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ABSTRACT 
Nowadays, an increasing number of systems are being developed 
by integrating products (belonging to different product lines) that 
communicate with each other through information networks. 
Cost-effectively supporting Product Line Engineering (PLE) and 
in particular enabling automation of configuration in PLE is a 
challenge. Capturing rules is the key for enabling automation of 
configuration. Product configuration has a direct impact on 
runtime interactions of communicating products. Such products 
might be within or across product lines and there usually don’t 
exist explicitly specified rules constraining configurable 
parameter values of such products. Manually specifying such 
rules is tedious, time-consuming, and requires expert’s 
knowledge of the domain and the product lines. To address this 
challenge, we propose an approach named as SBRM that 
combines multi-objective search with machine learning to mine 
rules. To evaluate the proposed approach, we performed a real 
case study of two communicating Video Conferencing Systems 
belonging to two different product lines. Results show that SBRM 
performed significantly better than Random Search in terms of 
fitness values, Hyper-Volume, and machine learning quality 
measurements. When comparing with rules mined with real data, 
SBRM performed significantly better in terms of Failed Precision 
(18%), Failed Recall (72%), and Failed F-measure (59%).  

CCS CONCEPTS 
• Software and its engineering → Search-based software 
engineering; Software product lines 

KEYWORDS 
Rule Mining; Multi-Objective Search; Configuration; Machine 
Learning; Product Line. 

1. INTRODUCTION 
Product Line Engineering (PLE) is a well-acknowledged paradigm 
to improve the productivity of developing products with higher 
quality and at a lower cost. By benefiting from PLE, more and 
more systems are developed by integrating products, which 
belong to different product lines, and communicate and interact 
with each other through information networks [1, 2]. Examples 
of such systems include video conferencing systems (VCSs) [3] 
and material handling systems [4]. Such systems are highly 
configurable by presenting the users with configuration options. 
Consequently, at runtime, several products belonging to multiple 
product lines communicate (e.g., via information networks) with 
each other [1, 2] under various configurations. Thus, the runtime 
behavior of such systems not only depends on the configuration 
of these communicating products but is also influenced by the 
communication medium. Note that the configuration in our 
context indicates numerous configurable parameters exposed to 
users after the system is deployed.  

Cost-effective PLE is challenging mainly because of the lack 
support of automation of the configuration process [5, 6]. 
Capturing rules is the key to enabling automation of various 
configuration functionalities (e.g., consistency checking, decision 
propagation, and decision ordering) [7-11]. In our context, such 
rules describe how configurations of communicating products 
belonging to different product lines influence their runtime 
interactions via information networks. 

We name rules constraining configurations (values assigned 
to configurable parameters) of products belonging to different 
product lines as Cross Product Lines (CPL) rules. CPL rules are of 
significant importance for mainly two reasons. First, CPL rules 
can be used to identify invalid configurations where products 
may fail to interact with a confidence level due to, e.g., 
dependencies on external libraries and/or platforms. Identified 
invalid configurations can help developers to maintain current 
products or evolve future products. Second, CPL rules can 
provide support to enable (automated or semi-automated) 
configuration of products of future deployments. However, the 
literature does not provide sufficient support to mine such rules, 
as current practice mainly focuses on mining rules constraining 
product configurations within a single product line [6, 12]. 

CPL rules need to be captured by running the system due to 
the information only known at runtime, e.g., dependencies on 
external libraries and/or platforms. As mentioned in [13], rules 
that ensure correct runtime behaviors can be identified from 
either domain knowledge or testing of the system. Manually 
specifying such rules based on domain knowledge is tedious and 
time-consuming, and heavily relies on expert’s knowledge of the 
domain and the product lines. Identifying CPL rules via testing 
has its own challenges, as the configuration space is typically 
very large and testing candidate configurations is often infeasible. 
Besides, in practice testers often use valid configurations to test 
the system [13]. Therefore, identifying CPL rules requires a 
dedicated approach that automatically obtains rules without 
exploring all possible configurations of the communicating 
products belonging to different product lines.  

In [12], a rule mining approach is proposed that mines rules 
for a product line where product configurations belonging to one 
product line are generated randomly and labeled as faulty and 
non-faulty. Labeled product configurations are inputted to the 
classification algorithm of j48 [14] to mine rules. However, 
randomly generating configurations to mine rules is a brute-force 
way and time-consuming. In this work, we advance one step 
further by employing search to generate product configurations 
intelligently using three heuristics (Section 3.2), instead of 
randomly generating product configurations.  

We propose an approach, named as Search-based Rule Mining 
(SBRM), which combines multi-objective search with machine-
learning techniques, to mine CPL rules in an incremental and 
iterative way. SBRM obtains CPL rules with different degrees of 
confidence (i.e., the probability of being correct) with an 
emphasis on mining rules that can reveal invalid configurations 
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[15]. Instead of collecting a large 
amount of data required for machine 
learning all in once, we obtain the input 
data incrementally with multiple 
iterations. During each iteration, we 
use the rules mined from the previous 
iteration to guide the search for 
generating configuration data for the 
current iteration. The generated 
configuration data are combined 
together with those from all the 
previous iterations in order to 
incrementally refine the 
aforementioned rules. SBRM is validated using a real world case 
study of VCSs, where two products belonging to different 
product lines communicate (i.e., call) with each other.  

