
This paper will be presented at GECCO-2017, Berlin, Germany

Mining Cross Product Line Rules with Multi-Objective Search
and Machine Learning

Safdar Aqeel Safdar1, Hong Lu1, Tao Yue1,2, Shaukat Ali1

1Simula Research Laboratory, Oslo, Norway
2University of Oslo, Oslo, Norway

{safdar, honglu, tao, shaukat}@simula.no

ABSTRACT
Nowadays, an increasing number of systems are being developed
by integrating products (belonging to different product lines) that
communicate with each other through information networks.
Cost-effectively supporting Product Line Engineering (PLE) and
in particular enabling automation of configuration in PLE is a
challenge. Capturing rules is the key for enabling automation of
configuration. Product configuration has a direct impact on
runtime interactions of communicating products. Such products
might be within or across product lines and there usually don’t
exist explicitly specified rules constraining configurable
parameter values of such products. Manually specifying such
rules is tedious, time-consuming, and requires expert’s
knowledge of the domain and the product lines. To address this
challenge, we propose an approach named as SBRM that
combines multi-objective search with machine learning to mine
rules. To evaluate the proposed approach, we performed a real
case study of two communicating Video Conferencing Systems
belonging to two different product lines. Results show that SBRM
performed significantly better than Random Search in terms of
fitness values, Hyper-Volume, and machine learning quality
measurements. When comparing with rules mined with real data,
SBRM performed significantly better in terms of Failed Precision
(18%), Failed Recall (72%), and Failed F-measure (59%).

CCS CONCEPTS
• Software and its engineering → Search-based software
engineering; Software product lines

KEYWORDS
Rule Mining; Multi-Objective Search; Configuration; Machine
Learning; Product Line.

1. INTRODUCTION
Product Line Engineering (PLE) is a well-acknowledged paradigm
to improve the productivity of developing products with higher
quality and at a lower cost. By benefiting from PLE, more and
more systems are developed by integrating products, which
belong to different product lines, and communicate and interact
with each other through information networks [1, 2]. Examples
of such systems include video conferencing systems (VCSs) [3]
and material handling systems [4]. Such systems are highly
configurable by presenting the users with configuration options.
Consequently, at runtime, several products belonging to multiple
product lines communicate (e.g., via information networks) with
each other [1, 2] under various configurations. Thus, the runtime
behavior of such systems not only depends on the configuration
of these communicating products but is also influenced by the
communication medium. Note that the configuration in our
context indicates numerous configurable parameters exposed to
users after the system is deployed.

Cost-effective PLE is challenging mainly because of the lack
support of automation of the configuration process [5, 6].
Capturing rules is the key to enabling automation of various
configuration functionalities (e.g., consistency checking, decision
propagation, and decision ordering) [7-11]. In our context, such
rules describe how configurations of communicating products
belonging to different product lines influence their runtime
interactions via information networks.

We name rules constraining configurations (values assigned
to configurable parameters) of products belonging to different
product lines as Cross Product Lines (CPL) rules. CPL rules are of
significant importance for mainly two reasons. First, CPL rules
can be used to identify invalid configurations where products
may fail to interact with a confidence level due to, e.g.,
dependencies on external libraries and/or platforms. Identified
invalid configurations can help developers to maintain current
products or evolve future products. Second, CPL rules can
provide support to enable (automated or semi-automated)
configuration of products of future deployments. However, the
literature does not provide sufficient support to mine such rules,
as current practice mainly focuses on mining rules constraining
product configurations within a single product line [6, 12].

CPL rules need to be captured by running the system due to
the information only known at runtime, e.g., dependencies on
external libraries and/or platforms. As mentioned in [13], rules
that ensure correct runtime behaviors can be identified from
either domain knowledge or testing of the system. Manually
specifying such rules based on domain knowledge is tedious and
time-consuming, and heavily relies on expert’s knowledge of the
domain and the product lines. Identifying CPL rules via testing
has its own challenges, as the configuration space is typically
very large and testing candidate configurations is often infeasible.
Besides, in practice testers often use valid configurations to test
the system [13]. Therefore, identifying CPL rules requires a
dedicated approach that automatically obtains rules without
exploring all possible configurations of the communicating
products belonging to different product lines.

In [12], a rule mining approach is proposed that mines rules
for a product line where product configurations belonging to one
product line are generated randomly and labeled as faulty and
non-faulty. Labeled product configurations are inputted to the
classification algorithm of j48 [14] to mine rules. However,
randomly generating configurations to mine rules is a brute-force
way and time-consuming. In this work, we advance one step
further by employing search to generate product configurations
intelligently using three heuristics (Section 3.2), instead of
randomly generating product configurations.

We propose an approach, named as Search-based Rule Mining
(SBRM), which combines multi-objective search with machine-
learning techniques, to mine CPL rules in an incremental and
iterative way. SBRM obtains CPL rules with different degrees of
confidence (i.e., the probability of being correct) with an
emphasis on mining rules that can reveal invalid configurations

This paper will be presented at GECCO-2017, Berlin, Germany
[15]. Instead of collecting a large
amount of data required for machine
learning all in once, we obtain the input
data incrementally with multiple
iterations. During each iteration, we
use the rules mined from the previous
iteration to guide the search for
generating configuration data for the
current iteration. The generated
configuration data are combined
together with those from all the
previous iterations in order to
incrementally refine the
aforementioned rules. SBRM is validated using a real world case
study of VCSs, where two products belonging to different
product lines communicate (i.e., call) with each other.

We summarize the key contributions of the paper below:
• SBRM to mine CPL rules constraining configurations of

communicating products across product lines.
• Three objectives to guide the search for generating

configuration data in order to refine CPL rules.
• Evaluating SBRM by performing a real world case study of

two communicating VCSs belonging to different product lines.
With the case study, we compared the performance of NSGA-
II with Random Search (RS) using fitness values, Hyper-
Volume (HV), and machine learning quality measurements.
Additionally, we compared the rules mined using SBRM with
the rules mined with real data extracted from test case
execution logs.
Evaluation results show that SBRM is effective to produce

high-quality rules as compared to RS based rule mining approach
(i.e., called RBRM). Results also indicate that SBRM produces
better rules as compared to the rules mined based on real data
extracted from test case execution logs.

The rest of the paper is organized as follows: In Section 2, we
give an overview of SBRM followed by the search-based
approach for generating configuration data in Section 3. In
Section 4, we present the experiment design, execution, and
results. Section 5 summarizes the literature review and finally, in
Section 6, we conclude the work.

