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Holistic medical multimedia systems covering end-to-end functionality from data collection to aided diagnosis
are highly needed, but rare. In many hospitals, the potential value of multimedia data collected through
routine examinations is not recognized. Moreover, the availability of the data is limited, as the health care
personnel may not have direct access to stored data. However, medical specialists interact with multimedia
content daily through their everyday work and have an increasing interest in finding ways to use it to
facilitate their work processes. In this article, we present a novel, holistic multimedia system aiming to
tackle automatic analysis of video from gastrointestinal (GI) endoscopy. The proposed system comprises
the whole pipeline, including data collection, processing, analysis, and visualization. It combines filters
using machine learning, image recognition, and extraction of global and local image features. The novelty is
primarily in this holistic approach and its real-time performance, where we automate a complete algorithmic
GI screening process. We built the system in a modular way to make it easily extendable to analyze various
abnormalities, and we made it efficient in order to run in real time. The conducted experimental evaluation
proves that the detection and localization accuracy are comparable or even better than existing systems, but
it is by far leading in terms of real-time performance and efficient resource consumption.
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1. INTRODUCTION

Devices such as sensors and cameras have become much smaller in the last years.
Literally, some of the devices, like cameras, have been moved inside the human body.
Thus, there has for some time been a move toward an interdisciplinary research area
that combines the medical and multimedia research fields [10, 22, 58]. In particular,
for reasons like disease severity, cost, personnel time consumption, and examination
scalability, there is a need to develop a real-time and scalable abnormality detection
system for videos from gastrointestinal (GI) endoscopy examinations. In this respect,
one should target an analysis system for endoscopies that can be used for both a live
computer-aided diagnosis system and a scalable detection system for a novel in-line
screening system using wireless video capsule endoscopes (VCEs).

The GI tract can potentially be affected by a wide range of diseases. For example,
three of the six most common cancer types are located in the GI tract, with about
2.8 million new luminal GI cancers (esophagus, stomach, colorectal) yearly and a mor-
tality of about 65% [64]. These diseases, as well as benign findings or man-made (iatro-
genic) lesions are frequently visualized with endoscopes. Gastric- and colorectal cancer
are the most common cancers and lethal when detected in late stages. Consequently,
early detection is crucial. There are several ways of detecting pathology in the GI tract,
and regular systematic screening of the population cohort (everyone above 50 years)
is the most important tool for early detection and even cancer prevention. However,
current methods have limitations regarding sensitivity, specificity, access to qualified
medical staff and overall cost.

To aid and scale endoscopic examinations, we have developed EIR, named after a
Goddess with medical skills in Scandinavian mythology. EIR is an end-to-end efficient
and scalable information retrieval system for medical data like videos and images, sen-
sor data, and patient records, i.e., EIR combines a content-based similarity search with
statistical classifiers from the training data. The system supports endoscopists in the
detection and interpretation of diseases in the GI tract but can basically be expanded to
any other use-case. The main objective is to automatically detect abnormalities in the
whole GI tract. Therefore, the aim is to develop both (i) a live system assisting the visual
detection of, for example, polyps during colonoscopies and (ii) a future fully automated
first line screening for GI diseases using VCEs. Both aims pose strict requirements for
the accuracy of the detection in order to avoid false-negative findings (missing a disease)
as well as low resource consumption. The live assisted system also introduces a real-
time processing requirement. In this article, following some of ACM multimedia (MM)
brave new ideas [44], we extend our initial work on EIR [45] to include a more detailed
description of our improved sub-systems. Therefore, the main contributions are pre-
senting the copious improvements of the different sub-systems, an in-depth evaluation
of global features’ detection accuracy, and a new extensive performance evaluation an-
alyzing system execution time and memory consumption. Furthermore, we provide an
evaluation of the effect of the amount of available training data and an accuracy perfor-
mance comparison with other systems - both at a grand challenge for endoscopic video
analysis and against systems found in literature. An important design decision has
been to build on state-of-the-art sub-component solutions in our quest to find an opti-
mal complete end-to-end system meeting both accuracy and performance requirements.
Thus, our focus has not been on improving sub-components in isolation, but rather pro-
viding an integrated system that more or less can be put to good use in the next phase.

Although our system is not limited to one single disease, detecting abnormalities and
diseases in the GI tract is very different from detecting objects like, for example, cars,
people, or buildings, which have been the focus for most existing research. Our initial
experiments target a scenario where we detect colorectal polyps, a potential precursor
for colorectal cancer (CRC). Statistics show that the lifetime risk of getting CRC, the
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Fig. 1. An inconclusive list of abnormalities that can be found using colonoscopy.

second most common cancer for both genders, is 6% [15], and a previous trial has shown
that CRC may be prevented by polyp removal [47]. Obviously, both high precision and
recall are of crucial importance, but so is the often ignored system performance in
order to provide live feedback and support large-scale, population-wide screening. In
fact, no such system exists today despite the potential impact. The most recent and most
complete related work is the polyp detection system Polyp-Alert [62], which can provide
near real-time feedback during colonoscopies. However, it is limited to polyp detection,
and it is not fast enough in the case of live examinations. To detect mucosal lesions in the
colon, we built a system combining filters using machine learning, image recognition,
and extraction and comparison of global and local image features. Furthermore, it is
easy to add new filters or other types of data, for example, patient records or sensor
data, to increase accuracy or enable detection of other pathologies. As a first step, we
evaluate our prototype by training classifiers that are based on the different image
recognition approaches. It is important to point out that these classifiers can also
process other input, for example, sensor data. One example of experiments we are
performing is for longitudinal GI of the patient being screened, one where previous
abnormality data is pulled from the patient’s journal and aligned algorithmically with
current abnormalities. The goal of this is the ability to visualize and capture the
development of individual abnormalities over time.

We also test the generated classifiers with different data and thereby evaluate the dif-
ferent approaches for feasibility of colonic polyp recognition and localization. The initial
results from our experimental evaluation show that (i) the detection and localization
accuracy can reach the same performance or outperform other current state-of-the-art
methods, (ii) the system performance reaches real time in terms of video processing up
to high-definition resolutions, and finally, (iii) that our system is using an acceptable
amount of resources regarding memory consumption and CPU. This latter property
makes our system potentially scalable with more data and different diseases to detect
in parallel at runtime. This is an important requirement if, as we plan next, to put it
to real use in a more clinical context.

The rest of the article is organized as follows: In Section 2, we briefly introduce
our medical case study. This is followed by a presentation of the complete system
in Section 3. Subsequently, we present a detailed evaluation of the whole system in
Section 4, and in Section 5, we discuss two cases where our system will be used in
two medical examinations. We present related work in the field and compare it to the
presented system in Section 6. Finally, we draw conclusions in Section 7.

2. GASTROINTESTINAL ENDOSCOPY

The complex GI system can be affected by various diseases; CRC is one of the major
health issues world wide. Some examples of these diseases and their complexity can
be seen in Figure 1. If CRC is detected at an early stage, the prognosis is substantially
improved, from a 90% 5-year survival probability in the early stage 1 to only 5–10%
5-year survival probability in the latest stage 4 [5]. Several studies have shown that
large population-based screening programs improve the prognosis and even reduce
incidences of CRC [19], and the European Union guidelines recommend screening for
CRC for all persons older than 50 years [56].
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GI endoscopies are common medical examinations where the lumen and the mucosa
of the entire GI tract are visualized to diagnose diseases [34]. The endoscopic system
is made of an endoscope, a flexible tube with a charge couple device (CCD) chip and
two bundles of optical fibers at the tip. The endoscope is connected to a video processor
and a light source, and the video signals are transferred to a screen for the doctor
to analyze. The common gold standard GI endoscopic examinations are gastroscopy
and colonoscopy. However, such endoscopies are demanding and invasive procedures,
and can be of great discomfort for patients. They are performed by medical experts
(endoscopists), have to be performed in real time, and do not scale well to larger
populations due to labor-intensive expert involvement. Additionally, the procedure is
expensive. In the US, for example, colonoscopy is the most expensive cancer screening
process with annual costs of 10 billion US dollars (USD 1,100/person) [55], with a
time consumption of about 1 medical-doctor-hour and 2 nurse-hours, per examination.
Furthermore, colonoscopy is not the ideal screening test; many polyps are hard to detect
(Figure 1(f)), and in average, 20% of polyps are missed or incompletely removed, i.e.,
the risk of getting CRC later on largely depends on the endoscopist’s ability to detect
polyps [23]. We therefore aim for a system that detects mucosal pathologies in videos
of the GI tract where the goal is to assist endoscopists during live examinations.