We summarize the key contributions of the paper below: 
• SBRM to mine CPL rules constraining configurations of 

communicating products across product lines.  
• Three objectives to guide the search for generating 

configuration data in order to refine CPL rules. 
• Evaluating SBRM by performing a real world case study of 

two communicating VCSs belonging to different product lines. 
With the case study, we compared the performance of NSGA-
II with Random Search (RS) using fitness values, Hyper-
Volume (HV), and machine learning quality measurements. 
Additionally, we compared the rules mined using SBRM with 
the rules mined with real data extracted from test case 
execution logs.  
Evaluation results show that SBRM is effective to produce 

high-quality rules as compared to RS based rule mining approach 
(i.e., called RBRM). Results also indicate that SBRM produces 
better rules as compared to the rules mined based on real data 
extracted from test case execution logs. 

The rest of the paper is organized as follows: In Section 2, we 
give an overview of SBRM followed by the search-based 
approach for generating configuration data in Section 3. In 
Section 4, we present the experiment design, execution, and 
results. Section 5 summarizes the literature review and finally, in 
Section 6, we conclude the work.  

2. OVERVIEW 
Figure 1 presents an overview of our proposed approach (SBRM), 
which relies on machine learning and multi-objective search to 
mine CPL rules. At the first step, an initial set of configuration 
data is generated randomly for the selected products belonging to 
different product lines. At the second step, selected products are 
configured with the randomly generated configuration data, and 
certain functionalities of the products are executed such that the 
selected products interact with each other via information 
networks (e.g., the Internet), and the states of the system are 
captured to know if they interact via communication network 
successfully. An interaction, in our context, can be defined as an 
action in which two or more objects (e.g., system, product, or 
component) are collaborating, communicating, or influencing 
each other. There does not exist a generic way of enabling 
interactions among various products of a system via 
communication networks as well as capturing the system states 
as it depends on the application domain of the system under 
study and its involved functionalities.  

In step 3, we feed the set of generated configuration data (as 
Attributes) and their corresponding system states (as Classes) to 
Weka [14] as the initial input and apply the Pruning Rule-Based 
Classification algorithm (PART) [15] to mine the initial set of 
rules, which are consequently fed to NSGA-II for generating 

configuration data for the next iteration in step 4. Though C4.5 
and RIPER are the two well-known algorithms, which generate 
rules based on decision trees [14, 15], C4.5 is expensive in terms 
of computation time since the process of generating/pruning 
rules is complex and requires global optimization. In the case of 
RIPPER, it suffers from over-pruning (hasty generalization) 
problem [16]. PART [15] combines these two paradigms while 
avoiding their shortcomings by generating partially pruned 
decision trees and inducing one rule corresponding the longest 
branch of each partial tree. In step 5, we repeat step 2 but take 
the configuration data generated from the search instead of the 
random one. In step 6, we combine all the configuration data 
generated from steps 1 and 4 and collected system states captured 
from steps 2 and 5, and feed all the data to Weka to mine a 
refined set of rules. This rule set is then used in the next iteration 
(starting from step 4) to generate more configuration data and 
further refine the rules.  

In each iteration, newly generated configuration data with 
collected system states are added to the dataset from the previous 
iteration to mine a new set of rules. We repeat the process until 
we meet the stopping criteria, e.g., a fixed number of iterations 
and/or when the rules generated from two consecutive iterations 
are similar. Fixed number of iterations is useful when we have 
limited available resources for mining rules. Getting similar rules 
from consecutive iterations indicates that it is very unlikely to 
refine the rules further. We consider step 4, i.e., using search to 
generate configuration data, as the innovative part of the whole 
approach, i.e., SBRM. This is because using Weka to mine rules is 
a simple application of the PART algorithm and applying search 
requires carefully designing a fitness function. Therefore, in 
Section 3, we present how search is used for generating 
configuration data (step 4) and the evaluation of SBRM is 
presented in Section 4. 

3. SEARCH-BASED APPROACH  
Sections 3.1 presents definitions required to define the 
configuration data generation problem. Section 3.2 presents the 
objectives and measures, followed by the fitness function defined 
in Section 3.3.  

3.1 Definition and Problem Representation  
CP = {cp!, cp!, . . , cp!"# } represents a set of configuration 
parameters with the total number being ncp. For each cp!, CPV! 
represents a set of possible values:  ncpv is the total number of 
unique values (i.e., configuration space) for all the configuration 
parameters, which can be calculated as: ncpv = CPV!

!"#
!!! . 

Figure 2 shows four sanitized configuration parameters (cp1-cp4) 
from our case study. For example, cp1 represents the protocol 
(e.g., related to video conference over IP networks) of product P1, 
which can be configured with four different values (e.g., Pro-1). 