2. OVERVIEW
Figure 1 presents an overview of our proposed approach (SBRM),
which relies on machine learning and multi-objective search to
mine CPL rules. At the first step, an initial set of configuration
data is generated randomly for the selected products belonging to
different product lines. At the second step, selected products are
configured with the randomly generated configuration data, and
certain functionalities of the products are executed such that the
selected products interact with each other via information
networks (e.g., the Internet), and the states of the system are
captured to know if they interact via communication network
successfully. An interaction, in our context, can be defined as an
action in which two or more objects (e.g., system, product, or
component) are collaborating, communicating, or influencing
each other. There does not exist a generic way of enabling
interactions among various products of a system via
communication networks as well as capturing the system states
as it depends on the application domain of the system under
study and its involved functionalities.

In step 3, we feed the set of generated configuration data (as
Attributes) and their corresponding system states (as Classes) to
Weka [14] as the initial input and apply the Pruning Rule-Based
Classification algorithm (PART) [15] to mine the initial set of
rules, which are consequently fed to NSGA-II for generating

configuration data for the next iteration in step 4. Though C4.5
and RIPER are the two well-known algorithms, which generate
rules based on decision trees [14, 15], C4.5 is expensive in terms
of computation time since the process of generating/pruning
rules is complex and requires global optimization. In the case of
RIPPER, it suffers from over-pruning (hasty generalization)
problem [16]. PART [15] combines these two paradigms while
avoiding their shortcomings by generating partially pruned
decision trees and inducing one rule corresponding the longest
branch of each partial tree. In step 5, we repeat step 2 but take
the configuration data generated from the search instead of the
random one. In step 6, we combine all the configuration data
generated from steps 1 and 4 and collected system states captured
from steps 2 and 5, and feed all the data to Weka to mine a
refined set of rules. This rule set is then used in the next iteration
(starting from step 4) to generate more configuration data and
further refine the rules.

In each iteration, newly generated configuration data with
collected system states are added to the dataset from the previous
iteration to mine a new set of rules. We repeat the process until
we meet the stopping criteria, e.g., a fixed number of iterations
and/or when the rules generated from two consecutive iterations
are similar. Fixed number of iterations is useful when we have
limited available resources for mining rules. Getting similar rules
from consecutive iterations indicates that it is very unlikely to
refine the rules further. We consider step 4, i.e., using search to
generate configuration data, as the innovative part of the whole
approach, i.e., SBRM. This is because using Weka to mine rules is
a simple application of the PART algorithm and applying search
requires carefully designing a fitness function. Therefore, in
Section 3, we present how search is used for generating
configuration data (step 4) and the evaluation of SBRM is
presented in Section 4.

3. SEARCH-BASED APPROACH
Sections 3.1 presents definitions required to define the
configuration data generation problem. Section 3.2 presents the
objectives and measures, followed by the fitness function defined
in Section 3.3.

3.1 Definition and Problem Representation
CP = {cp!, cp!, . . , cp!"# } represents a set of configuration
parameters with the total number being ncp. For each cp!, CPV!
represents a set of possible values: ncpv is the total number of
unique values (i.e., configuration space) for all the configuration
parameters, which can be calculated as: ncpv = CPV!

!"#
!!! .

Figure 2 shows four sanitized configuration parameters (cp1-cp4)
from our case study. For example, cp1 represents the protocol
(e.g., related to video conference over IP networks) of product P1,
which can be configured with four different values (e.g., Pro-1).

Figure 1: Overview of the proposed approach (SBRM)

This paper will be presented at GECCO-2017, Berlin, Germany

Figure 2: Examples of sanitized configuration parameters and CPL rules

R! = {r!", r!", r!",… , r!!"} represents nnr rules associated
with normal states of the system, where the selected products
interact as intended. R! = {r!", r!", r!",… , r!"#} represents nar
rules related with abnormal states of the system where
interactions between the selected products interact unexpectedly
(Category-III). Cf r! represents the confidence of r! , which is
between 0 and 1. Confidence for a rule can be calculated as

Cf r! = !"!! !!
!!!! !!

, where SP! represents the number of instances for

which r! holds true (i.e., support) and V! represents the number of
instances that violate r! (i.e., violation). An instance represents a
set of values for configurable parameters of the selected products
and corresponding system states. Based on confidence, support,
and violation we further classify the R! into two categories using
two thresholds: High confidence rules (Category-I) where
Cf r! > TH1 and (SP! + V!) > TH2 and Low confidence rules
(Category-II) where Cf r! ≤ TH1 or (SP! + V!) ≤ TH2. Note that
we used 0.9 (TH1) and 10 (TH2) for our experiment to classify
CPL rules. Analyzing the effect of these thresholds on the
performance of SBRM requires further investigation. In Figure 2,
we present three sanitized CPL rules (r1-r3) mined for the case
study. For example, r3 describes that if the encryptions of
products P1 and P2 are set to Enc-1 and Enc-2 respectively, the
call will fail. S = s!, s!,… , s!" represents potential configuration
solutions, where ns = (|CPV!|)

!"#
! , which is approximately

1.03e33 for our case study. Each solution s! has a set of
configuration values for ncp configuration parameters such that
s! = cpvs!"… cpvs!"#$. E! = e!, e!,… , e!" is a set of
effectiveness measures for evaluating solution s!.

We can then formulate the configuration generation problem
as searching a non-dominant solution set S! from ns solutions to
obtain the highest effectiveness.

∀!!∈ !! ∀!!! !" !" ∀!!! !" !" ∃ Effect(s!, e!) > Effect (s!, e!)
 Λ s! ∉ S! (1)

Effect (s!, e!) refers to the jth effectiveness measure of solution s!.

3.2 Objectives and Effectiveness Measures
The objectives are defined based on the three categories of rules
(Section 3.1). Before presenting the objectives and effectiveness
measures, we first define the distance function that is used to
assess the effectiveness measures. The distance function indicates
to what extent a configuration solution conforms to a rule.

D r!, s = ! !"!, !"#!!"
!!!

!"#
 (2)

where 𝐷 𝑟! , 𝑠 calculates the
distance between rule r! and
solution s . In equation (2),
d cl!, cpv! calculates the branch
distance between a clause cl!
from rule r! and corresponding
configuration value cpv! from
solution s. MCL is the maximum
number of clauses in all the

rules. To calculate the distance between cl! and cpv! as a branch
distance, we use the distance calculation formula provided in [17,
18].

3.2.1 Avoid configuration data satisfying or close to satisfying high
confidence rules with normal states
This objective is to avoid generating configuration data that
completely or close to satisfy the rules in Category-I. The
effectiveness measure (AHNS) corresponding to this objective
can be calculated as:
AHNS R!, s = Cf r! ∗ D r!, s | !!"