Once a polyp is detected, the morphology needs to be assessed to determine whether
or not the polyp has a risk of malignant transformation. There exist mainly three clas-
sification systems for polyp assessment, two for characterization of the surface and
one for the shape. The Kudo and the Nice-classification are both used to characterize
the surface structure of the polyp. The Kudo-classification [27] is based upon chro-
moscopy requiring supplementary staining of the mucosa with a colorant, while the
Nice-classification [38] is based on electronic color filter on the scope. The Paris clas-
sification is used to describe the shape of the polyp [21]. Despite these classifications,
endoscopists assess polyps quite differently, and a standard computer algorithm for
interpretation may therefore reduce the differences in the assessment [12].

Moreover, alternatives to traditional endoscopic examinations have recently emerged
with the development of non-invasive VCEs. A pill-sized camera (available from ven-
dors such as Given and Olympus) is swallowed and next records a video of the entire
GI tract. The challenge in this context, at least if the examinations should be scaled
to everyone above 50, is that endoscopists still need to analyze the videos. This cre-
ates an impractical scaling problem due to a limited number of endoscopists, which is
one important motivation for developing our EIR system. Thus, in the VCE context,
EIR is built for first-order, large-scale screening to determine whether a traditional
endoscopic examination is needed or not, i.e., limiting and reducing the traditional
endoscopy examinations to patients with positive findings from the VCE examination.

Consequently, we aim for a multimedia analysis system that can be used both as a live
computer aided diagnostic system and as an automatic detection system for screening
systems using VCEs. As a first step, we target detection of colorectal polyps (see, for
example, Figure 1(a)). The reason for starting with this scenario is that most CRCs
arise from benign, adenomatous polyps containing dysplastic cells, and detection and
removal of such polyps prevents the development of cancer. Nevertheless, our system
will be extended to support detection of multiple abnormalities and diseases of the GI
tract by training the classifiers using different datasets.

3. EIR ARCHITECTURE

Based on the two target use-cases, the main objectives of the EIR system are (i) easy to
use, (ii) easy to extend to different diseases, (iii) real-time handling of multimedia con-
tent, (iv) being able to be used as a live system, and (v) high classification performance
with minimal false-negative classification results. It can be split into three main parts:
the annotation sub-system, the detection and automatic analysis sub-system, and the
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visualization and computer-aided diagnosis sub-system. All three parts are important
to achieve a holistic system that can support doctors in disease detection and diagnosis
in the GI tract.

3.1. Annotation Sub-system

The main purpose of the annotation sub-system is to collect training data for the
detection and automatic analysis sub-system. This type of data can only be collected
with the help of medical experts. To make the collection process easier for the doctors
and as efficient as possible, we combine manual annotations with automatic methods. It
is well known that training data is an important key factor to create a good classification
system. Nevertheless, in the medical field, the number of available experts and the
multimedia data are two resources that are quite limited. This is primarily because of
a high every-day workload for doctors, but also due to legal issues. In many countries,
patient consent has to be collected before images or videos can be used, making it a very
cumbersome task. Moreover, the annotation of videos itself is very time-consuming,
and the quality of annotations depends on the experience and concentration of the
doctors [18]. For example, in a VCE procedure, depending on the time the capsule needs
through the GI tract, there are, on average, about 216,000 images per examination,
and an endoscopist frequently needs 60 minutes and even up to 2 hours to view and
analyze all the video data [29]. Therefore, besides getting data for the EIR system to
enable automatic screening, the annotation sub-system also makes it possible to use the
annotated videos in a medical video archive for procedure documentation or teaching
purposes. The current version of the annotation part consists of the semi-supervised
annotation tool presented in the work of Albisser et al. [2] and the new cluster-based
annotation tool.

Semi-supervised annotation tool. Using the semi-supervised tool [2], the doctors
only have to provide annotations in a single frame of the video or image to reduce the
time they need to spend on the whole process. The specialist’s knowledge is ideally
only required for the first very basic identification of abnormalities and to tag them
accordingly. This manual step is done by selecting any regions of interest in a video
or image sequence. The automatic step uses this information to track the regions of
interest on previous and subsequent frames automatically. There is still a fair amount
of manual work involved. However, using a suitable tracking algorithm substantially
reduces the time needed to create a complete dataset. Moreover, a lot of annotation
work can be performed without the specialist being present all the time. The output
generated by the tool is a list of frames for a certain disease including rectangles for
every previously marked region within the frame. This data is especially helpful for
training and development of localization and tracking algorithms.

Cluster-based annotation tool. To extended the annotation tool, we implemented
an extension that allows the doctors to utilize global features-based clustering to tag
a large number of images in a short time. The clusters are created based on visual
global image features that are also used in our classification sub-system, and the doc-
tors can subsequently drag and drop images between different automatically created
clusters and also annotate complete clusters. This application has two main advan-
tages. First, it allows medical doctors to investigate and analyze vast collections of
frames from endoscopic procedures by providing a configurable focus and context view
based on frame similarity. Second, it grants for utilizing the focus and context view for
annotation and tagging of the dataset, making it more accessible for complimentary
information systems. The clustering annotation tool combines content-based similarity,
unsupervised clustering (x-means), supervised clustering (k-means), and focus/context
views. Figure 2 shows the interface of the clustering annotation tool. On the upper
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Fig. 2. Feature-based clustering annotation.

left side, users can choose the folder containing the image collection. The clustering
algorithm can be selected in the setting below. For the clustering algorithm, several
different image features can be chosen. If more than one feature is selected, they are
combined using early fusion. The bottom options allow the user to specify the cluster-
ing parameters. These settings are set to default values recommended by literature.
A click on the apply button creates the clusters and presents them on the right site.
The cluster circles are represented using the image that is closest to the cluster center,
i.e., the cluster medoid followed by the next closest and so on. The user can interact
with the visual presentation by zooming and turning it into different angles. Further-
more, the user can double-click on clusters, which will open the folder containing all
images in the selected cluster. The images can be dragged and dropped between differ-
ent cluster circles, and with a right-click on the clusters, the user can see information
like the cluster center and the purity of the cluster based on the distances. Finally, the
medical experts can tag the clusters, which adds the tag to the name of the images in
the cluster. The output of the clustering annotation tool is mainly used to identify and
tag frames or images that contain abnormalities for the classification sub-system. Its
output can also be used in the previous presented annotation tool to mark the exact
position of abnormalities in the images.

3.2. Detection and Automatic Analysis Sub-system

Detection sub-system. The detection sub-system analyzes multimedia data, such as
videos, images, and sensor measurements, to identify if there is anything abnormal
to be found in the colon. All frames processed by this sub-system can be separated
into two disjoint sets (positive and negative) which can also be seen as the model
for the disease and abnormality detector. These two sets contain example images for
abnormalities and images without any abnormality. The detection system is built
in a modular way and can easily be extended with new models or sub-models. To
compare and determine the abnormalities in a given video frame (or image), we use
global image features, because they are easy and fast to calculate. We are not (yet)
interested in the exact position for the detection sub-system. In previous work, we
showed that global features indeed can outperform or at least reach the same results
as local features [42]. EIR uses the Lire [32] open source library for content-based
image retrieval. This library provides a comprehensive set of already implemented and
tested algorithms to extract different types of global image features. This allows us to
experiment with a whole set of global image features for detecting or clustering video
frames from colonoscopy or VCE videos. Again, we do not claim novelty associated
with individual algorithms and sub-components. Indeed, we carefully select and build
on state-of-the-art technologies to get the optimal integrated holistic solution.
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The indexing function is an extension of the indexing function used by Lire and
provided by Lucene, modified with a hashing function which performs hashing on the
given features and stores the hash values in the index. Lire uses Lucene inverted
indexes for storing and searching image features data. Indexes are created using a
merge-based data structure (k-way merge). The segments of the indexes are sorted in
memory and then merged. Each newly added document (in our case, image) adds a
new segment and is merged with the existing segments. This leads to average b× log N
indexes that are fast to update and also not too slow to search [17, 26, 48]. Furthermore,
the structure of the index is field- and row-based where each row is defined by its
fields. Example fields are image, binary values for the features or the hash value of the
feature, and so on. The number of fields is variable depending on the number of used
image features or metadata. The features are stored as a byte representation and as
a text field containing hash values from a random projection hashing approach. The
hashing is based on locality sensitive hashing (LSH). We use multiple random hash
functions to hash the values of the features, which results in similar images getting
the same hash values. Similar images are then hashed in the same hash bucket by a
linear projection in random directions of the hash functions in the feature space of the
image. Possible drawbacks of this method are that very ineffective hash codes can be
created and a large number of hash tables is needed to achieve a reasonable search
quality. Nevertheless, these drawbacks are acceptable compared to the increased speed
of the search algorithm [50]. The used hash function h(v) ∈ {0, 1} for a histogram v is
defined as h(v) = sgn(v · r), whereas r is a random vector with evenly distributed
elements ri ∈ [−w,w]. n hash functions, then, are represented as one single hash value
H(v) < 2n combined as a bit string. For indexing m hash values Hj(v), j ∈ [0, m〉 hash
values are generated. The used parameters for the hashing are w = 2, n = 12, and
m = 150, which leads to a good tradeoff between search time and precision based on
an evaluation of 100,000 test images.

