 
select appropriate model parameters, aggregate 
them in federated learning, and send the result 
back to the corresponding edge nodes to update 
the parameters in their local models for attack 
detection.

To this end, our proposed architecture can 
improve the attack detection effect and thus 
enhance the 5G HetNet security. Based on the 
federated learning empowered end-edge-cloud 
cooperation, the parameters of the model for 
attack detection in both the local access network 
and the 5G backbone network are flexibly and 
efficiently exchanged. This can achieve more 
accurate models for the multiple layers in detect-
ing various attacks. The nodes for attack detec-
tion in each layer can inspect network behavior 
based not only on its own knowledge but also 
on the knowledge of its cooperators across the 
5G HetNet. Such cooperation makes it easier to 
fi nd hidden or distributed attacks, and it is more 
difficult for the attackers to break through the 
multi-layer security barrier. In addition, based on 
our proposed architecture, further actions such as 
tracing or locating the source of the attacks can 

also be easier, since the cooperation among the 
end, edge, and cloud can highlight the traces of 
the network behavior.

Besides the enhanced 5G HetNet security, our 
proposed architecture is expected to bring a vari-
ety of additional benefi ts, which are summarized 
below.

Practical Feasibility: The architecture facilitates 
cooperation among multiple layers of a 5G Het-
Net without demanding any major changes in 
current security systems and networks.

Compatibility: The architecture can be eas-
ily applied in different security systems beyond 
attack detection, such as intrusion prevention sys-
tems and vulnerability scanning systems.

Extensibility: The architecture can flexibly 
adapt to diff erent scales of the target system, and 
support increasing or decreasing the number of 
attack detecting nodes of the multiple layers in 
real time as needed.

Model trAInIng In eAch lAYer
In this section, we present the detailed schemes 
of the local training process at the end nodes and 
the edge nodes, respectively. The behavior of the 
cloud, which can help the edge nodes to train 
more powerful models for attack detection, is 
demonstrated in the model training cooperation 
later.

Model trAInIng In the end
As a value-based reinforcement learning algorithm 
combined with deep learning, deep Q-network 
(DQN) can train agents to obtain the maximum 
reward in a dynamic environment. Consequently, 
models trained with DQN can adapt to changing 
network environments. In addition, DQN has the 
techniques of experience replay and interaction 
between current network and target network, and 
can thus prevent the end nodes from the sam-
ple correlation problem or the training instabili-
ty problem during model training. We therefore 
adopt DQN to train the attack detecting models 
in the end nodes, as shown in Fig. 2. A 4-tuple 
(s, a, r, s’) is used to store experiences, where s is 
the current state in the fi nite state space, a is the 
selected action in the fi nite action space, r is the 
returned reward from the environment after tak-
ing current action a, and s’ is the next state. Two 

FIGURE 2. Model training in each layer.
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action-value networks, that is, the current network 
Q and the target network Q’, are used to improve 
the training stability. After sampling transitions (si, 
ai, ri, si+1) in the replay buffer, the current network 
Q can be updated by the gradient descent of the 
loss function

ri + γ ⋅max ′a ′Q (si+1, ′a ; ′θ )−Q(si , ai;θ)( )2 ,
where γ is a discount factor of the future reward. 
The current network parameter Q will then be 
replicated to the target network Q’ periodically.

The features of the transmitted packets in the 
local access network can indicate the state s of 
the end node. In the training period, with the 
finite training dataset, the state space S = {s} is 
a finite set. The aim of the end node is to detect 
risks and protect the security of the local access 
network. Specifically, it will raise the alarm if any 
risk is detected in the local access network. Thus, 
the action space A of the end node can be denot-
ed as A = {1, 0}, where 1 indicates that the end 
node detects a risk, and 0 indicates that it detects 
no risk.

According to the states and actions of the 
end node, the environment will return different 
rewards r. The reward space R = {r} contains four 
cases:
•	 The local access network is secure, and the 

end node takes the correct action 0; the 
reward in this situation is +1.