!!! Cf r! > TH1 && SP! +
 V! > TH2 (3)

where AHNS R!, s takes R! (the set of rules related to the
normal states) and one solution s as input and gives the
effectiveness measure as output. To determine AHNS , we
calculate the sum of weighted distances for all rules in Category-
I, where the confidence of each rule is greater than threshold
TH1 (i.e., 90%) and the sum number of support and violation
instances for each rule is more than TH2 (i.e., 10). Weighted
distance of r! is calculated by multiplying Cf r! with D r!, s .

3.2.2 Generate configuration data satisfying or close to satisfying
low confidence rules with normal states
This objective is to generate configuration data within the
configuration space that satisfy Category-II as well as its nearby
space. The nearby space contains configuration data for which
the distance to the rules in Category-II is close to 0 but not
exactly 0. These configuration data might help to either improve
the confidence of correct rules by increasing their support or
filter out incorrect ones by increasing their violation and hence
reducing their confidence. The effectiveness measure (NLNS)
related to the second objective can be calculated as:

NLNS R!, s = Cf r! ∗ (1 − D r!, s) |
!!"
!!! Cf r! ≤

TH1 || SP! + V! ≤ TH2 (4)

where NLNS R!, s takes R! (the set of rules associated with the
normal states) and solution s as input and outputs NLNS. Since
we want to explore the configuration space near the
configuration data satisfying the rules in Category-II,
configuration data with a smaller distance to the rules in
Category-II is preferred. Therefore, we use (1 − D r!, s) in the
NLNS R!, s . To calculate NLNS, we calculate the sum of the
weighted distance (i.e., calculated by multiplying Cf r! with
(1 − D r!, s)) of a solution to all the rules in Category-II, where
the confidence of each rule is less than or equals to TH1 (i.e., 90%)
or the sum number of support and violation instances for each
rule is less or equal to TH2 (i.e., 10).

3.2.3 Generate configuration data satisfying or close to satisfying
rules with abnormal states
This objective is to generate configuration data within the
configuration space that satisfy Category-III and its nearby space.
The rules in Category-III are of high interest in our context
because they indicate situations where interactions of the

Table 1: Overview of the experiment design*

RQ Tasks Description Evaluation metrics Algorithm’s Parameters Statistical tests
RQ1 T1 Comparing fitness

values and HV
− Individual objectives

and Overall Fitness
− HV

− Population size = 200
− maxEvaluations = 20K
− Crossover rate = 0.9
− Mutation rate

=1/(Total number of
configuration
parameters)

− Total runs = 10

Man-Whitney
U-test and
Vargha and
Delaney 𝐴!!"

RQ2
RQ3

T2
T3

Comparing rule
sets based machine-
learning quality
measurements

− Accuracy (%)
− F/C Precision (%)
− F/C Recall (%)
− F/C F-Measurement

* F= Failed (Abnormal state), C=Connected (Normal state)

This paper will be presented at GECCO-2017, Berlin, Germany

selected products fail. The effectiveness measure (NAS) for this
objective can be calculated as:

NAS R!, s = Cf r! ∗ 1 − D r!, s
!"#
!!! (5)

where NAS R!, s takes rule set R! (related to the abnormal
states) and solution s as input. To calculate NAS, we calculate the
sum of weighted distances for all the rules in R! (Category-III).

3.3 Fitness Function
We first normalize the three effectiveness measures with

nor F x = ! ! !!!"#

!!"#!!!"#
, where F x is an effectiveness measure

function, F!"# and F!"# are the maximum and minimum values
of the effectiveness measure. For AHNS , F!"# is 0 when the
distance between all the rules in Category-I and solution s is 0.
F!"# can be calculated as Cf r!!!"

!!! where the distance between
all the rules in Category-I and solution s is 1. For NLNS and NAS,
F!"# is 0 when the distance between all the rules in the
corresponding category and solution s is 1. Corresponding to
NLNS and NAS , F!"# can be calculated as Cf r!!!"

!!! and
Cf r!!"#

!!! respectively, where the distance between all the rules
and solution s is 0.

With the three effectiveness measures, we define the fitness
function based on the three objectives as follow:

F O! = 1 − Nor (AHNS R!, s) (6)

F O! = 1 − Nor (NLNS R!, s) (7)

F O! = 1 − Nor (NAS R!, s (8)

Note that, in the above equations, we define our search problem
as a minimization problem by subtracting each normalized
effectiveness measure from 1 to ensure that a solution with a
value closer to 0 is better.

The fitness function with the three objectives is combined
with NSGA-II to address the optimization problem. We
implemented our problem in jMetal by encoding all the
configuration parameters in the solution s as integer variables,
where a variable cp! holds a value cpv!" such that cpv!" ∈ CPV!.
Initially, all variables in s are initialized with random values.
During the search, SBRM generates optimized solutions guided
by the fitness function.

4. EVALUATION
We present experiment setup in Section 4.1, execution in Section
4.2, and results in Section 4.3. In Section 4.4, we present overall
discussion and Section 4.5 presents threats to validity.

4.1 Experimental Setup
First, we present the experiment design including research
questions (Section 4.1.1) followed by the case study (Section 4.1.2)
and evaluation metrics (Section 4.1.3). Lastly, we present
evaluation tasks, parameter settings, and statistical tests used for
analysis (Section 4.1.4).

4.1.1 Research Questions
In SBRM, we apply commonly used NSGA-II [19-21] for
generating configuration data as NSGA-II has proven to be
effective for solving various software engineering problems such
as test case prioritization and cost estimation [20, 22].

The goal of the evaluation is to assess if combining machine
learning with NSGA-II in the rule mining process can improve
the quality of rules. As RS is typically used as the comparison
baseline [22, 23]; therefore, we investigate if NSGA-II is effective
to solve the configuration generation problem and then compare
the quality of rules produced from SBRM (with NSGA-II) with
rules mined by RS based approach (i.e., called RBRM). To further

assess the effectiveness of SBRM, we also compare rules mined
from SBRM with rules mined from real data extracted from test
case execution logs (i.e., called RDBRM). Thus, the evaluation is
designed to answer the following three research questions:
RQ1. Is NSGA-II effective to solve the configuration generation

problem as compared to RS?
RQ2. Does SBRM produce better quality rules than RBRM in

terms of machine learning measurements?
RQ3. Does SBRM produce better quality rules than RDBRM in

terms of machine learning measurements?