The basic algorithm of our detection sub-system is based on an improved version
of a search-based method for image classification presented in Riegler et al. [42]. The
algorithm is basically a simple K-Nearest-Neighbor algorithm (k-NN). Normally, k-
NN is a non-parametric algorithm, which means that the rank of the values are used
rather than the parameters of each object. The classification is based on its k numbers
of nearest neighbors by a majority decision. The differences to our used algorithm
is that it is based on a ranked list of a search result, which is generated in real
time for each query frame or image and that weighted values are used for finding
a decision antithetical to the non-parametric-behavior of the standard k-NN. For the
classification, three parts of a standard ranked search result list are used, i.e., the
belonging class of each image in the list, the number of the occurrences of each class,
and the position of the image in the ranked list as a weight. The algorithm is then
defined as the following:

c = arg max
c∈C

⎧⎨
⎩ClassScore(c) = |c|

∑
Ii∈{Ii |Class(Ii )=c}

1
RankScore(Ii)

⎫⎬
⎭ .

Class c is the class with the highest weighted ClassScore of all classes c ∈ C, and
ClassScore is calculated by summing up the occurrences of each class c and multiplying
it with the summed WeightedRankScore. RankScore per class is calculated by dividing
one by the rank for each search query. The WeightedRankScore is the sum of all
RankScore in the rank list.

We create the indexes of as many example frames as we can get, but it is important
to point out, as the experiments showed, that the detection indeed needs good training
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data. However, the number of needed examples is rather low compared to other meth-
ods, for example, deep learning, which is known for its need for large and well-labeled
datasets. The index also contains information about the presence and type of any dis-
ease in the frame or image. A classifier can then search the index for the frames that
are most similar to a given input frame. Based on the classification of the results, the
detection sub-system then decides which abnormality the input frame belongs to. The
whole detection is realized with two separate tools, an indexer and a classifier. We have
released the indexer and the classifier as a separate project called OpenSea.1

The purpose of the global image feature indexer is to extract visual features from
input videos or images, and store these in the index. These indexes are used as input
data for the search-based classifier. The indexer is created as a separate tool and in a
way so that it is easy to distribute it over different nodes, using, for example, Apache
Storm. The computational nature of the indexing part is similar to batch processing.
Therefore, creating the models for the classifier could be done offline, and it is not
influencing the real-time capability of the system because it is only done once at the
very first time when the training data is inserted into the system. It creates indexes
for all directories passed on from the system. The visual features to calculate and
store in the indexes can be chosen based on the abnormality, because different types
of diseases require different sets of features or combinations. For example, bleeding is
easier to detect using color features, whereas polyps also require shape and texture
information. The indexer processes all the frames in a given directory. It stores the
generated indexes in a sub-directory inside the indexed directory. If multiple directories
are passed for indexing, it creates a separate index for each directory. The classifier
can be used to classify video frames from an input video into as many classes as
the detection sub-systems model consists of. In contrast to other classifiers that are
commonly used, this classifier is not trained in a separate learning step. Instead, the
classifier searches previously generated indexes, which can be seen as the model for
similar visual features. The output is weighted based on the ranked list of the search
results, and based on this, a decision is made. We refer to these previously generated
indexes, which are searched for similar image features, as classifier indexes or indexes
containing training data. The classifier expects at least one classifier index and an
input source. The input source can either be a video, an image, or another previously
generated index. The classifier is parallelized, and it can choose how many CPU cores
to use or if GPUs should be used to improve the performance even more.

Localization sub-system. The detection sub-system cannot determine the location
of the detected irregularity in a frame. This is the task of the localization sub-system
which determines the exact position of the disease or abnormality (Figure 3). The
localization sub-system analyzes video frames already marked to contain abnormali-
ties by the detection sub-system, and these frames are then preprocessed by a sequence
of various image processing procedures, resulting in a set of possible abnormality co-
ordinates within each frame. Currently, the sub-system implements a model for polyp
localization using a hand-crafted object localization method, based on the geometri-
cal shape of polyps. The sub-system is written in C++, and it uses the OpenCV open
source library for routine image contents manipulation and the CUDA framework for
GPU computation support. The localization sub-system consists of two independent
image processing pipelines: an image rectification and an abnormality localization
pipeline. All the processed frames sequentially go through both pipelines. To evalu-
ate the performance, both the image rectification and the polyp localization pipelines

1https://bitbucket.org/mpg_projects/opensea, released under GPLv3 (http://www.gnu.org/licenses/gpl-3.0.en.
html).
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Fig. 3. The localization sub-system marks the possible locations of polyps. The first four show an exact
match (ground truth marked with blue ellipses), but the last two are misses.

were implemented in two versions: a reference C++ code and a GPU-accelerated C++
code, with re-implementation of the most compute-intensive image processing steps as
CUDA-kernels.

The image rectification pipeline uses pixel-level image processing in order to improve
the overall image quality for the processing steps. Detected lesion objects can have
different shapes, textures, colors, and orientations. They can be located anywhere in
the frame and can also be partially hidden and covered by biological substances, for
example, seeds or stool, and lighted by direct light. Moreover, the image itself can
be interleaved, noisy, blurry, and over-/under-exposed, and it can contain borders and
sub-images. The images can also have various resolutions depending on the type of
endoscopy equipment or VCE used. Endoscopic images usually have a lot of flares
and flashes caused by high-power light sources located close to the camera. All these
nuances negatively affect the local feature detection methods and have to be treated
specially to reduce localization precision impact. In our case, we have used several
sequentially applied filters to prepare raw input images for the following analysis by
removing all the noisy artifacts. In particular, the current version of the system removes
image borders, patients’ data fields, imaging device state messages, embedded images,
over- and under-exposed areas, and glare reflections.

The localization pipeline processes the rectified frames, and multiple pipelines for
different abnormalities can run in parallel. The main idea of our localization algorithm
is to use the polyps’ physical shape to find the exact position in the frame. In most cases,
the polyps have the shape of a hill located on relatively flat underlying surface or the
shape of a more or less round rock connected to an underlying surface with a stalk
varying in their thickness. These polyps can be approximated with an elliptical shape
region that differs from the surrounding tissue. The polyp localization pipeline imple-
ments an image processing algorithm that performs, in sequence, the following steps:
non-local means de-noising [6]; 2D Gaussian blur and 2D image gradient vectors ex-
traction; border extraction by gradient vectors simple threshold binarization; removal
of borders’ isolated binary noise; possible location of ellipses focus estimation; ellipses
size estimation by analyzing border pixels distribution; ellipses matching to extracted
border pixels; selection of predefined number of non-overlapping local maximums and
outputting their coordinates as possible polyp locations. For the possible locations of
ellipses, we use the coordinates of local maximums in the insensitivity image, created
by additive drawing of straight lines starting at each border pixel in the direction of
its gradient vector. Ellipse matching is then performed using an ellipse fitting function
[16].

All the constants and thresholds used in the image rectification and polyp localization
algorithms are empirically selected from experimental studies and reflect nuances of
the used data. They can be easily adjusted for different datasets, e.g., from another type
of endoscope. The image rectification algorithm performs well for all medical imaging
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artifacts lying outside the main image area. However, it should be improved to be able
to detect and remove all pixels that belong to embedded images located anywhere in
the frame. This is important for reducing the probability of false positive locations
of findings inside of such embedded image regions. The polyp localization algorithm
performs well for the used dataset and does not require training data for the detection.
An example for the localization output with one possible polyp location is shown in
Figure 3.