 
Figure 1: Overview of the proposed approach (SBRM) 
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Figure 2: Examples of sanitized configuration parameters and CPL rules 

R! = {r!", r!", r!",… , r!!"}  represents nnr  rules associated 
with normal states of the system, where the selected products 
interact as intended.  R! = {r!", r!", r!",… , r!"#}  represents nar 
rules related with abnormal states of the system where 
interactions between the selected products interact unexpectedly 
(Category-III). Cf r!  represents the confidence of r! , which is 
between 0 and 1. Confidence for a rule can be calculated as 

Cf r! = !"!! !!
!!!! !!

, where SP! represents the number of instances for 

which r! holds true (i.e., support) and V! represents the number of 
instances that violate r! (i.e., violation). An instance represents a 
set of values for configurable parameters of the selected products 
and corresponding system states. Based on confidence, support, 
and violation we further classify the R! into two categories using 
two thresholds: High confidence rules (Category-I) where 
Cf r! > TH1  and (SP! + V!) > TH2  and Low confidence rules 
(Category-II) where Cf r! ≤ TH1 or (SP! + V!) ≤ TH2. Note that 
we used 0.9 (TH1) and 10 (TH2) for our experiment to classify 
CPL rules. Analyzing the effect of these thresholds on the 
performance of SBRM requires further investigation. In Figure 2, 
we present three sanitized CPL rules (r1-r3) mined for the case 
study. For example, r3 describes that if the encryptions of 
products P1 and P2 are set to Enc-1 and Enc-2 respectively, the 
call will fail. S = s!, s!,… , s!" represents potential configuration 
solutions, where  ns = (|CPV!|)

!"#
! , which is approximately 

1.03e33 for our case study. Each solution s! has a set of 
configuration values for ncp configuration parameters such that 
s! = cpvs!"… cpvs!"#$ .  E! = e!, e!,… , e!" is a set of 
effectiveness measures for evaluating solution s!. 

We can then formulate the configuration generation problem 
as searching a non-dominant solution set S! from ns solutions to 
obtain the highest effectiveness. 

∀!!∈ !!  ∀!!! !" !" ∀!!! !" !" ∃ Effect(s!, e!) > Effect (s!, e!)  
 Λ  s! ∉  S!  (1) 

Effect (s!, e!) refers to the jth effectiveness measure of solution s!.  

3.2 Objectives and Effectiveness Measures  
The objectives are defined based on the three categories of rules 
(Section 3.1). Before presenting the objectives and effectiveness 
measures, we first define the distance function that is used to 
assess the effectiveness measures. The distance function indicates 
to what extent a configuration solution conforms to a rule. 

D r!, s =  ! !"!, !"#!!"
!!!

!"#
 (2) 

where 𝐷 𝑟! , 𝑠  calculates the 
distance between rule r!  and 
solution s . In equation (2), 
d cl!, cpv!  calculates the branch 
distance between a clause cl! 
from rule r!  and corresponding 
configuration value cpv!  from 
solution s. MCL is the maximum 
number of clauses in all the 

rules. To calculate the distance between cl! and cpv! as a branch 
distance, we use the distance calculation formula provided in [17, 
18]. 

3.2.1 Avoid configuration data satisfying or close to satisfying high 
confidence rules with normal states 
This objective is to avoid generating configuration data that 
completely or close to satisfy the rules in Category-I. The 
effectiveness measure (AHNS)  corresponding to this objective 
can be calculated as:  
AHNS R!, s = Cf r! ∗ D r!, s  | !!"

!!! Cf r! > TH1 && SP! +
 V! > TH2 (3) 

where  AHNS R!, s  takes R!  (the set of rules related to the 
normal states) and one solution s  as input and gives the 
effectiveness measure as output. To determine AHNS , we 
calculate the sum of weighted distances for all rules in Category-
I, where the confidence of each rule is greater than threshold 
TH1 (i.e., 90%) and the sum number of support and violation 
instances for each rule is more than TH2 (i.e., 10). Weighted 
distance of r! is calculated by multiplying Cf r!  with D r!, s .  

3.2.2  Generate configuration data satisfying or close to satisfying 
low confidence rules with normal states 
This objective is to generate configuration data within the 
configuration space that satisfy Category-II as well as its nearby 
space. The nearby space contains configuration data for which 
the distance to the rules in Category-II is close to 0 but not 
exactly 0. These configuration data might help to either improve 
the confidence of correct rules by increasing their support or 
filter out incorrect ones by increasing their violation and hence 
reducing their confidence. The effectiveness measure (NLNS) 
related to the second objective can be calculated as: 

NLNS R!, s = Cf r! ∗ (1 − D r!, s ) | 
!!"
!!! Cf r! ≤

TH1 || SP! +  V! ≤ TH2 (4) 

where NLNS R!, s  takes R! (the set of rules associated with the 
normal states) and solution s as input and outputs NLNS. Since 
we want to explore the configuration space near the 
configuration data satisfying the rules in Category-II, 
configuration data with a smaller distance to the rules in 
Category-II is preferred. Therefore, we use (1 − D r!, s ) in the 
NLNS R!, s . To calculate NLNS, we calculate the sum of the 
weighted distance (i.e., calculated by multiplying Cf r!  with 
(1 − D r!, s )) of a solution to all the rules in Category-II, where 
the confidence of each rule is less than or equals to TH1 (i.e., 90%) 
or the sum number of support and violation instances for each 
rule is less or equal to TH2 (i.e., 10).  