4.1.2 Case Study
Cisco Systems, Norway provides a variety of VCSs to facilitate
high-quality virtual meetings [23]. Cisco has developed several
product lines for VCS including C-Series, MX-Series, and SX-
Series [3]. Each product from these different product lines has a
large number of configuration parameters (e.g., Protocol and
Encryption), which need to be configured before making calls.
For each VCS we have a set of state variables representing the
state of VCS (e.g., call status, camera connection status) that
varies according to different hardware and software
configurations. For our experiment, we used two real products
C60 and MX300 developed by Cisco, which belong to C-series
and MX-series, respectively. Simula Research Laboratory has a
long-term collaboration with Cisco, Norway under Certus-SFI1.
As part of our collaboration, we have access to several VCSs at
our lab and thus we used these systems for our experiments.
Therefore, our case study is real, but the experiment wasn’t
performed in the real industrial setting of Cisco.

For comparing the quality of rules produced using SBRM with
ones mined by RDBRM, we obtained 9,989 test case execution
logs from Cisco. Each test log contains a test case script and
configurations and statuses representing the system states for all
the products involved in the test case. The configurations and
their corresponding system states (i.e., statuses) contained in the
execution logs can be used to mine the rules. To extract the data,
first, we obtained 3963 relevant (i.e., invoking the Dial command)
logs from 9,989 test execution logs automatically, where the
testing scenario is about making a call from one product to
another. Second, corresponding to all relevant execution logs, we
extracted configurations and statuses for the products involved in
the test cases corresponding to execution logs. Finally, we use the
extracted configurations and corresponding statuses to mine the
rules.

4.1.3 Evaluation Metrics
To answer RQ1, we compared NSGA-II with RS in terms of the
three objectives, and the overall fitness. Additionally, we also
compared NSGA-II with RS in terms of HV, which is commonly
used to measure the overall performance of multi-objective
search algorithms (e.g., NSGA-II) [24]. HV is for obtaining the
volume in the objective space covered by members of Pareto
fronts for measuring both convergence and diversity [25].

To answer RQ2 and RQ3, we compared SBRM with RBRM and
SBRM with RDBRM respectively, based on four machine-learning
quality measurements (MLQMs): Accuracy of the classifier,
Precision, Recall, and F-measure for each class (i.e., call status in
our case), which are calculated with 10 times 10-fold cross-
validation [26]. Accuracy indicates the overall performance of
PART by specifying the percentage of instances that conforms to
the mined rules [27], where one instance contains one specific set
of configurations and its corresponding system states.

1 www.certus-sfi.no

This paper will be presented at GECCO-2017, Berlin, Germany
Precision represents the percentage of instances that are

correctly classified divided by the total number of instances
covered by rules associated with a specific system state (e.g.,
connected or failed in our case) [27]. For example, 98% Precision
for the failed state means that, according to the mined rules, there
are 2% of instances whose configurations are identified as invalid
ones, which led to the failed state. But actually, they lead to the
connected state. The Recall represents the percentage of instances
that are correctly classified divided by the total number of
instances corresponding to a particular system state [27]. For
example, 90% Recall for the failed state means that configurations
of 10% instances are not associated with the failed state according
to the mined rules, but these instances actually lead to the failed
state. F-measure is the harmonic mean of Precision and Recall [27].

4.1.4 Experimental Tasks, Parameter Settings, and Statistical
Analysis
As shown in Table 1, we designed three tasks (T1-T3) for
addressing RQ1-RQ3. T1 is to compare NSGA-II with RS in terms
of HV, the three individual objectives, and the overall fitness. T2
and T3 are for comparing the quality of rules produced from
SBRM with RBRM and RDBRM respectively, evaluated based on
machine-learning quality measurements.

As shown in Table 1 (column 5), we used the default settings
for NSGA-II as implemented in jMetal [28], which are typically
recommended [29]. The single point crossover and bit-flip
mutation, implemented in jMetal, were applied as crossover and
mutation operators, respectively. The total number of
configuration parameters is 17 for our case study. We used a
population size of 200 where we select all the Pareto Non-
dominated solutions for mining the rules. Since selecting the best
set of parameters is application dependent [12], we used the
default settings provided by Weka [14] for SBRM, RBRM, and
RDBRM, which have been used in various contexts for applying
the machine learning techniques [12, 30].

To compare SBRM (with NSGA-II) with RBRM and RDBRM,
we use the non-parametric Mann-Whitney U-test as
recommended in [31] using α = 0.05 and the Vargha and
Delaney’s A!" statistics as an effect size measure [32]. For all
MLQMs and HV, if A!" is less than 0.5, SBRM is better than
RBRM/RDBRM, and a value greater than 0.5 means vice versa.
Similarly, in the case of fitness values, if A!" is greater than 0.5,
SBRM is better than RBRM otherwise RBRM is better than SBRM.

4.2 Experimental Execution
We selected the call status as the system state to classify the
configurations. A failed call status represents the abnormal state
and a connected call status represents a normal state. We selected
the call functionality and its associated call status as it is the main
functionality of a VCS and other functionalities depend on it.

To mine the initial set of the rules we randomly generate a set
of 500 configurations corresponding to two selected products (i.e.,
C60 and MX300). To get the system state, we configure the two

products with the generated configurations and make a call from
product A to B for 20 seconds. We made the call for 20 seconds in
order to give sufficient time for establishing the call connection.
After waiting for 20 seconds we capture the call status and
disconnect the call. We input these 500 configurations along with
their corresponding system states to Weka [14] and apply PART
[15] to mine the initial set of rules. To refine the rules, we use the
initial set of rules to guide the search to generate 200 more
configurations. To mine the refined set of rules we repeat the
same process (i.e., configuring the products and making the call)
to get the call status and mine a new set of rules based on 700
configurations (combining all the configurations generated so far)
and corresponding system states. We repeat this incremental and
iterative process for three iterations and mine the final set of
rules based on a dataset containing 1100 configurations and their
call statuses. We used three iterations as a stopping criterion. We
also got more than 90% identical rules in the second and third
iteration.

4.3 RESULTS AND ANALYSIS
In this section, we present the results of our evaluation and
answer the research questions.

4.3.1 Effectiveness of search (RQ1)
To answer RQ1, from the results of the Man-Whitney U-test, we
notice that p-values corresponding to all fitness values and HV
are less than 0.05 showing a significant difference between
NSGA-II and RS. 𝐴!" values corresponding to the three objectives
are all greater than 0.5 and are less than 0.5 in the case of HV,
which suggests that NSGA-II is significantly better than RS.
4.3.2 Comparing SBRM with RBRM (RQ2)
To answer RQ2, we compared SBRM and RBRM in terms of
MLQMs based on rules from each iteration as well as overall (i.e.,
combined the results for all the three iterations) based on MLQMs
(Section 4.1.3).