•	 The local access network is at risk, but the 
end node takes the wrong action 0; the 
reward is –100.

•	 The local access network is secure, but the 
end node takes the wrong action 1; the 
reward is –1.

•	 The local access network is at risk, and the 
end node takes the correct action 1; the 
reward is +100.

Therefore, the reward space R of the end node is 
+1, –100, –1, +100.

After training, the end node executes attack 
detection in real time and reports attacking 
information to the edge node. Furthermore, to 
improve the accuracy of the models and to accel-
erate the training process, the end node will share 
the encrypted model parameters to the edge 
node to conduct federated learning. The detailed 
process is described below.

Model Training in the Edge
Deployed at the intersection of the local access 
network and the 5G HetNet backbone, the edge 
node should conduct not only its own model 
training, but also the preparatory work for the 
subsequent cooperation in training more power-
ful models for attack detection. Specifically, in our 
proposed architecture, the edge node participates 
in the model training process for the end nodes, 
trains its local deep learning model for attack 
detection, and also cooperates with the cloud to 
improve the performance of its local model. The 
process is described in more detail below.

First, the edge node can improve the detection 
accuracy and can accelerate the training speed 
of the end nodes in its local access network. The 
edge node collects the model parameters from 
the end nodes in its coverage. Based on federat-
ed learning, it can aggregate the model param-
eters, and then return the aggregated result to 

the end nodes. The parameters can be encrypted 
for secure transmission. The details are described 
later.

Second, the edge node executes the local 
attack detection function to protect the securi-
ty of the local access network while connecting 
to the backbone network. The edge node trains 
the model for attack detection based on deep 
learning. For each training data xk, it has an orig-
inal label yk

lab, which denotes whether this kind 
of transmitted packet is normal or malicious. 
Suppose the output of the model is yk

out and the 
error associated with sample xk in the model is Ek 
= |yk

out – yk
lab|. Then we can update the model 

using the gradient descent method by minimiz-
ing the average cumulative error E = SmEk/m(0 
≤ k ≤ m), where m is the number of training data 
blocks. After training, the edge node can execute 
local attack detection. If attacks are detected, the 
edge node will take emergency measurements, 
inform other nodes, and store the attacking infor-
mation in its local database. The edge node has 
two types of training samples in its local database 
according to the source of these samples, namely 
the security events from the end and the securi-
ty samples collected by itself. These samples are 
stored in the local security database after essential 
processing by its neural network.

Finally, in order to improve the performance 
of the local model, the edge node can share local 
model parameters with the cloud and obtain a 
more accurate model after the periodic coopera-
tion. As shown in Fig. 2, before sharing the model 
parameters, the edge node also sends a 6-tuple 
<type, location, scale, security level, density, topol-
ogy> of the local access network to the cloud so 
as to identify its own network environment. The  
cloud will then aggregate the model parameters 
from the edge nodes with matched 6-tuple, as 
demonstrated below.

Model Training Cooperation among the  
End, Edge, and Cloud

In this section, we demonstrate the detailed coop-
erative model training schemes, including the fed-
erated-learning-based cooperation between the 
end and the edge, and that between the edge 
and the cloud. As Fig. 3 shows, to improve the 
ability of detecting various attacks aimed at the 
cloud, the edge, or the end of the 5G HetNet, 
the attack detecting nodes in the end and the 
edge upload their local parameters, download the 
aggregated parameters, and integrate them into 
their local models during cooperative model train-
ing. The detailed description of the cooperation 
procedure is as follows.

Model Training Cooperation  
between the End and the Edge

Based on federated learning, model training 
cooperation between the end and the edge can 
improve the attack detection accuracy of the 
trained model when each end node has limit-
ed training data, and can accelerate the training 
speed when the end nodes have limited comput-
ing resource.

Figure 3 shows the parameter aggregation pro-
cess of the nodes in the edge for attack detection. 
The edge node collects the model parameters of 
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the end nodes in its coverage, and returns the 
aggregated results back to these end nodes. Then 
the end nodes can update their detection models 
with the aggregated parameters to obtain better 
performance. The detailed aggregation procedure 
is described below.