3.2.3 Generate configuration data satisfying or close to satisfying 
rules with abnormal states 
This objective is to generate configuration data within the 
configuration space that satisfy Category-III and its nearby space. 
The rules in Category-III are of high interest in our context 
because they indicate situations where interactions of the 

Table 1: Overview of the experiment design* 

RQ Tasks Description  Evaluation metrics  Algorithm’s Parameters Statistical tests 
RQ1 T1 Comparing fitness 

values and HV 
− Individual objectives 

and Overall Fitness 
− HV 

− Population size = 200 
− maxEvaluations = 20K 
− Crossover rate = 0.9 
− Mutation rate 

=1/(Total number of 
configuration 
parameters) 

− Total runs = 10 

Man-Whitney 
U-test and 
Vargha and 
Delaney 𝐴!!" 
 

RQ2
RQ3 

T2  
T3 

Comparing rule 
sets based machine-
learning quality 
measurements 

− Accuracy (%) 
− F/C Precision (%) 
− F/C Recall (%) 
− F/C F-Measurement  

* F= Failed (Abnormal state), C=Connected (Normal state) 
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selected products fail. The effectiveness measure (NAS) for this 
objective can be calculated as: 

NAS R!, s = Cf r! ∗ 1 − D r!, s
!"#
!!!  (5) 

where  NAS R!, s  takes rule set R!  (related to the abnormal 
states) and solution s as input. To calculate NAS, we calculate the 
sum of weighted distances for all the rules in R! (Category-III). 

3.3 Fitness Function 
We first normalize the three effectiveness measures with 

nor F x = ! ! !!!"#

!!"#!!!"#
, where F x  is an effectiveness measure 

function, F!"# and F!"# are the maximum and minimum values 
of the effectiveness measure. For AHNS , F!"#  is 0 when the 
distance between all the rules in Category-I and solution s is 0. 
F!"# can be calculated as Cf r!!!"

!!!  where the distance between 
all the rules in Category-I and solution s is 1. For NLNS and NAS, 
F!"#  is 0 when the distance between all the rules in the 
corresponding category and solution s is 1. Corresponding to 
NLNS  and NAS , F!"#  can be calculated as Cf r!!!"

!!!  and 
Cf r!!"#

!!!  respectively, where the distance between all the rules 
and solution s is 0. 

With the three effectiveness measures, we define the fitness 
function based on the three objectives as follow: 

F O! = 1 − Nor (AHNS R!, s )   (6) 

F O! = 1 − Nor (NLNS R!, s )   (7) 

F O! = 1 − Nor (NAS R!, s   (8) 

Note that, in the above equations, we define our search problem 
as a minimization problem by subtracting each normalized 
effectiveness measure from 1 to ensure that a solution with a 
value closer to 0 is better.  

The fitness function with the three objectives is combined 
with NSGA-II to address the optimization problem. We 
implemented our problem in jMetal by encoding all the 
configuration parameters in the solution s as integer variables, 
where a variable cp! holds a value cpv!" such that cpv!" ∈ CPV!. 
Initially, all variables in s are initialized with random values. 
During the search, SBRM generates optimized solutions guided 
by the fitness function.  

4. EVALUATION  
We present experiment setup in Section 4.1, execution in Section 
4.2, and results in Section 4.3. In Section 4.4, we present overall 
discussion and Section 4.5 presents threats to validity. 

4.1 Experimental Setup 
First, we present the experiment design including research 
questions (Section 4.1.1) followed by the case study (Section 4.1.2) 
and evaluation metrics (Section 4.1.3). Lastly, we present 
evaluation tasks, parameter settings, and statistical tests used for 
analysis (Section 4.1.4). 

4.1.1 Research Questions 
In SBRM, we apply commonly used NSGA-II [19-21] for 
generating configuration data as NSGA-II has proven to be 
effective for solving various software engineering problems such 
as test case prioritization and cost estimation [20, 22]. 

The goal of the evaluation is to assess if combining machine 
learning with NSGA-II in the rule mining process can improve 
the quality of rules. As RS is typically used as the comparison 
baseline [22, 23]; therefore, we investigate if NSGA-II is effective 
to solve the configuration generation problem and then compare 
the quality of rules produced from SBRM (with NSGA-II) with 
rules mined by RS based approach (i.e., called RBRM). To further 

assess the effectiveness of SBRM, we also compare rules mined 
from SBRM with rules mined from real data extracted from test 
case execution logs (i.e., called RDBRM). Thus, the evaluation is 
designed to answer the following three research questions: 
RQ1. Is NSGA-II effective to solve the configuration generation 

problem as compared to RS?  
RQ2. Does SBRM produce better quality rules than RBRM in 

terms of machine learning measurements? 
RQ3. Does SBRM produce better quality rules than RDBRM in 

terms of machine learning measurements? 