As shown in Table 2, for the first iteration, although all the
A!" values indicate that SBRM has better performance for all the
MLQMs, the p values show that the superiority of SBRM is not
significant for all the MLQMs except for Failed Recall. In
iteration-2, SBRM performed significantly better than RBRM with
respect to Accuracy, Failed Precision, Failed Recall, and Failed F-
measure. The results corresponding to iteration-3 and overall
(Table 2) show that SBRM has performed significantly better than
RBRM in terms of all the MLQMs. So, as moving from iteration-1
to iteration-3, SBRM starts to perform better than RBRM, which
leads to the conclusion that SBRM produces better rules as
compared to RBRM with respect to the MLQMs.

4.3.3 Comparing SBRM with RDBRM (RQ3)
To answer RQ3, we compared SBRM with RDBRM iteration-wise
as well as overall (i.e., combined the values for all the three
iterations) based on MLQMs (Section 4.1.3).

As shown in Table 3, the results related to all the MLQMs
except for Connected Recall and Connected F-measure for all the

iterations as well as overall
show that SBRM performed
significantly better than
RDBRM. Results for
Connected Recall
corresponding to all the
iterations as well as overall
indicate that RDBRM
performed significantly
better than SBRM. In
iteration-1, iteration-2, and

Table 2: Comparing the quality of rules produced with SBRM and RBRM – 𝑨!𝟏𝟐 and p-values for (RBRM
VS SBRM)

Evaluation metric
Iteration-1 Iteration-2 Iteration-3 Overall Overall Average
p-value 𝑨!𝟏𝟐 p-value 𝑨!𝟏𝟐 p-value 𝑨!𝟏𝟐 p-value 𝑨!𝟏𝟐 RBRM SBRM

Accuracy 0.104 0.28 0.010 0.16 0.002 0.10 <0.001 0.19 95.7% 97.2%
Connected Precision 0.161 0.31 0.054 0.24 0.026 0.20 0.002 0.27 0.945 0.957
Connected Recall 0.173 0.32 0.150 0.31 0.041 0.23 0.002 0.27 0.955 0.971
Connected F-Measure 0.186 0.32 0.088 0.27 0.025 0.20 0.001 0.25 0.950 0.964
Failed Precision 0.063 0.25 0.012 0.17 0.001 0.07 <0.001 0.19 0.966 0.982
Failed Recall 0.041 0.23 0.003 0.11 0.001 0.07 <0.001 0.16 0.965 0.978
Failed F-Measure 0.104 0.28 0.005 0.13 0.001 0.04 <0.001 0.18 0.966 0.980

This paper will be presented at GECCO-2017, Berlin, Germany

overall there is no significant difference between SBRM and
RDBRM in terms of Connected F-measure whereas in iteration-3
SBRM outperformed RDBRM. Since for five out of the seven
MLQMs, SBRM has performed significantly better than RDBRM
whereas RDBRM outperformed SBRM in terms of Connected
Recall only, it can be concluded that SBRM produces better rules
than RDBRM.

4.4 Overall Discussion
For RQ1, we noticed that NSGA-II has outperformed RS in terms
of HV, the three objectives as well as the combined. This suggests
that our problem is not trivial and requires the search.

For RQ2 and RQ3, we observed that SBRM performed
significantly better than RBRM and RSBRM for most of the
MLQMs. This is because we guide the search using previously
mined rules and generate specific configuration data that tend to
either increase or decrease the confidence of a rule. In this way,
SBRM converges more rapidly than RBRM to obtain high
confidence rules. To further investigate the performance
differences of SBRM with RBRM and RDBRM, we calculated the
relative improvement (RI) due to SBRM for all MLQMs, across
iterations. We calculated the RI with respect to RBRM as
RI S(x!"),R(x!") = S x!" − R(x!") , where S x!" and R(x!")
give the average values corresponding to the ith MLQM and jth
iterations for SBRM and RBRM, respectively. Similarly, to
calculate RI with respect to RDBRM, we applied a similar formula

as: RI S(x!"),RD(x!) = S x!" − RD x! , where RD(x!) gives

the value of the ith MLQM for RDBRM. Figure 3 and Figure 4
show the relative improvement in MLQMs due to SBRM in
comparison to RBRM and RDBRM, respectively.

Figure 3: Relative improvement by SBRM in comparison to RDBRM

From Figure 3, one can observe that compared with RDBRM,
the relative improvements of SBRM in terms of Failed Precision,
Failed Recall, and Failed F-measure are much larger than the
relative improvements of the other MLQMs, whereas it is
negative in terms of Connected Recall. This can be justified by the
fact that in SBRM we generate configurations that maximally
conform to the rules with the abnormal state (i.e., the failed
state). Also, we avoid generating configurations that conform to
the high confidence rules with the normal state (i.e., the

connected state), which
justifies the negative RI
value for Connected Recall.

Figure 4 shows that the
relative improvement in
MLQMs for SBRM as
compared to RBRM is not
large as it is in comparison
to RDBRM, which is
probably because the
sample size used for
mining the rules in SBRM

and RBRM is small (i.e., 700, 900, and 1100 for iteration-1,
iteration-2, and iteration-3, respectively). Moreover, in these
small datasets, 500 initial configurations were the same across the
datasets used for SBRM and RBRM, and only maximum 600 (i.e.,
in iteration-3) configurations were different. On the other hand,
the relative improvement for SBRM with respect to RDBRM is
large because the datasets used for RDBRM and SBRM were
different. Also, the size of the dataset used for RDBRM was large
(i.e., 3963). However, from Figure 4, we can observe an increasing
trend of the relative improvement across the three iterations,
suggesting that increasing the sample size can increase the
relative improvement.

Figure 4: Relative improvement by SBRM in comparison to RBRM

4.5 Threats to Validity
The threat to internal validity of our study is the selection of
parameter settings for the selected search algorithm, which may
affect the performance of the algorithm. To mitigate this threat,
we used default parameter settings, which have exhibited
promising results [33]. Similarly, for the machine-learning
algorithm, we also used default parameters settings, as selecting
parameter settings is application dependent [12]. The threat to
construct validity is the use of termination criteria for the search.
We used the same stopping criterion (i.e., the number of fitness
evaluations) for both NSGA-II and RS to find the optimal
solutions. Another threat can be a selection of stopping criteria
for the number of iterations and sample size used for mining the
rules. We used three iterations and during each iteration added
200 more configurations to the dataset from the previous
iteration due to practical challenges (i.e., the overall cost of the
whole process was high particularly on executing configurations
and getting corresponding call statuses, which was 50 seconds
per configuration). To assess the effect of the sample size, the
number of iterations, and different values for the thresholds used
to classify the CPL rules, we plan to conduct dedicated empirical
studies in the future.