3.3. Visualization and Computer-Aided Diagnosis Sub-System

After the automatic detection and analysis of the content, the output has to be pre-
sented in a meaningful way to the medical expert. The visualization has to be reliable,
robust, and easy to understand under stressful situations that can occur during a
live examination. Furthermore, it has to support easy searches and browsing through
large amounts of data. This is especially important for the VCE examinations due
to the large amount of video material collected through such an examination (up to
12 hours). In general, the visualization sub-system has two main purposes. First, it
should help in evaluating the performance of the system and get better insights into
why things work well or not. Second, it can be used as a computer-aided diagnosis
system for medical experts. In this context, we have the TagAndTrack tool [2] that
can be used as a visualization and computer-aided diagnostic system. Furthermore,
we developed a web technology-based visualization that is easy to use and distribute,
and can be used to support medical experts during endoscopies. This tool simply takes
the output of the detection and localization part and creates a web-based visualization,
which is then combined with a video sharing platform where doctors are able to watch,
archive, annotate, and share information. The information collected can later also be
used for reinforcement learning in the detection and automatic analysis sub-systems.

4. SYSTEM EVALUATION

We have tested the system in terms of detection accuracy and system performance, and
we also participated in a polyp detection challenge. All experiments are conducted on
the same Linux machine with a dual 2.40GHz Intel Xeon CPUs (E5-2630), 16 physical
CPU cores (32 with hyper-threading), 32GB of RAM, dual NVIDIA Corporation GM200
GeForce GTX TITAN X GPUs, a 256GB SSD and Ubuntu Linux. Furthermore, we used
the ASU-Mayo Clinic polyp database as training and test data.2 This dataset is the
largest publicly available polyp dataset consisting of 20 videos, converted from WMV to
MPEG-4 for the experiments, with a total number of 18,781 frames with 1,920 × 1,080
pixels resolution [52].

4.1. Detection Accuracy

For all detection and localization accuracy experiments, we used the common standard
metrics precision, recall, and F1 score calculated on a per frame basis. This makes it
more difficult for our algorithm to achieve good results, but it shows that the system
works well. Furthermore, we decided to use leave-one-out cross-validation to evaluate
this part of the system. Leave-one-out cross-validation is well-suited to show gener-
alization potential and robustness of a predictive model. Therefore, the training and
testing datasets are rotated, leaving out a single different non-overlapping video for
testing, and using the remaining videos for training the model [13].

The developed system allows us to use several different global image features for the
classification. The more image features we use, the more computationally expensive the
classification becomes. Further, not all image features are equally important or provide

2http://polyp.grand-challenge.org/site/Polyp/AsuMayo/.
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Table I. Leave-One-Out Cross-Evaluation Combined For All Supported Features

True True False False F1
Feature Pos. Neg. Pos. Neg. Prec. Recall score

JointHist. 3,369 13,826 1,085 511 0.7563 0.8682 0.8084
JpegCoefficientHist. 3,224 13,772 1,139 656 0.7389 0.8309 0.7822
Tamura 3,392 13,861 1,050 488 0.7636 0.8742 0.8151
FuzzyOpponentHist. 3,341 13,552 1,359 539 0.7108 0.8610 0.7787
SimpleColorHist. 2,736 13,563 1,348 1,144 0.6699 0.7051 0.6870
JCD 3,556 13,777 1,134 324 0.7582 0.9164 0.8298
FuzzyColorHist. 2,708 13,243 1,668 1,172 0.6188 0.6979 0.6560
RotationInvariantLlBP 3,479 13,829 1,082 401 0.7627 0.8966 0.8243
FCTH 2,846 13,671 1,240 1,034 0.6965 0.7335 0.7145
LocalBinaryPatterns-AndOpponent 2,412 13,349 1,562 1,468 0.6069 0.6216 0.6142
PHOG 2,879 13,806 1,105 1,001 0.7226 0.7420 0.7321
RankAndOpponent 2,527 13,553 1,358 1,353 0.6504 0.6512 0.6508
ColorLayout 2,702 14,018 893 1,178 0.7515 0.6963 0.7229
CEDD 3,705 13796 1,115 175 0.7686 0.9548 0.8517
Gabor 1,849 10,643 4,268 2,031 0.3022 0.4765 0.3699
OpponentHist. 2,246 14,157 754 1,634 0.7486 0.5788 0.6529
EdgeHist. 3,548 13,737 1,174 332 0.7513 0.9144 0.8249
ScalableColor 3,231 13,684 1,227 649 0.7247 0.8327 0.7750
Late Fusion 3,710 13,894 1,017 170 0.7848 0.9561 0.8620

equally good results for our purpose. As a first step, we therefore need to determine
which image features we want to use for classification. In order to understand which
image features provide the best results, we generated indexes containing all possible
image features for all frames of all video sequences from the test database. We can
use these indexes for several different measurements and also for leave-one-out cross-
validation. Using our detection system, the built-in metrics functionality can provide
information on the performance of different image features for benchmarking. Further,
it provides us with separate information for every single image feature, as well as the
late fusion of all the selected image features. Moreover, literature indicates that late
fusion approaches lead to a better performance than early fusion approaches [30, 49].
Escalante et al. [14], who came to the same conclusion, showed in their paper that late
fusion performs well for multimedia retrieval tasks. They fused multiple heterogeneous
image retrieval techniques developed for annotated collections. To perform late fusion,
they used ranked lists created by search queries in their system to combine features.
Based on the indication that late fusion is better suited for multimedia data, we use
it for feature combination. Therefore, we classify each feature that we use separately,
and combine them afterward using a majority decision weighted by the ranked score
(an image class in a higher position in the ranked list gets a higher weight).

For our first experiment, we ran the detection with all possible image features
selected, leaving out one video at the time, repeating the procedure until each video had
been left out once. This is essentially the procedure for leave-one-out cross-validation.
We then combined the reported values for true positives, true negatives, false positives,
and false negatives for all the runs, and calculated the metrics for the combined values.
The results of this first experiment are presented in Table I. All features used here are
described in detail in the work of Lux [2013]. The single image feature that generally
achieves the best score is Color and Edge Directivity Descriptor (CEDD). Further, the
image features Joint Composite Descriptor (JCD), EdgeHistogram, Rotation Invariant
Local Binary Patterns, Tamura, and Joint Histogram achieve promising results. The
late fusion of all the image features achieves slightly better results. However, it is
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Table II. Top 20 Feature Combinations Using Two Image Features for the Video wp_61,
Sorted by F1 Score

True True False False F1
Feature combinations Pos. Neg. Pos. Neg. Prec. Recall score

Rot.Inv.LBP/Tamura 162 22 153 0 0.5142 1 0.6792
PHOG/Tamura 161 23 152 1 0.5143 0.9938 0.6778
JpegCoeff.Hist./Tamura 162 21 154 0 0.5126 1 0.6778
Gabor/Tamura 162 20 155 0 0.5110 1 0.6764
FuzzyColorHist./Tamura 162 18 157 0 0.5078 1 0.6735
FuzzyOpp.Hist./FuzzyColorHist. 160 17 158 2 0.5031 0.9876 0.6666
JCD/Opp.Hist. 135 67 108 27 0.5555 0.8333 0.6666
JointHist./JpegCoeff.Hist. 162 12 163 0 0.4984 1 0.6652
ColorLayout /FuzzyColorHist. 162 11 164 0 0.4969 1 0.6639
FuzzyColorHist./JointHist. 162 11 164 0 0.4969 1 0.6639
FuzzyOpp.Hist./JointHist. 162 11 164 0 0.4969 1 0.6639
FuzzyOpp.Hist./SimpleColorHist. 162 11 164 0 0.4969 1 0.6639
JointHist./Rotat.Inv.LBP 162 11 164 0 0.4969 1 0.6639
JointHist./SimpleColorHist. 162 11 164 0 0.4969 1 0.6639
FuzzyOpp.Hist./Gabor 161 13 162 1 0.4984 0.9938 0.6639
JCD/JpegCoeff.Hist. 161 13 162 1 0.4984 0.9938 0.6639
CEDD/FuzzyColorHist. 159 17 158 3 0.5015 0.9814 0.6638
JpegCoeff.Hist./Rot.Inv.LBP 152 31 144 10 0.5135 0.9382 0.6637
JCD/Tamura 162 10 165 0 0.4954 1 0.6625
CEDD/Tamura 162 10 165 0 0.4954 1 0.6625

impractical to do a late fusion of all these image features as the calculation, indexing,
and searching of all image features are computationally expensive. Therefore, we want
to find a small sub-set of two image features, which provides optimal results despite
minimizing the computational effort. Based on the evaluation results of different
combinations of global features (Table II) using one video from the dataset, we decided
that the image features JCD and Tamura seem to be the best combination for our
performance measurements. The reason for this decision is because they have a good
precision and recall, but at the same time, the computation time is low. We conducted
this experiment only on one video to avoid optimizing our system on the used dataset,
which could lead to results that do not really represent the true performance of the
detection sub-system.