4.1.2 Case Study 
Cisco Systems, Norway provides a variety of VCSs to facilitate 
high-quality virtual meetings [23]. Cisco has developed several 
product lines for VCS including C-Series, MX-Series, and SX-
Series [3]. Each product from these different product lines has a 
large number of configuration parameters (e.g., Protocol and 
Encryption), which need to be configured before making calls. 
For each VCS we have a set of state variables representing the 
state of VCS (e.g., call status, camera connection status) that 
varies according to different hardware and software 
configurations. For our experiment, we used two real products 
C60 and MX300 developed by Cisco, which belong to C-series 
and MX-series, respectively. Simula Research Laboratory has a 
long-term collaboration with Cisco, Norway under Certus-SFI1. 
As part of our collaboration, we have access to several VCSs at 
our lab and thus we used these systems for our experiments. 
Therefore, our case study is real, but the experiment wasn’t 
performed in the real industrial setting of Cisco.  

For comparing the quality of rules produced using SBRM with 
ones mined by RDBRM, we obtained 9,989 test case execution 
logs from Cisco. Each test log contains a test case script and 
configurations and statuses representing the system states for all 
the products involved in the test case. The configurations and 
their corresponding system states (i.e., statuses) contained in the 
execution logs can be used to mine the rules. To extract the data, 
first, we obtained 3963 relevant (i.e., invoking the Dial command) 
logs from 9,989 test execution logs automatically, where the 
testing scenario is about making a call from one product to 
another. Second, corresponding to all relevant execution logs, we 
extracted configurations and statuses for the products involved in 
the test cases corresponding to execution logs. Finally, we use the 
extracted configurations and corresponding statuses to mine the 
rules. 

4.1.3 Evaluation Metrics 
To answer RQ1, we compared NSGA-II with RS in terms of the 
three objectives, and the overall fitness. Additionally, we also 
compared NSGA-II with RS in terms of HV, which is commonly 
used to measure the overall performance of multi-objective 
search algorithms (e.g., NSGA-II) [24]. HV is for obtaining the 
volume in the objective space covered by members of Pareto 
fronts for measuring both convergence and diversity [25].  

To answer RQ2 and RQ3, we compared SBRM with RBRM and 
SBRM with RDBRM respectively, based on four machine-learning 
quality measurements (MLQMs): Accuracy of the classifier, 
Precision, Recall, and F-measure for each class (i.e., call status in 
our case), which are calculated with 10 times 10-fold cross-
validation [26]. Accuracy indicates the overall performance of 
PART by specifying the percentage of instances that conforms to 
the mined rules [27], where one instance contains one specific set 
of configurations and its corresponding system states.  
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Precision represents the percentage of instances that are 

correctly classified divided by the total number of instances 
covered by rules associated with a specific system state (e.g., 
connected or failed in our case) [27]. For example, 98% Precision 
for the failed state means that, according to the mined rules, there 
are 2% of instances whose configurations are identified as invalid 
ones, which led to the failed state. But actually, they lead to the 
connected state. The Recall represents the percentage of instances 
that are correctly classified divided by the total number of 
instances corresponding to a particular system state [27]. For 
example, 90% Recall for the failed state means that configurations 
of 10% instances are not associated with the failed state according 
to the mined rules, but these instances actually lead to the failed 
state. F-measure is the harmonic mean of Precision and Recall [27].  

4.1.4 Experimental Tasks, Parameter Settings, and Statistical 
Analysis 
As shown in Table 1, we designed three tasks (T1-T3) for 
addressing RQ1-RQ3. T1 is to compare NSGA-II with RS in terms 
of HV, the three individual objectives, and the overall fitness. T2 
and T3 are for comparing the quality of rules produced from 
SBRM with RBRM and RDBRM respectively, evaluated based on 
machine-learning quality measurements.  

As shown in Table 1 (column 5), we used the default settings 
for NSGA-II as implemented in jMetal [28], which are typically 
recommended [29]. The single point crossover and bit-flip 
mutation, implemented in jMetal, were applied as crossover and 
mutation operators, respectively. The total number of 
configuration parameters is 17 for our case study. We used a 
population size of 200 where we select all the Pareto Non-
dominated solutions for mining the rules. Since selecting the best 
set of parameters is application dependent [12], we used the 
default settings provided by Weka [14] for SBRM, RBRM, and 
RDBRM, which have been used in various contexts for applying 
the machine learning techniques [12, 30].  

To compare SBRM (with NSGA-II) with RBRM and RDBRM, 
we use the non-parametric Mann-Whitney U-test as 
recommended in [31] using α = 0.05 and the Vargha and 
Delaney’s A!" statistics as an effect size measure [32]. For all 
MLQMs and HV, if A!" is less than 0.5, SBRM is better than 
RBRM/RDBRM, and a value greater than 0.5 means vice versa. 
Similarly, in the case of fitness values, if A!" is greater than 0.5, 
SBRM is better than RBRM otherwise RBRM is better than SBRM. 

4.2 Experimental Execution 
We selected the call status as the system state to classify the 
configurations. A failed call status represents the abnormal state 
and a connected call status represents a normal state. We selected 
the call functionality and its associated call status as it is the main 
functionality of a VCS and other functionalities depend on it.  