The threat to conclusion validity is due to the random
variation inherited in search algorithms. To minimize this threat,
we repeated the experiment 10 times to reduce the effect caused
by randomness, as recommended in [24, 29]. Moreover, we also
applied the Mann-Whitney test to determine the statistical
significance of the results and the Vargha and Delaney 𝐴!"

-10%	

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

Accuracy	 Connected	
Precision	

Connected	
Recall	

Connected	F-
Measure	

Failed	
Precision	

Failed	Recall	 Failed	F-
Measure	

3.64%	 2.2%
-2.4% 0%

17.8%

71%

58%

4.24%	 2.2%
-2.5% 0%

18.7%

71.8%

58.9%

4.94%	 2.4%
-1.9% 0.4%

19.2%

72.5%

59.5% IteraCon	1	
IteraCon	2	
IteraCon	3	

0.0%	

0.5%	

1.0%	

1.5%	

2.0%	

2.5%	

Accuracy	 Connected	
Precision	

Connected	
Recall	

Connected	
F-Measure	

Failed	
Precision	

Failed	
Recall	

Failed	F-
Measure	

1.1%	

0.5%	

1.1%	

0.8%	

1.3%	

0.8%	
1%

1.5%	
1.3%	 1.3%	 1.4%	 1.5%	 1.4%	 1.5%	

2.1%	

1.6%	

2.3%	
2% 1.9%	

1.7%	 1.8%	

IteraCon	1	

IteraCon	2	

IteraCon	3	

Table 3: Comparing the quality of rules produced with SBRM and RDBRM– 𝑨!𝟏𝟐 and p-values for
(RDBRM VS SBRM)

Evaluation metric
Iteration-1 Iteration-2 Iteration-3 Overall Actual values

RDBRM p-value 𝑨!𝟏𝟐 p-value 𝑨!𝟏𝟐 p-value 𝑨!𝟏𝟐 p-value 𝑨!𝟏𝟐
Accuracy <0.001 0.00 <0.001 0.00 <0.001 0.00 <0.001 0.00 92.96%
Connected Precision 0.001 0.10 <0.001 0.00 <0.001 0.00 <0.001 0.03 0.934
Connected Recall <0.001 1.00 <0.001 1.00 <0.001 1.00 <0.001 1.00 0.994
Connected F-Measure 0.418 0.40 0.418 0.60 0.012 0.200 0.135 0.400 0.963
Failed Precision <0.001 0.00 <0.001 0.00 <0.001 0.00 <0.001 0.00 0.796
Failed Recall <0.001 0.00 <0.001 0.00 <0.001 0.00 <0.001 0.00 0.260
Failed F-Measure <0.001 0.00 <0.001 0.00 <0.001 0.00 <0.001 0.00 0.392

This paper will be presented at GECCO-2017, Berlin, Germany
statistics as the effect size measure, which are recommended for
randomized algorithms [29]. The first threat to external validity
is the selection of search algorithm for our study. To reduce this,
we selected the most widely used NSGA-II algorithm that has
shown promising results in different contexts [20, 22]. The
second threat to external validity is the selection of algorithms
for rule mining. To tackle this threat, we selected PART, which
has proven to be more effective as compared to other well-known
algorithms [15, 34]. The third threat to external validity is that
we evaluated our approach using only one case study. To
mitigate this, we used a real case study, the Cisco Video
Conferencing Systems, which contains typical communicating
products across multiple product lines. However, a generalization
of the results requires additional experiments. In future, we plan
to conduct an empirical study using several case studies to
evaluate different search algorithms and machine-learning
algorithms.

5. RELATED WORK
Search algorithms have been used to solve many problems in the
context of PLE [35-37]. Since we are focusing on rule mining;
therefore, we only discuss existing studies related to rule mining
using machine-learning techniques in the context of PLE. In
Section 5.1, we discuss dedicated approaches that focus on
mining rules from different artifacts (e.g., source code,
configuration file, feature model). In Section 5.2, we discuss
approaches such as feature extraction, feature construction and
feature recommendation, which mine crosstree constraints.

5.1 Dedicated Rule Mining Approaches
The work in [12] applies Binary Decision Tree-J48 (machine
learning algorithm) to infer the constraints from a set of
randomly generated product configurations. To classify the
configurations as faulty and non-faulty, a computer vision
algorithm was used as an oracle. To validate the approach, it was
applied to an industrial video generator product line. Rules were
evaluated based on expert’s opinion and machine-learning
measurements such as Precision and Recall. Results show that on
average 86% Precision and 80% Recall rate can be achieved using
the proposed approach.

In [38], Yi et al. proposed an approach to mine the crosstree
binary constraints (i.e., requires, excludes) corresponding to a
feature model. The approach takes a feature model as input
containing the features, their descriptions, and some known
crosstree binary constraints. First, it trains LIBSVM classifier (an
extension of support vector machine) with existing crosstree
binary constraints where the parameters of the classifier are
optimized using the genetic algorithm to minimize the error rate
of the classifier. Second, it extracts all the feature pairs, and
finally, the optimized classifier finds the candidate features of
binary constraints. The approach was validated using two feature
models collected from SPLOT repository. Results show that rules
with high Recall (i.e., close to 100%) and the variable low Precision
(on average 42%) can be achieved using proposed approach.

In [39], another approach is presented for mining the
crosstree constraints. It constructs configuration matrix (i.e.,
product-features matrix) from configuration files and extracts
crosstree constraints using an association rule mining technique
(i.e., Apriori algorithm). Rules are pruned using minimum
support and minimum confidence thresholds. The approach was
evaluated using a large-scale industrial software product line for
embedded systems. The evaluation shows that a large number of
rules with variable support (i.e., 80% to 99%) and confidence (i.e.,
90% to 100%) can be identified. The majority of the rules were
identified with support ranging from 80% to 85%.

In [40], an approach is presented to extract configuration
constraints from existing C codebases using static analysis. It
uses build time errors (e.g., pre-processor, parser, type, and link
errors) as the oracle to classify the low-level system
configurations (i.e., build and code files) and mine the constraints.
To assess the accuracy of extracted rules, they were compared
with the existing constraints specified in developer’s created
variability models. The approach was validated using four open
source case studies (uClibc, BusyBox, eCos, and the Linux
kernel). Results show that up to 19% of the total constraints can
be recovered automatically from the source code, which assures
successful build with the accuracy of 93%. In [13], an extension of
[40] is presented in which the authors improved the static
analysis and increased the recoverability rate by 9%. Additionally,
an empirical study is also presented that identifies the sources of
constraints.