In these experiments, we also experienced that the only key parameter that influ-
ences the results in our classifier is the length of the ranked list. This has been set to
77 images based on the experiments because this is the value that gives a good tradeoff
between precision and recall. A lower number of images in the ranked list leads to a
higher precision, but a lower recall and vice versa.

To assess the actual performance of the classifier using these two image features, we
again conducted a leave-one-out cross-validation with all available video sequences.
The results are presented in Table III. With these settings, we achieve an average
precision of 0.889, an average recall of 0.964, and an average F1 score value of 0.916.
The problem with this average calculation is that different video sequences contribute
values based on different numbers of video frames. If we weight the values contributed
by every single video sequence with the number of frames in the sequence, we achieve
an average precision of 0.9388, an average recall of 0.9850, and an average F1 score
value of 0.9613. In other words, the results show that it is possible to detect polyps with
a precision of almost 94%, and we detect almost 99% of all polyp containing frames.
The results of these first experiments look very promising. Nevertheless, practical
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Table III. Leave-One-Out Cross-Validation Using JCD and Tamura Features

True True False False F1
Video Pos. Neg. Pos. Neg. Prec. Recall score

np_5 1 680 0 0 1 1 1
np_6 1 836 0 0 1 1 1
np_7 1 767 0 0 1 1 1
np_8 1 710 0 0 1 1 1
np_9 1 1,841 0 0 1 1 1
np_10 1 1,923 0 0 1 1 1
np_11 1 1,548 0 0 1 1 1
np_12 1 1,738 0 0 1 1 1
np_13 1 1,800 0 0 1 1 1
np_14 1 1,637 0 0 1 1 1
wp_2 140 9 20 70 0.875 0.6666 0.7567
wp_4 908 1 0 0 1 1 1
wp_24 310 68 127 12 0.7093 0.9627 0.8168
wp_49 421 12 62 4 0.8716 0.9905 0.9273
wp_52 688 101 284 31 0.7078 0.9568 0.8137
wp_61 162 10 165 0 0.4954 1 0.6625
wp_66 223 12 165 16 0.5747 0.9330 0.7113
wp_68 172 51 20 14 0.8958 0.9247 0.9100
wp_69 265 185 138 26 0.6575 0.9106 0.7636
wp_70 379 1 0 29 1 0.9289 0.9631

Average: 0.8890 0.9640 0.9160
Weighted average: 0.9388 0.9850 0.9613

suitability during live examinations comes with some difficulties. For example, during
a live examination a lot of noise can occur, for example, instruments used, stool, and
different lighting conditions. This is something that we want to explore in future work.
To be able to do that, we collected a larger dataset that contains several different full-
length procedures. We are currently working on the annotation of these videos. As soon
as this is finished, more detailed and closer to real-world scenarios experiments will be
conducted. We could also observe some variation in the precision and recall for some
of the videos. A detailed investigation reveals that the detection part seems to be very
accurate in detecting if a polyp is not there, but it is more difficult to find the correct
frames that contain polyps based on the ground truth. Further investigations revealed
that this is influenced by two aspects. First, because we use frame-based precision
and recall, it is harder for the detection sub-system to achieve a high precision and
recall. Second, because of the nature of the videos, the frames are often blurry (because
of the motion blur), and it is hard to determine, even for a human observer, if the
frame contains a polyp or not. A possible solution to solve this problem is to use time
information of the videos to improve the classification performance, for example, by
using the classification output of previous or next frames in the video to create an even
more accurate classification output.

4.2. Localization Accuracy

We also used the common standard metrics precision, recall, and F1 score calculated
on a per-frame basis for the localization accuracy experiments. It is important to point
out that our localization algorithm does not require training like traditional learning-
based algorithms. Therefore, all video segments were included in the experiments. As
described previously, the localization sub-system is designed to process only frames that
are marked to contain polyps by the detection sub-system. To evaluate the performance
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Table IV. Performance of the Localization (Four Possible Polyp
Locations Per Frame)

True False False F1
Data set Pos. Pos. Neg. Prec. Recall score

CVC-ClinicDB 397 215 249 0.6487 0.6146 0.6312
ASUMayo 2 1 244 244 0.0041 0.0041 0.0041
ASUMayo 4 443 467 467 0.4868 0.4868 0.4868
ASUMayo 24 74 300 300 0.1979 0.1979 0.1979
ASUMayo 49 36 355 355 0.0921 0.0921 0.0921
ASUMayo 52 194 490 490 0.2836 0.2836 0.2836
ASUMayo 61 129 80 80 0.6172 0.6172 0.6172
ASUMayo 66 92 142 142 0.3932 0.3932 0.3932
ASUMayo 68 63 126 126 0.3333 0.3333 0.3333
ASUMayo 69 0 235 235 0.0000 0.0000 0.0000
ASUMayo 70 4 381 381 0.0104 0.0104 0.0104

Average: 0.3207 0.3183 0.3195

of the localization system itself, we created a perfect-detection-dataset from the ASU-
Mayo Clinic polyp database and the ground truth for polyp locations provided by it.
The ground truth data is encoded as a set of images with the entire polyp area marked
as a white pixel area on black background, one per original frame. A small amount
of frames also contain more than one isolated polyp, which are counted as separate
polyps. During the polyp location validation, we count each computed polyp location
as true positive if the ground truth image has a pixel at the corresponding coordinates
that is part of a polyp. Table IV presents the performance of the localization sub-system
evaluation, with the output of four possible polyp locations per frame. The sub-system
has a precision of 0.3207, a recall of 0.3183, and a F1 score of 0.3195. These results
indicate that the localization part works as intended, but not perfectly. One reason
that we identified for the sub-optimal performance of our algorithm is that it produces
four possible disease locations per frame. Selection of multiple possible locations per
frame is reasonable for the current localization sub-system version due to the lack of
a tissue texture identification algorithm. It is not possible to distinguish between hill-
shaped polyps and normal colon mucosa without corresponding textural analysis. Thus,
multiple points finding increases the probability of hitting the polyp by, at least, one
point out of four. For the evaluation, all points were included in the calculations, which
influences the performance metrics negatively due to a high number of false positives.
Regardless of the relatively low overall localization performance, the results of these
first experiments look very promising. Nevertheless, the accuracy of the localization
should be improved to make it suitable for practical use. We are currently working on
an improved version of the algorithm that will include advanced shape and texture
detection techniques together with inter-frame video sequence analysis.

4.3. MICCAI Challenge

To compare our method to other state-of-the-art methods, we participated in the En-
dovis Automatic Polyp Detection in Colonoscopy Grand Challenge3 at the 2015 Interna-
tional Conference on Medical Image Computing and Computer Assisted Intervention
(MICCAI). The challenge was divided into two parts. The first part was the polyp local-
ization, where the question was whether the method could cope with important polyp
appearance variability and, therefore, accurately determine the location of the polyp

3http://polyp.grand-challenge.org/.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 13, No. 3, Article 26, Publication date: May 2017.

http://polyp.grand-challenge.org/


From Annotation to Computer-Aided Diagnosis 26:15

Table V. MICCAI Polyp localization Challenge

True False False F1
Participant Pos. Pos. Neg. Prec. Recall score

UNS-UCLAN 48 481 148 9.07 24.49 18.28
CuMedVis 31 167 165 15.75 15.81 15.77
CVC 33 163 163 16.84 16.84 16.84
Our EIR System 46 723 150 5.98 23.47 14.81
RUS 65 1,558 131 4.00 33.16 13.50
SNU 8 188 188 4.08 4.08 4.08

Table VI. MICCAI Polyp Detection
Latency Challenge

Participant Latency (ms) F1

CuMedVis 6.66 26.40
Our EIR System 21 13.27
SNU 43.33 6.13
CVC 44.60 22.78
Rustad 235 11.47
ASU 417.5 20.84
UNS-UCLAN 0 0

in a frame. The second part was whether the method could detect a polyp in the frame
or not, and how long the delay was from the first appearance of the polyp to when our
system could detect it. In general, we did not expect very good results compared to the
other specialized systems. Other participants used a wide range of different methods to
detect polyps. These methods ranged from hand-crafted features, like contour or shape-
based detection over machine learning approaches to neural networks. We identified
several problem areas during the challenge such as blurry images due to camera
motion, size differences, lighting, and objects that look like polyps, but are not, like
contaminants.