To mine the initial set of the rules we randomly generate a set 
of 500 configurations corresponding to two selected products (i.e., 
C60 and MX300). To get the system state, we configure the two 

products with the generated configurations and make a call from 
product A to B for 20 seconds. We made the call for 20 seconds in 
order to give sufficient time for establishing the call connection. 
After waiting for 20 seconds we capture the call status and 
disconnect the call. We input these 500 configurations along with 
their corresponding system states to Weka [14] and apply PART 
[15] to mine the initial set of rules. To refine the rules, we use the 
initial set of rules to guide the search to generate 200 more 
configurations. To mine the refined set of rules we repeat the 
same process (i.e., configuring the products and making the call) 
to get the call status and mine a new set of rules based on 700 
configurations (combining all the configurations generated so far) 
and corresponding system states. We repeat this incremental and 
iterative process for three iterations and mine the final set of 
rules based on a dataset containing 1100 configurations and their 
call statuses. We used three iterations as a stopping criterion. We 
also got more than 90% identical rules in the second and third 
iteration. 

4.3 RESULTS AND ANALYSIS 
In this section, we present the results of our evaluation and 
answer the research questions.  

4.3.1 Effectiveness of search (RQ1) 
To answer RQ1, from the results of the Man-Whitney U-test, we 
notice that p-values corresponding to all fitness values and HV 
are less than 0.05 showing a significant difference between 
NSGA-II and RS. 𝐴!" values corresponding to the three objectives 
are all greater than 0.5 and are less than 0.5 in the case of HV, 
which suggests that NSGA-II is significantly better than RS. 
4.3.2 Comparing SBRM with RBRM (RQ2) 
To answer RQ2, we compared SBRM and RBRM in terms of 
MLQMs based on rules from each iteration as well as overall (i.e., 
combined the results for all the three iterations) based on MLQMs 
(Section 4.1.3).  

As shown in Table 2, for the first iteration, although all the 
A!" values indicate that SBRM has better performance for all the 
MLQMs, the p values show that the superiority of SBRM is not 
significant for all the MLQMs except for Failed Recall. In 
iteration-2, SBRM performed significantly better than RBRM with 
respect to Accuracy, Failed Precision, Failed Recall, and Failed F-
measure. The results corresponding to iteration-3 and overall 
(Table 2) show that SBRM has performed significantly better than 
RBRM in terms of all the MLQMs. So, as moving from iteration-1 
to iteration-3, SBRM starts to perform better than RBRM, which 
leads to the conclusion that SBRM produces better rules as 
compared to RBRM with respect to the MLQMs. 

4.3.3 Comparing SBRM with RDBRM (RQ3) 
To answer RQ3, we compared SBRM with RDBRM iteration-wise 
as well as overall (i.e., combined the values for all the three 
iterations) based on MLQMs (Section 4.1.3).  

As shown in Table 3, the results related to all the MLQMs 
except for Connected Recall and Connected F-measure for all the 

iterations as well as overall 
show that SBRM performed 
significantly better than 
RDBRM. Results for 
Connected Recall 
corresponding to all the 
iterations as well as overall 
indicate that RDBRM 
performed significantly 
better than SBRM. In 
iteration-1, iteration-2, and 

Table 2: Comparing the quality of rules produced with SBRM and RBRM – 𝑨!𝟏𝟐 and p-values for (RBRM 
VS SBRM)  

Evaluation metric 
Iteration-1 Iteration-2 Iteration-3 Overall Overall Average 
p-value 𝑨!𝟏𝟐 p-value 𝑨!𝟏𝟐 p-value 𝑨!𝟏𝟐 p-value 𝑨!𝟏𝟐 RBRM SBRM 

Accuracy 0.104 0.28 0.010 0.16 0.002 0.10 <0.001 0.19 95.7% 97.2% 
Connected Precision 0.161 0.31 0.054 0.24 0.026 0.20 0.002 0.27 0.945 0.957 
Connected Recall 0.173 0.32 0.150 0.31 0.041 0.23 0.002 0.27 0.955 0.971 
Connected F-Measure 0.186 0.32 0.088 0.27 0.025 0.20 0.001 0.25 0.950 0.964 
Failed Precision 0.063 0.25 0.012 0.17 0.001 0.07 <0.001 0.19 0.966 0.982 
Failed Recall 0.041 0.23 0.003 0.11 0.001 0.07 <0.001 0.16 0.965 0.978 
Failed F-Measure 0.104 0.28 0.005 0.13 0.001 0.04 <0.001 0.18 0.966 0.980 
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overall there is no significant difference between SBRM and 
RDBRM in terms of Connected F-measure whereas in iteration-3 
SBRM outperformed RDBRM. Since for five out of the seven 
MLQMs, SBRM has performed significantly better than RDBRM 
whereas RDBRM outperformed SBRM in terms of Connected 
Recall only, it can be concluded that SBRM produces better rules 
than RDBRM. 

4.4 Overall Discussion 
For RQ1, we noticed that NSGA-II has outperformed RS in terms 
of HV, the three objectives as well as the combined. This suggests 
that our problem is not trivial and requires the search. 