5.2 Non-Dedicated Rule Ming Approaches
In [41], Czarnecki et al. proposed an extension of feature model
called probabilistic feature model. To extract crosstree constraints
from existing formally defined products, a rule mining process is
presented that uses association-mining techniques to mine the
constraints. The proposed mining process was applied on a small
case study of Java Applets. Rules were evaluated based on
machine-learning measurements (i.e., support and confidence).

In [42], an approach is proposed to model and recommend
product features for any particular domain based on the product
description provided by the domain expert. To mine association
rules between product features, association rule mining
techniques are applied to configuration matrix (i.e., product-
features matrix). The proposed approach was validated with 20
different product categories using product descriptions available
at SoftPedia [43]. Hariri et al. [44] extend the work presented in
[42]. In [44], different clustering algorithms used to cluster the
features and construct products by feature matrix were
compared. The evaluation was also improved by applying the
approach on diverse domains as well as a large project of a
software suite for remote collaboration. Results show that rules
with different Precision and Recall rates can be mined according
to the threshold set for the confidence.

The work in [6] presents an approach to synthesize attributed
feature models (AFM) from a set of product descriptions in the
form of tables (i.e., configuration matrix). An algorithm is
proposed that uses implication graph and mutex graph
constructed from configuration matrix to extract the crosstree
constraints. For extracting the relational constraints defined on
values of attributes, the algorithm uses domain knowledge or
selects the boundary values of attributes randomly when domain
knowledge is not provided. The approach was validated using
random configuration matrices as well as a real-world case study.
Results show that the proposed algorithm can be used to mine a
large number of rules for large-scale case studies.

Davril et al. [45] proposed an approach to construct a feature
model automatically from informal product descriptions available
over the Internet. To mine the implication rules of features, CFP-
growth algorithm and Apriori algorithm are applied on
configuration matrix (i.e., product-features matrix). The proposed
approach was applied to a case study of antivirus software using
the product descriptions available at SoftPedia [43].

5.3 Summary
All the approaches discussed above focus on mining binary
crosstree constraints (requires and excludes) between different
features of a product line or constraints on features’ attributes. In
our study, we focus on mining rules between configuration

This paper will be presented at GECCO-2017, Berlin, Germany
parameters and system behaviors of interacting products across
product lines. Additionally, we defined three objectives (Section
3.2) for generating configuration data, which are fed to the
machine-learning tool in order to refine rules. To evaluate the
quality of rules, all the approaches discussed above have used
machine-learning quality measurements (e.g., Precision). We also
evaluated the quality of constraints based on machine-learning
quality measurements. Additionally, we also compared the rules
produced using SBRM with the rules mined based on real data.

6. CONCLUSION
We presented an incremental and iterative approach (named as
SBRM) for mining rules for configurations of communicating
products belonging to different product lines. To mine rules, we
combine multi-objective search with machine learning
techniques. To use the search in the rule mining process, we
defined three objectives and integrated them with the widely
used multi-objective optimization algorithm—NSGA-II. We
compared SBRM with RS based approach (RBRM) in terms of the
three objectives, HV, and machine learning quality
measurements. The results of the statistical tests show that SBRM
performed significantly better than RBRM for all the three
objectives, HV, and machine learning quality measurements. In
comparison with the rules mined based on real data (RDBRM),
SBRM has performed significantly better particularly for Failed
Precision, Failed Recall, and Failed F-measure where SBRM
improved them by 18%, 72%, and 59% respectively, when
compared with RDBRM.

Acknowledgement. This work was supported by the Zen-
Configurator project funded by the Research Council of Norway
(grant no. 240024/F20) under the category of Young Research
Talents of the FRIPO funding scheme. Tao Yue and Shaukat Ali
are also supported by RCN funded MBT4CPS project, RFF
Hovedstaden funded MBE-CR project, EU Horizon 2020 funded
U-Test project, RCN funded Certus SFI, and the EU COST action
MPM4CPS.

REFERENCES
[1] Holl, G., Grünbacher, P., and Rabiser, R., 2012. A systematic review and an expert

survey on capabilities supporting multi product lines. Information and Software
Technology 54, 8, 828-852.

[2] Rosenmüller, M. and Siegmund, N., 2010. Automating the Configuration of Multi
Software Product Lines. In VaMoS (2010), 123-130.

[3] Video Conferencing Systems. http://www.cisco.com/.
[4] ULMA Handling Systems. http://www.ulmahandling.com.
[5] Yue, T., Ali, S., and Selic, B., 2015. Cyber-Physical System Product Line Engineering:

Comprehensive Domain Analysis and Experience Report. In Software Product Line
Conference (2015), ACM, 338-347.

[6] Bécan, G., Behjati, R., Gotlieb, A., and Acher, M., 2015. Synthesis of attributed feature
models from product descriptions. In 19th International Conference on Software
Product Line (2015), ACM, 1-10.

[7] Nie, K., Yue, T., Ali, S., Zhang, L., and Fan, Z., 2013. Constraints: the core of
supporting automated product configuration of cyber-physical systems. In Model-
Driven Engineering Languages and Systems, Springer, 370-387.

[8] Safdar, S.A., Yue, T., Ali, S., and Lu, H., 2016. Evaluating Variability Modeling
Techniques for Supporting Cyber-Physical System Product Line Engineering. In
International Conference on System Analysis and Modeling (2016), Springer, 1-19.

[9] Lu, H., Yue, T., Ali, S., and Zhang, L., 2015. Model-based Incremental Conformance
Checking to Enable Interactive Product Configuration. Information and Software
Technology, 72, 68-89.

[10] Lu, H., Yue, T., Ali, S., and Zhang, L., 2016. Nonconformity Resolving
Recommendations for Product Line Configuration. In International Conference on
Software Testing (2016), IEEE, 57-68.

[11] Lu, H., Yue, T., Ali, S., Kunming, N., and Li, Z., 2014. Zen-CC: An Automated and
Incremental Conformance Checking Solution to Support Interactive Product
Configuration. In 25th International Symposium on Software Reliability Engineering
(2014), IEEE, 13-22.

[12] Temple, P., Duarte, J.a.G., Acher, M., and Jézéquel, J.-M., 2016. Using Machine
Learning to Infer Constraints for Product Lines. In Software Product Line Conference
(2016), ACM, 209-218.