Table V shows the result for the polyp localization part based on the CVC-ClinicDB
dataset containing 612 still images from 29 different sequences. Our system is on the
fourth place out of six. Details about the implementation of the first three methods are
not available, but almost all of them used deep learning. Based on the fact that our
system is not built for only polyp detection, the results are still very satisfactory. It
is also important to point out that the first three participants were organizers of the
challenge and involved in the dataset collection, and so on. Table VI shows the results of
the detection latency part. For the latency, our system could perform second best of all
participants. This is a very good result and a positive confirmation about the real-time
performance compatibility of our system. The approach of UNS-UCLAN is not able
to distinguish between a frame with or without a polyp. All in all, the results of the
challenge are positive for a system that is designed to be extendible and refinable for
different diseases. We showed that we can compete and outperform other state-of-the-
art approaches, which are designed for the specific problem of the challenge, without
applying any adaptations to our system.

4.4. System Performance

A fundamental requirement of EIR is scalability and performance. The idea is to use the
system for mass-screening for lesions in the GI tract, using video sequences recorded
live with colonoscopy or VCEs, as well as a real-time diseases detection system that
can be used during live endoscopy procedures. For the performance evaluation, we
used the configuration of the system with best accuracy. This is rather obvious given
our quest for a system that can be put to real use in clinical settings. Therefore, it is
important to reach real-time performance in terms of processing a video and several
other input signals at the same time and reach a frame rate of not less than 30 frames
per second (FPS), which is the output of current endoscopes. For all the experiments,
we used 20 videos from three different endoscopic devices and different resolutions,
i.e., 1920 × 1080 (6 videos), 856 × 480 (4 videos), and 712 × 480 (10 videos).

4.4.1. Processing. To evaluate our detection sub-system, we first measured the index-
ing that creates the model later used by the classifier. This process does not need
real-time performance and can be seen as batch processing, but it should at least be
scalable for larger datasets.
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Table VII. Indexing Performance of Four Different Datasets
to Show the Scaling

Index Frames Total time in seconds Time per frame in ms
D1 3,871 89.78 23.1
D2 14,909 178.55 11.9
D3 29,818 231.75 7.7
D4 100,000 782.351 7.8

Fig. 4. The detection sub-system performance in terms of FPS depends on the number of CPU cores, the
resolution of the videos, and the detection algorithm implementation.

Extracting two features and indexing them for the entire dataset take, on average,
5.2 milliseconds per frame. There is no big difference between the indexing time of dif-
ferent resolutions. We tested the scaling potential by indexing different datasets. The
first dataset (D1) contains 3,871 frames, the second one (D2) contains 14,909 frames,
the third one (D3) contains 29,818 frames, and the last one (D4) with 100,000 frames.
Table VII shows the overall results. We discovered that a larger dataset leads to a
faster indexing time per frame. We conjecture that this is due to reducing average
per-frame processing overhead caused by GPU initialization and kernels loading into
the GPUs. Furthermore, we did not find a significant increase after more than 30,000
frames in the dataset. The limiting factor is the I/O, since increasing the number of
cores did not increase performance. All in all, our experiments show that the indexer is
scalable in terms of larger datasets, and it should meet all requirements of the system
for future tasks. The performance of the detection is also important, since the system
should provide a result as fast as possible and not slower than 30FPS, making it us-
able for live applications. Again, we used the 20 different videos previously described.
Figure 4(a) shows the detection sub-system performance in terms of FPS for the high-
est video resolution of 1920 × 1080. It depicts performance for all different detection
algorithm implementations (Java, C++, and GPU) and different combinations of uti-
lized hardware resources (from 1 to 32CPU cores and none, 1, or 2GPUs). For the full
HD videos, the required frame rate of 30FPS is reached using 8, 5, and 1CPU cores in
parallel for the Java, the C++, and the GPU implementations. Increasing the number
of used CPU cores also increases the performance for all implementations, and the
system reaches the maximum performance of 330FPS with 2GPUs and 25CPU cores.
A slight decrease of the performance can be observed for a high number of used CPU
cores. This is caused by an increased overhead for context switching and competition
for resource. Figures 4(b) and (c) show the detection sub-system performance in terms
of FPS for the videos with smaller resolution. The maximum performance of 430 (for
856 × 480 resolution) and 453 (for 712 × 480 resolution) FPS is reached using 2GPUs
and 18 and 16CPU cores.

Figure 5(a) depicts the localization sub-system performance in terms of FPS for the
highest quality video with a resolution of 1920 × 1080. Both the localization algorithm
implementations (C++ and GPU) and different combinations of used hardware re-
sources (from 1 to 32CPU cores and none, 1, or 2GPUs) are presented. For these videos,
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Fig. 5. The localization sub-system performance in terms of FPS depends on the number of CPU cores, the
resolution of the videos, and the localization algorithm implementation.

the required frame rate of 30FPS is reached using 8 and 1CPU cores in parallel for the
C++ and the GPU implementation. As expected, increasing the number of used CPU
cores increases the FPS performance for both implementations and peaks at the max-
imum performance of 129FPS with 2GPUs and 15CPU cores. A slight decrease of the
performance for a large number of used CPU cores caused by increasing overhead for
context switching and resources competition happens also for the detection sub-system.
Finally, Figures 5(b) and (c) show results for the videos with the smaller resolution. The
peak performance of 246 (for 856 × 480 resolution) and 283 (for 856 × 480 resolution)
FPS is reached using 2GPUs and 32 and 11CPU cores. The maximum GPU hardware
utilization measured during our experimental studies was around 80% for both, us-
ing 1 or 2GPUs. The reason for the GPUs under-utilization is the implementation of
some video frames processing algorithm steps on the CPU, namely the ellipse-shape
detector, fuzzy logic for feature extractors, and building of frame features joint vector.
This causes a large number of CPU-GPU data transfer and unavoidable GPU idling,
required for the synchronization in multi-thread environments. Further implementa-
tions of other processing steps on heterogeneous architectures, such as GPUs, will lead
to an increased performance and reduced utilization of the CPU resources. The outcome
of these experiments clearly shows that our system can reach real-time requirements
for the video processing and still has processing power left, which can be used to process
other input data at the same time, for example, sensor data or patient records data.
A number of complex features can be added into the detection and the localization
sub-systems. This will increase the system’s detection and localization accuracy and at
the same time keep its ability to perform in real time. Moreover, it can also be used to
process several data streams simultaneously in real time and significantly reduce the
examination time of doctors. The time reduction lies around 5-10 times depending on
the type of input data, like video resolution, framerate, and sensors used. Our evalua-
tion also shows that this is a very complex topic and requires methods and technologies
from several different multimedia research directions (signal processing, multimedia
systems, information retrieval, deep learning, etc).

4.4.2. Data Handling. Figures 6(a) and (b) show the memory usage for both sub-systems.
In the Java and the C++ implementations of the detection sub-system, as well as in the
C++ implementation of the localization sub-system, the memory consumption behaves
normally and shows that both sub-systems are scalable in terms of memory. The GPU
implementations of both systems show an almost constant memory increase, which is
caused by the used frame-by-frame processing scheme on the GPU devices. The results
of the memory usage measurements for the various hardware configurations and video
resolutions show that the maximum memory usage is less than 4.5GB for the detection
and 6GB for the localization sub-system. This proves that the sub-systems consume
a reasonable amount of memory, and therefore, memory is not a bottleneck for the
scaling potential of the system.
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Fig. 6. Overall memory consumption (resident set size).

Fig. 7. Performance influence of different training data sizes for 1/2 and 1/3 of the original size.

A final question that we wanted to answer is if the size of the used classification
indexes influences the detection accuracy or system performance. Figure 7 shows the
system performance in terms of detection accuracy and FPS for three different training
data sizes. The exception here was that smaller indexes would lead to a higher FPS
throughput, but with a loss of classification performance. The experiment showed that
the index size did not have a significant influence on the FPS output of the detection
system. Another positive aspect is that the classification performance does not decrease
with smaller indexes. The average F1 score for all three index sizes in this experiment
increases with a decreasing index size. The index with the full training set reaches
0.938, the index that contains half of the training data (0.94) and the smallest index
that only contains one third of the training data reaches an average F1 score of 0.946.
This reveals that the detection sub-system also performs very well with a smaller
amount of training data, which is a very positive point for the medical domain because
of the lack of training data.