The number of end nodes for attack detec-
tion in the coverage of the edge node is n, and 
 i denotes the parameter of the reinforcement 
learning model in the end node i. The weight 
of i is determined by the historical accuracy of 
the model in the end node i. In our proposed 
scheme, the edge node calculates both the 
weighted average and the normal average of the 
parameters from the end nodes in its coverage. 
Then two kinds of absolute values are calculat-
ed: the absolute value of the diff erence between 
the parameter  i(i = 1, …, n) and the weighted 
average, and the absolute value of the diff erence 
between the normal average and the weighted 
average. If the former is no larger than the lat-
ter, parameter i will be reserved for parameter 
aggregation. Otherwise, this parameter will be 
discarded. Afterward, the edge node calculates 
the new average of the reserved parameters as 
the aggregated result agg, and sends it back to 
the end nodes.

Each end node integrates agg into its own 
trained model for attack detection. To keep the 
local model stable, the end node uses a propor-
tion  to adjust the aggregation result agg in the 
integration. The updated model of the end node 
i has new parameter ’i =  · agg + (1 – ) ·  i. 
This model training cooperation can benefit the 
end nodes with higher detection accuracy and 
training speed without the need for full training 
data or redundant computing resources at these 
end nodes.

Model trAInIng cooperAtIon 
between the edge And the cloud

Lying at the intersection of the local access net-
work and the 5G backbone network, the edge 
node will face the security challenges from both 
the local access network and 5G HetNet. Conse-
quently, an edge node needs not only the security 
knowledge of its own access network, but also 
that in other parts of the 5G HetNet. However, 
considering the heterogeneous and wide range 
of the 5G HetNet, the attacks in diff erent access 
networks may be quite diff erent from each other. 
For example, the attack types and characteristics 
in a vehicular network and an industrial network 
are fundamentally different. Simply aggregating 
the trained parameters of all the edge nodes in 
the 5G HetNet together cannot lead to enhanced 
attack detection.

Consequently, the cloud uses a parameter 
matching module to select the parameters of the 
edge nodes from a similar network environment, 
as shown in Fig. 3. When an edge node j submits 
its trained model parameters for attack detection 
to the cloud, the cloud will get the network infor-
mation of this edge node, in the form of the afore-
mentioned 6-tuple, and store it to an edge node 
information (ENI) database. Then, with a match-
ing scheme, the cloud compares the network 
information of this edge node j with the other 
ones in the ENI database to find matching edge 
nodes deployed in a similar network environment. 
Specifically, the cloud calculates the Euclidean 
distances between the 6-tuples of the edge node 
j and the other edge nodes in the ENI database. 
If the Euclidean distance between the 6-tuples of 
the edge node j and another edge node k is less 
than a threshold , these two edge nodes are in 

FIGURE 3. Model training cooperation, inner end-edge-cloud.
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a similar network environment and can match 
up with each other, and vice versa. Then the 
cloud forms an edge node set Sj as the matching 
result for the edge node j, which includes all the 
matched edge nodes and the node j itself.

The parameters of the edge nodes in the set 
Sj is sent to the parameter aggregating module to 
generate the aggregated result for edge node j. 
The parameter aggregating process is conducted 
separately for each edge node. For edge node j, 
the parameter aggregating module fi rst conducts 
parameter fi ltering on the parameters in Sj. Then 
the reserved parameters are averaged to obtain 
the aggregated parameter for edge node j. Finally, 
this aggregated parameter is separately sent to 
edge node j for subsequent parameter integra-
tion.

Thus, based on federated learning, the cloud 
enhances the edge node’s model with higher 
detecting accuracy on different attack types by 
aggregating the parameters of other matched 
edge nodes with similar network environments. 
This process can be conducted periodically to 
enhance the cooperation eff ect.