[13] Nadi, S., Berger, T., Kästner, C., and Czarnecki, K., 2015. Where do configuration
constraints stem from? an extraction approach and an empirical study. IEEE
Transactions on Software Engineering 41, 8, 820-841.

[14] Witten, I.H., Frank, E., and Hall, M.A., 2011. Data Mining: Practical machine
learning tools and techniques. Morgan Kaufmann.

[15] Frank, E. and Witten, I.H., 1998. Generating accurate rule sets without global
optimization. In 15th International Conference on Machine Learning (1998), 144-151.

[16] Satti, A., Cercone, N., and Keselj, V., 2004. Experiments in Web Page Classification
for Semantic Web. In Workshop on Web-based Support Systems (2004), 137-141.

[17] Mcminn, P., 2004. Search-based software test data generation: a survey. Software
Testing Verification and Reliability 14, 2, 105-156.

[18] Ali, S., Iqbal, M.Z., Arcuri, A., and Briand, L.C., 2013. Generating test data from OCL
constraints with search techniques. IEEE Transactions on Software Engineering 39, 10,
1376-1402.

[19] Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T., 2002. A fast and elitist
multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary
Computation, 6, 2, 182-197.

[20] Sarro, F., Petrozziello, A., and Harman, M., 2016. Multi-objective software effort
estimation. In 38th International Conference on Software Engineering (2016), ACM,
619-630.

[21] Pradhan, D., Wang, S., Ali, S., and Yue, T., 2016. Search-Based Cost-Effective Test
Case Selection within a Time Budget: An Empirical Study. In Genetic and
Evolutionary Computation Conference (2016), ACM, 1085-1092.

[22] Pradhan, D., Wang, S., Ali, S., Yue, T., and Liaaen, M., 2016. STIPI: Using Search to
Prioritize Test Cases Based on Multi-objectives Derived from Industrial Practice. In
International Conference on Testing Software and Systems (2016), Springer, 172-190.

[23] Wang, S., Buchmann, D., Ali, S., Gotlieb, A., Pradhan, D., and Liaaen, M., 2014.
Multi-objective test prioritization in software product line testing: an industrial case
study. In 18th International Software Product Line Conference (2014), ACM, 32-41.

[24] Wang, S., Ali, S., Yue, T., Li, Y., and Liaaen, M., 2016. A Practical Guide to Select
Quality Indicators for Assessing Pareto-based Search Algorithms in Search-Based
Software Engineering. In International Conference on Software Engineering (2016),
ACM, 631-642.

[25] Nebro, A.J., Luna, F., Alba, E., Dorronsoro, B., Durillo, J.J., and Beham, A., 2008.
AbYSS: Adapting scatter search to multiobjective optimization. IEEE Transactions on
Evolutionary Computation, 12, 4, 439-457.

[26] Sokolova, M. and Lapalme, G., 2009. A systematic analysis of performance measures
for classification tasks. Information Processing & Management 45, 4, 427-437.

[27] Han, J., Pei, J., and Kamber, M., 2011. Data mining: concepts & techniques. Elsevier.
[28] Durillo, J.J. and Nebro, A.J., 2011. jMetal: A Java framework for multi-objective

optimization. Advances in Engineering Software 42, 10, 760-771.
[29] Arcuri, A. and Briand, L., 2011. A practical guide for using statistical tests to assess

randomized algorithms in software engineering. In 33rd International Conference on
Software Engineering (2011), IEEE, 1-10.

[30] Ali, S. and Smith, K.A., 2006. On learning algorithm selection for classification.
Applied Soft Computing 6, 2, 119-138.

[31] Mann, H.B. and Whitney, D.R., 1947. On a test of whether one of two random
variables is stochastically larger than the other. The annals of mathematical statistics,
50-60.

[32] Vargha, A. and Delaney, H.D., 2000. A critique and improvement of the CL common
language effect size statistics of McGraw and Wong. Journal of Educational and
Behavioral Statistics 25, 2, 101-132.

[33] Arcuri, A. and Fraser, G., 2011. On parameter tuning in search based software
engineering. In Search Based Software Engineering, Springer, 33-47.

[34] Holmes, G., Hall, M., and Prank, E., 1999. Generating rule sets from model trees. In
Australasian Joint Conference on Artificial Intelligence (1999), Springer, 1-12.

[35] Lopez-Herrejon, R.E., Linsbauer, L., and Egyed, A., 2015. A systematic mapping
study of search-based software engineering for software product lines. Information and
Software Technology 61, 33-51.

[36] Harman, M., Jia, Y., Krinke, J., Langdon, W.B., Petke, J., and Zhang, Y., 2014. Search
based software engineering for software product line engineering: a survey and
directions for future work. In 18th International Software Product Line Conference
(2014), ACM, 5-18.

[37] Wang, S., Ali, S., and Gotlieb, A., 2014. Cost-effective test suite minimization in
product lines using search techniques. Journal of Systems and Software, 370-391.

[38] Yi, L., Zhang, W., Zhao, H., Jin, Z., and Mei, H., 2012. Mining binary constraints in
the construction of feature models. In 20th International Requirements Engineering
Conference (2012), IEEE, 141-150.

[39] Zhang, B. and Becker, M., 2013. Mining complex feature correlations from software
product line configurations. In 7th International Workshop on Variability Modelling of
Software-intensive Systems (2013), ACM, 19-25.

[40] Nadi, S., Berger, T., Kästner, C., and Czarnecki, K., 2014. Mining configuration
constraints: Static analyses and empirical results. In 36th International Conference on
Software Engineering (2014), ACM, 140-151.

[41] Czarnecki, K., She, S., and Wasowski, A., 2008. Sample spaces and feature models:
There and back again. In 12th International Software Product Line Conference (2008),
IEEE, 22-31.

[42] Dumitru, H., Gibiec, M., Hariri, N., Cleland-Huang, J., Mobasher, B., Castro-Herrera,
C., and Mirakhorli, M., 2011. On-demand feature recommendations derived from
mining public product descriptions. In 33rd International Conference on Software
Engineering (2011), IEEE, 181-190.

[43] Softpedia. http://www.softpedia.com.
[44] Hariri, N., Castro-Herrera, C., Mirakhorli, M., Cleland-Huang, J., and Mobasher, B.,

2013. Supporting domain analysis through mining and recommending features from
online product listings. IEEE Transactions on Software Engineering 39, 12, 1736-
1752.

[45] Davril, J.-M., Delfosse, E., Hariri, N., Acher, M., Cleland-Huang, J., and Heymans, P.,
2013. Feature model extraction from large collections of informal product descriptions.
In 9th Joint Meeting on Foundations of Software Engineering (2013), ACM, 290-300.