4.4.3. Distributed Processing Experiments. To investigate the performance on distributed
hardware for the detection sub-system, some initial experiments on Amazon AWS EC2
instances were conducted. On a c4.8xlarge instance (Intel Xeon E5-2666 with 36 virtual
CPUs), we were able to classify a video (MPEG-4) with 1,924 frames and a resolution
of 1920 × 1080 using the JCD and Tamura features in 29.377 seconds with 65.5 FPS.
When classifying data from a raw video file, the processing time increased to 39.599
seconds with 48.6FPS. When reading the data from a Windows media video (wmv)
file, the processing time increased to 40.452 seconds with 47.6FPS. The c4.8xlarge
instance is the most powerful instance offered by Amazon. Therefore, we conducted the
same experiments on a less powerful c4.4xlarge instance (Intel Xeon E5-2666 with 16
virtual CPUs). Using this instance, we were able to process the MPEG-4 video data in
60.19 seconds with 31.97FPS, the wmv file in 81.17 seconds with 23.7FPS and the raw
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video file in 79.718 seconds with 24.14FPS. This experiment shows that our system
can be distributed, but using the given Amazon hardware, it did not really improve
the performance when distributing the workload between several nodes. On the other
hand, the performance using only local heterogeneous architectures easily meets the
requirements, reducing the need for multi-machine distribution (for now).

5. REAL-WORLD USE-CASES

We are currently working on two different real-world use-cases with our partner hos-
pitals. The first one is a live system intended to support and assist endoscopists while
they perform live examinations. The second one has as a goal to automatically analyze
videos captured by VCEs. The live system requires fast and reliable processing, and
the VCE video analysis needs a system that is able to process a large amount of data
fast, reliable, and in a scalable manner.

5.1. Live System

The live system is intended for the use-case where the endoscopist performs a routine
examination. One screen shows the output of the colonoscope without the systems
output. A second screen presents, in real time, the results of the algorithmic analysis
to the doctor. In future clinical trials, we will evaluate and compare the current two-
screen solution with a single screen combination. Previous studies have demonstrated
that the detection rate of lesions is a major challenge [11, 54]. The aim of the live
system is to use it as a visual recommendation toolkit for the human visual perception,
much like a third, automatic eye with high-lighted sections to investigate/inspect more
carefully by the doctor during the examination to improve the detection rate. While the
endoscopist performs the colonoscopy, the system analyzes the video frames recorded
by the colonoscope. At the beginning, we plan to show the physician optically (for
example, with a red or green frame around the video) when the system detects a
lesion in the actual frame or not. This can also be extended to the determination of
what disease the system most probably detected and provide this information to the
endoscopist. Apart from supporting the endoscopist during the colonoscopy, the system
can also be used to document the procedure. After the colonoscopy, an overview can be
given to the doctors where they can make changes or corrections, and add information.
This can then be stored for later purposes or used as a written endoscopy report.
Uninteresting parts of the video could be stored in a higher compressed way than
important segments with the benefit of less storage space needed. Further, it would
be practical to store high quality images of the most important parts. As de Lange
et al. [11] show, single images can be an efficient way to store important findings
from an examination. Another important part of computer aided live colonoscopies is
the potential for temporal analysis when videos are captured multiple times from the
same patient. Over the patient’s medical history, analytics run on the same spatial colon
parts to determine deltas (how development occurs) would be a meaningful addition to
the now available standards and most probably improve the patients care and survival
rate.

5.2. Wireless VCE

The multi-sensor VCE is swallowed in order to visualize the GI tract for subsequent
detection and diagnosis of GI diseases. Thus, in the future, people may be able to
buy VCEs at the pharmacy, and connect and deliver the video stream from the GI
tract to the phone over a wireless network. The video footage can be processed in the
phone or delivered to our system, which finally analyzes the video automatically. In
the best case, the first screening results are available within 8 hours after swallowing
the VCE, which is the time the camera typically spends traversing the GI tract. The
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current VCEs have a low resolution of 256 × 256 with 3-30FPS (adaptive frame rate
with a feedback loop from the receiver to the transmitter). They do not have optimum
lighting, making it more challenging to analyze small details in the images. Neverthe-
less, ongoing work tries to improve the state-of-the-art technology, which will make it
possible to use the methods and algorithms developed for colonoscopes also for VCEs
[25]. In the case of the colon, accuracy of existing methods is far below the required
precision and recall, and the processing of the algorithms does not scale in terms of
high-volume data. Each type of disease or irregularity requires interaction between
medical researchers dictating what the system must learn to detect, image processing
researchers investigating detection or summarization algorithms, hardware developers
to develop/produce/research sensors, and distributed processing researchers in order
to scale the data analytics of the sensor data. For other scenarios, like in the upper part
of the GI tract, there will be similar challenges and corresponding interaction between
research disciplines. There are large challenges with respect to accuracy (precision
and recall), scale of the processing, and hardware data quality because of different
manufacturers (Olympus and Given are the market leaders). The aim is to be a major
contributor in the area of medical imaging and sensor processing in the GI tract, as
well as storing, processing, and analyzing this type of data.

6. RELATED WORK

A system aiming to analyze the whole GI tract needs to fulfill several requirements such
as being able to process large amounts of data efficiently in real-time, while also being
complete and practically applicable so that it can support doctors during colonoscopies
or help analyzing data from VCEs. All requirements touch different areas of related
work. In the following, we will discuss the most relevant works for our EIR system.
Notice that no known existing complete algorithmic system is available, so we have to
relate our work with others at the sub-component level.

Annotation. Liu et al. [31] describe a very advanced annotation tool called Arthemis.
Arthemis is part of an integrated capturing and analysis system for colonoscopy, called
Endoscopic Multimedia Information System (EMIS). EMIS provides functionality for
collecting and archiving endoscopy videos. The use of an annotation tool for endoscopy
videos is further researched by Lux and Riegler [33]. This demo paper focuses on
common interaction methods for experts to annotate videos by recording speech and
drawing onto the video. The paper aims at gathering information about the recorded
videos in an easy and simple way, so that the annotation effort is minimally invasive
for the daily routine of the experts. The related work in the field of annotation shows
that it is crucial to integrate the annotation tool in a minimally invasive way within
the environment of the experts. It is very important to provide them with a solution,
which is very easy to use, and, at the same time, very easy to deploy in a restrictive
medical environment. The annotation sub-system in EIR builds up on technologies and
methods from the authors in Riegler et al. [43] and Lux [33].

Automatic analysis systems for the GI tract. Detection of diseases in the GI tract
has mostly focused on polyps. This is most probably due to the lack of data in the
medical field and polyps being a condition with at least some data available. Auto-
matic analysis of polyps in colonoscopies has attracted research attention for a long
time and several studies have been published [59, 60, 63]. However, there is a need
for complete scalable real-time detection systems, both for computer aided diagnosis
during colonoscopy examinations and for analysis of huge amounts of data from VCEs.
Furthermore, all of the related works are limited to a very specific use-case, which in
most cases is polyp detection for a specific type of camera. Several algorithms, methods,
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Table VIII. Performance Comparison of Polyp Detection of State-of-the-Art Systems

Publication/System What/Detection Types Recall/Sensitivity Precision Specificity Accuracy FPS Dataset Size

Wang et al. [62] polyp/edge, texture 0.977∗ – 0.957 – 10 1.8m frames
Tajbakhsh et al. [53] polyp/shape, color, texture 0.5 – – – – 35,000 frames
Park et al. [39] polyp/shape, color, texture 0.828 0.658 – – – 62 images
Wang et al. [61] polyp/shape, color, texture 0.814 – – – 0.14 1,513 images
Mamonov et al. [35] polyp/shape 0.47 – 0.90 – – 18,738 frames
Hwang et al. [20] polyp/shape 0.96 0.83 – – 15 8,621 frames
Li and Meng [28] tumor/textural pattern 0.886 – 0.963 0.924 – –
Zhou et al. [65] polyp/intensity 0.75 – 0.959 0.908 – –
Alexandre et al. [3] polyp/color pattern 0.937 – 0.769 – – 35 images
Kang et al. [24] polyp/shape, color – – – – 1 –
Cheng et al. [7] polyp/texture, color 0.862 – – – 0.08 74 images
Ameling et al. [4] polyp/texture AUC=0.95† – – – – 1,736 images