IllustrAtIVe results
In this section, we illustrate the performance of 
our proposed architecture and schemes through 
extensive simulations. Based on the deep learning 
library called PyTorch, developed by Facebook 
Artifi cial Intelligence Research (FAIR), the simula-
tions employ DQN for training the end nodes and 
the edge nodes. We use the dataset CICIDS2017 
[15] with a total size of about 50 GB for model 
training and testing, which includes both normal 
packets and various attacking packets such as 
DoS, distributed DoS, and port scanning.

Figure 4 shows the performance of our pro-
posed cooperative scheme based on federated 
learning between the end and the edge when 
the end nodes are trained for attack detection 
in the local access network. Each node has par-
tial training data, containing both normal pack-
ets and attacking packets for DoS, distributed 
DoS, port scanning, and so on. We compared 
the performance of our proposed scheme with 
three different schemes: non-cooperative end 
nodes, traditional distributed machine learning, 
and traditional federated learning. All curves 
can converge to a stable value when the iter-
ation number increases. The reward with our 
proposed cooperative scheme converges to 17, 
higher than the corresponding scenario without 
cooperation, which converges to 14. The reward 
of our proposed cooperation is larger than that 
without cooperation by about 21.43 percent. 
At the same time, the convergence speeds are 
diff erent for the six curves. The scenario with 10 
end nodes and the cooperative scheme shows 
the fastest training speed, converging after about 
50,000 iterations. On the contrary, the training 
speed of the non-cooperative scenario is the 
slowest, converging after about 170,000 itera-
tions. The training speed is improved by up to 
about 70 percent in our proposed cooperative 
scheme. Moreover, compared to traditional dis-
tributed machine learning and traditional federat-
ed learning, our proposed scheme outperforms 
them by up to 25 percent and 45 percent, 
respectively, in training speed.

Figure 5 demonstrates the performance of our 
proposed cooperative scheme based on feder-
ated learning between the edge and the cloud 
when the edge nodes are trained for attack detec-
tion in the global environment of a 5G HetNet. A 
cooperation period equal to 0 means that there is 
no cooperation between the edge and the cloud. 
When the cooperation period is 1, the edge and 
the cloud have cooperated in model training for 
one round. Similarly, when the cooperation peri-
od is 2, they have cooperated for two rounds, 
and so on. As the epoch number increases, the 
performance of our proposed scheme is better 
than the non-cooperative, traditional distributed 
machine learning and conventional federated 
learning schemes. When the cooperation period 
is larger, the edge has a lower error rate in attack 
detection. After 1000 training epochs, compared 

FIGURE 4. The average reward of the end nodes when the iteration number 
increases.
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to the non-cooperative case, the error rate in the 
cooperative case with cooperation period of 4 
is reduced by 23 percent. At the same time, our 
proposed cooperative scheme outperforms tradi-
tional distributed machine learning and traditional 
federated learning by up to 16 percent and 19 
percent, respectively, in terms of the detection 
error rate.

Consequently, the numerical results verify that 
our proposed architecture and schemes can ben-
efit the end with higher attack detecting accuracy 
and training speed without needing full training 
data or redundant computing resources, and can 
improve the attack detection accuracy of the 
trained models in the edge simultaneously.

Conclusion
In this article, we propose a federated learn-
ing empowered end-edge-cloud cooperation 
framework for 5G HetNet security. The train-
ing schemes of the local attack detection mod-
els were designed for the end nodes and edge 
nodes, respectively. Based on federated learning, 
the detailed cooperative model training schemes 
are presented among the end, the edge, and the 
cloud. The cooperative schemes can make the 
nodes in distributed and heterogeneous networks 
cooperate efficiently and flexibly, and thus realize 
their full potential in detecting attacks. Extensive 
simulations corroborate the gain that our pro-
posed architecture and scheme yield, showing 
considerable improvement in terms of both attack 
detection accuracy and training speed. Possible 
directions for future work include assessing and 
optimizing the cooperation efficiency among the 
end, the edge, and the cloud, and extending the 
schemes for detecting machine-learning-based 
intelligent attacks.
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