For RQ2 and RQ3, we observed that SBRM performed 
significantly better than RBRM and RSBRM for most of the 
MLQMs. This is because we guide the search using previously 
mined rules and generate specific configuration data that tend to 
either increase or decrease the confidence of a rule. In this way, 
SBRM converges more rapidly than RBRM to obtain high 
confidence rules. To further investigate the performance 
differences of SBRM with RBRM and RDBRM, we calculated the 
relative improvement (RI) due to SBRM for all MLQMs, across 
iterations. We calculated the RI with respect to RBRM as 
RI S(x!"),R(x!") = S x!" − R(x!") , where S x!"  and R(x!") 
give the average values corresponding to the ith MLQM and jth 
iterations for SBRM and RBRM, respectively. Similarly, to 
calculate RI with respect to RDBRM, we applied a similar formula 

as: RI S(x!"),RD(x!) = S x!" − RD x! , where RD(x!)  gives 

the value of the ith MLQM for RDBRM. Figure 3 and Figure 4 
show the relative improvement in MLQMs due to SBRM in 
comparison to RBRM and RDBRM, respectively. 

 
Figure 3: Relative improvement by SBRM in comparison to RDBRM 

From Figure 3, one can observe that compared with RDBRM, 
the relative improvements of SBRM in terms of Failed Precision, 
Failed Recall, and Failed F-measure are much larger than the 
relative improvements of the other MLQMs, whereas it is 
negative in terms of Connected Recall. This can be justified by the 
fact that in SBRM we generate configurations that maximally 
conform to the rules with the abnormal state (i.e., the failed 
state). Also, we avoid generating configurations that conform to 
the high confidence rules with the normal state (i.e., the 

connected state), which 
justifies the negative RI 
value for Connected Recall. 

Figure 4 shows that the 
relative improvement in 
MLQMs for SBRM as 
compared to RBRM is not 
large as it is in comparison 
to RDBRM, which is 
probably because the 
sample size used for 
mining the rules in SBRM 

and RBRM is small (i.e., 700, 900, and 1100 for iteration-1, 
iteration-2, and iteration-3, respectively). Moreover, in these 
small datasets, 500 initial configurations were the same across the 
datasets used for SBRM and RBRM, and only maximum 600 (i.e., 
in iteration-3) configurations were different. On the other hand, 
the relative improvement for SBRM with respect to RDBRM is 
large because the datasets used for RDBRM and SBRM were 
different. Also, the size of the dataset used for RDBRM was large 
(i.e., 3963). However, from Figure 4, we can observe an increasing 
trend of the relative improvement across the three iterations, 
suggesting that increasing the sample size can increase the 
relative improvement. 

 
Figure 4: Relative improvement by SBRM in comparison to RBRM 

4.5 Threats to Validity 
The threat to internal validity of our study is the selection of 
parameter settings for the selected search algorithm, which may 
affect the performance of the algorithm. To mitigate this threat, 
we used default parameter settings, which have exhibited 
promising results [33]. Similarly, for the machine-learning 
algorithm, we also used default parameters settings, as selecting 
parameter settings is application dependent [12]. The threat to 
construct validity is the use of termination criteria for the search. 
We used the same stopping criterion (i.e., the number of fitness 
evaluations) for both NSGA-II and RS to find the optimal 
solutions. Another threat can be a selection of stopping criteria 
for the number of iterations and sample size used for mining the 
rules. We used three iterations and during each iteration added 
200 more configurations to the dataset from the previous 
iteration due to practical challenges (i.e., the overall cost of the 
whole process was high particularly on executing configurations 
and getting corresponding call statuses, which was 50 seconds 
per configuration). To assess the effect of the sample size, the 
number of iterations, and different values for the thresholds used 
to classify the CPL rules, we plan to conduct dedicated empirical 
studies in the future.  

The threat to conclusion validity is due to the random 
variation inherited in search algorithms. To minimize this threat, 
we repeated the experiment 10 times to reduce the effect caused 
by randomness, as recommended in [24, 29]. Moreover, we also 
applied the Mann-Whitney test to determine the statistical 
significance of the results and the Vargha and Delaney 𝐴!" 
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Table 3: Comparing the quality of rules produced with SBRM and RDBRM– 𝑨!𝟏𝟐 and p-values for 
(RDBRM VS SBRM) 

Evaluation metric 
Iteration-1 Iteration-2 Iteration-3 Overall Actual values  

RDBRM p-value 𝑨!𝟏𝟐 p-value 𝑨!𝟏𝟐 p-value 𝑨!𝟏𝟐 p-value 𝑨!𝟏𝟐 
Accuracy <0.001 0.00 <0.001 0.00 <0.001 0.00 <0.001 0.00 92.96% 
Connected Precision 0.001 0.10 <0.001 0.00 <0.001 0.00 <0.001 0.03 0.934 
Connected Recall <0.001 1.00 <0.001 1.00 <0.001 1.00 <0.001 1.00 0.994 
Connected F-Measure 0.418 0.40 0.418 0.60 0.012 0.200 0.135 0.400 0.963 
Failed Precision <0.001 0.00 <0.001 0.00 <0.001 0.00 <0.001 0.00 0.796 
Failed Recall <0.001 0.00 <0.001 0.00 <0.001 0.00 <0.001 0.00 0.260 
Failed F-Measure <0.001 0.00 <0.001 0.00 <0.001 0.00 <0.001 0.00 0.392 
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statistics as the effect size measure, which are recommended for 
randomized algorithms [29]. The first threat to external validity 
is the selection of search algorithm for our study. To reduce this, 
we selected the most widely used NSGA-II algorithm that has 
shown promising results in different contexts [20, 22]. The 
second threat to external validity is the selection of algorithms 
for rule mining. To tackle this threat, we selected PART, which 
has proven to be more effective as compared to other well-known 
algorithms [15, 34]. The third threat to external validity is that 
we evaluated our approach using only one case study. To 
mitigate this, we used a real case study, the Cisco Video 
Conferencing Systems, which contains typical communicating 
products across multiple product lines. However, a generalization 
of the results requires additional experiments. In future, we plan 
to conduct an empirical study using several case studies to 
evaluate different search algorithms and machine-learning 
algorithms.  