EIR extendible/multiple 0.985% 0.939% 0.725 0.877 ∼ 75‡ 18,781 frames
∗The sensitivity is based on the number of detected polyps; other papers use per frame detection.
†Reported only area under the curve (AUC) instead of sensitivity.
‡Detection and localization performed together. Detection performance alone is around 300FPS and for
localization around 100FPS.

and partial systems have been proposed and have achieved, at first glance, promising
results in their respective testing environments. However, in some cases, it is unclear
how well the approach would perform as a real system used in hospitals. Most of the
research conducted in this field uses rather small amounts of training and testing
data, making it difficult to generalize the methods beyond the specific dataset and test
scenarios. Therefore, overfitting for the specific datasets can be a problem and can lead
to unreliable results. Table VIII presents a summary of the most relevant approaches
in colonoscopies and polyp detection. The last row of the table shows our approaches’
performance to give a comparison. The first approach from Wang et al. [62] is the most
recent and best working one in the field of polyp detection. A list of more related work
can be found in their paper. As one can see in Table VIII, different methods provide
different metrics for measuring the performance and use different datasets for training
and testing. Moreover, almost all of them focus on polyp detection. Mamonov et al. [35]
presented an algorithm for a binary classifier to detect polyps in the colon. The method
is called binary classification with pre-selection, and it aims at reducing the amount
of frames that need to be manually inspected. The sensitivity of the algorithm with
regards to single input frames is significantly lower and only reaches 47%. A similar
approach is presented by Hwang et al. [20]. This approach also focuses on shape, in
particular on ellipses, which is a common shape for a polyp. Using this method, a frame
is first segmented into regions by a watershed-based image segmentation algorithm.
This algorithm is based on the observation that polyps are spherical or hemispherical
geometric elevations on the surrounding mucosa. Similar to Mamonov et al. [35], they
assume that multiple frames are available for one polyp and that a certain number
of false negatives is acceptable in order to balance the number of false positives. The
correctness of this assumption depends strongly on the frame rate of the camera that
is used for recording the video. As mentioned in the introduction, the best working and
complete system in the well-researched polyp detection field is Polyp-Alert [62], which
is able to give near real-time feedback during colonoscopies. This approach is also listed
as number one in Table VIII. The system can process 10 frames per second and uses
visual features and a rule-based classifier to detect the edges of polyps. Further, they
distinguish between clear frames and polyp frames in their detection. The researchers
report a performance of 97.7% correctly detected polyps based on their dataset, which
consists of 52 videos recorded using different colonoscopes. Unfortunately, the dataset
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is not publicly available, and therefore, an exact detection performance comparison
is not possible. Compared to our system, this system seems to reach higher detection
accuracy, but it appears that our system is faster in terms of processing time per frame
and can therefore detect polyps in real time. A comparison using the same hardware
and full-length videos is currently to be carried out together with the developers of
Polyp-Alert. Furthermore, our system is not designed and restricted to detect only
polyps, and can be expanded to any possible disease if we have the correct training
data. Another recent approach not limited to polyps is presented by Nawarathna et al.
[36] describing a method to detect bleeding, but also polyps in colonoscopy videos.

Deep Learning. Deep learning is probably the most promising approach we need to
explore further in EIR, and it is already very relevant for similar problems detecting,
for instance, breast cancer [57], polyp detection [53], or lung cancer [9]. Nevertheless,
such approaches are challenging to use in our use-case [8]. First, training is very com-
plicated and time consuming. Our system has to be fast and understandable since we
deal with patient data, where the outcome can differentiate between life and death.
This can lead to serious problems in the medical field since it is very difficult to evalu-
ate them properly [37]. Furthermore, one of the biggest challenges is that they require,
most of the time, a lot of training data. In the medical field, this is a very impor-
tant issue since it is hard to get data due to the lack of experts’ time (doctors have a
very high workload), and legal and ethical issues. Some common conditions, like colon
polyps, may reach the required amount of training data for deep learning, while other
endoscopic findings, like tattoos from previous endoscopic procedures (black colored
parts of the mucosa), are not that well documented, but still interesting to detect [46].
Nevertheless, for certain use-cases, such as presented in the work of Wang et al. [57], a
small amount of training data can lead to reasonable results. As shown in Table VIII,
recent neural network-based approaches for polyp detection are able to achieve inter-
esting results, but still use relatively small labeled datasets in terms of the number
of images or videos. Tajbakhsh et al. [53] presented a combined algorithm for a bi-
nary classifier to detect polyps in the colon, which was trained and tested on a 35,000
frames dataset with only 20 different polyps. The proposed polyp detection method
first selects multiple possible polyp locations in a frame using machine learning of
local polyp features such as color, texture, shape, and temporal information in multi-
ple scales. A generated set of locations is then processed by a number of convolution
feature-specialized neural networks and followed by results aggregation and frame
binary classification. The detection performance of the method is 0.002 false positive
per input frame at 50% sensitivity. A similar work is presented by Park et al. [39].
This approach focuses on shape detection via scale-invariant learning of hierarchical
features using convolutional neural networks. Experimental results presented in the
paper show that the method’s sensitivity reaches around 83% with 66% precision on
a 62 images dataset. Finally, it should be mentioned that neural networks are not
easy to design for obtaining results that are explainable to a doctor. In a multi-class
decision-based system, which is built to support medical doctors in decision-making,
the fact why the system made certain decisions is important information. Approaches
with a better understanding of the problem give a better explainable output that can
be directly translated to the real-world scenario [51]. To test our assumptions about
deep learning, we started conducting some experiments comparing deep learning ap-
proaches with our system. Initial experiments, based on implementations in Google
Tensorflow [1] for the classification part and the YOLO [41] and Tensorbox4 tracking
algorithms for the localization part, revealed that our system can outperform or, at

4https://github.com/Russell91/TensorBox.
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least, reach the same single- and multi-class classification and detection performance
as these systems, and that it is faster in training and new data processing if run on
the same hardware configuration. We proved that our system can be easily extended
adding new types of abnormalities. For the ASU-Mayo polyp dataset, the global feature
approach reached a F1 score of 0.961 and the deep learning–based approach of 0.936.
For our own created multi-disease dataset (which will be public available and share-
able in the future), the global feature approach reached a F1 score of 0.909 compared
to 0.875 for the deep learning approach. In the case of reduced amount of training
data, our system seems to perform better, which is an important factor in the medical
field. We conjecture that a combination of both approaches might be the best solution
for future extensions of EIR, and detailed experiments are presented in the work of
Pogorelov et al. [40].

7. CONCLUSION

In this article, a complete multimedia system for annotation, automatic disease de-
tection, and visualization in context of the GI tract has been presented. Architecting
the end-to-end EIR system has been largely motivated by the rapidly developing GI
problems in the medical domain, combined with our bold idea that future GI screening
can be performed relatively non-invasively at a scale where those interested can afford
to be screened regularly, and it does nor require a quadrupling or so in number of GI
specialists. An algorithmic end-to-end approach is a practical solution, and our EIR
system is the first end-to-end multimedia GI system that is both accurate enough, and
performs at a level where it can be used in real time. We described the whole system in
detail from the annotation, automatic analysis, and detection to visualization. Further,
we presented a detailed evaluation of the performance of the system in the area of
detection accuracy, processing time, and scalability. The evaluation showed that the
system achieves equal or better results than state-of-the-art in terms of accuracy, i.e.,
reaching a detection accuracy for polyps of more than 90% using the largest available
dataset today (the ASU-Mayo clinic polyp dataset). On the other hand, our system
outperforms other proposed systems when it comes to system performance. We showed
that it is capable of scaling to fulfill big data requirements and that it can be used in
real-time scenarios, i.e., in our live colonoscopy scenario, EIR processes HD resolution
videos at about 300FPS. Moreover, we participated in a grand challenge to compare
the system to other methods and could achieve good results for a very specific use-case
with a system that is able to be used for many different use-cases at the same time.
Additionally, we presented a real clinical setting implementation and use-case of our
system that is currently being built with our hospital partners. For future work, we
plan to include different abnormalities to detect and to even further improve the detec-
tion and localization accuracy. We are also collecting more training data and knowledge
for the system with the help of medical experts from different collaborating hospitals
in Sweden, Norway, Spain, Italy, and Japan. It is important to get data from different
hospitals to be able to build a general system that is not shaped on a specific camera
type or setup.
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