5. RELATED WORK 
Search algorithms have been used to solve many problems in the 
context of PLE [35-37]. Since we are focusing on rule mining; 
therefore, we only discuss existing studies related to rule mining 
using machine-learning techniques in the context of PLE. In 
Section 5.1, we discuss dedicated approaches that focus on 
mining rules from different artifacts (e.g., source code, 
configuration file, feature model). In Section 5.2, we discuss 
approaches such as feature extraction, feature construction and 
feature recommendation, which mine crosstree constraints. 

5.1 Dedicated Rule Mining Approaches 
The work in [12] applies Binary Decision Tree-J48 (machine 
learning algorithm) to infer the constraints from a set of 
randomly generated product configurations. To classify the 
configurations as faulty and non-faulty, a computer vision 
algorithm was used as an oracle. To validate the approach, it was 
applied to an industrial video generator product line. Rules were 
evaluated based on expert’s opinion and machine-learning 
measurements such as Precision and Recall. Results show that on 
average 86% Precision and 80% Recall rate can be achieved using 
the proposed approach.  

In [38], Yi et al. proposed an approach to mine the crosstree 
binary constraints (i.e., requires, excludes) corresponding to a 
feature model. The approach takes a feature model as input 
containing the features, their descriptions, and some known 
crosstree binary constraints. First, it trains LIBSVM classifier (an 
extension of support vector machine) with existing crosstree 
binary constraints where the parameters of the classifier are 
optimized using the genetic algorithm to minimize the error rate 
of the classifier. Second, it extracts all the feature pairs, and 
finally, the optimized classifier finds the candidate features of 
binary constraints. The approach was validated using two feature 
models collected from SPLOT repository. Results show that rules 
with high Recall (i.e., close to 100%) and the variable low Precision 
(on average 42%) can be achieved using proposed approach. 

In [39], another approach is presented for mining the 
crosstree constraints. It constructs configuration matrix (i.e., 
product-features matrix) from configuration files and extracts 
crosstree constraints using an association rule mining technique 
(i.e., Apriori algorithm). Rules are pruned using minimum 
support and minimum confidence thresholds. The approach was 
evaluated using a large-scale industrial software product line for 
embedded systems. The evaluation shows that a large number of 
rules with variable support (i.e., 80% to 99%) and confidence (i.e., 
90% to 100%) can be identified. The majority of the rules were 
identified with support ranging from 80% to 85%. 

In [40], an approach is presented to extract configuration 
constraints from existing C codebases using static analysis. It 
uses build time errors (e.g., pre-processor, parser, type, and link 
errors) as the oracle to classify the low-level system 
configurations (i.e., build and code files) and mine the constraints. 
To assess the accuracy of extracted rules, they were compared 
with the existing constraints specified in developer’s created 
variability models. The approach was validated using four open 
source case studies (uClibc, BusyBox, eCos, and the Linux 
kernel). Results show that up to 19% of the total constraints can 
be recovered automatically from the source code, which assures 
successful build with the accuracy of 93%. In [13], an extension of 
[40] is presented in which the authors improved the static 
analysis and increased the recoverability rate by 9%. Additionally, 
an empirical study is also presented that identifies the sources of 
constraints. 

5.2 Non-Dedicated Rule Ming Approaches 
In [41], Czarnecki et al. proposed an extension of feature model 
called probabilistic feature model. To extract crosstree constraints 
from existing formally defined products, a rule mining process is 
presented that uses association-mining techniques to mine the 
constraints. The proposed mining process was applied on a small 
case study of Java Applets. Rules were evaluated based on 
machine-learning measurements (i.e., support and confidence).  

In [42], an approach is proposed to model and recommend 
product features for any particular domain based on the product 
description provided by the domain expert. To mine association 
rules between product features, association rule mining 
techniques are applied to configuration matrix (i.e., product-
features matrix). The proposed approach was validated with 20 
different product categories using product descriptions available 
at SoftPedia [43]. Hariri et al. [44] extend the work presented in 
[42]. In [44], different clustering algorithms used to cluster the 
features and construct products by feature matrix were 
compared. The evaluation was also improved by applying the 
approach on diverse domains as well as a large project of a 
software suite for remote collaboration. Results show that rules 
with different Precision and Recall rates can be mined according 
to the threshold set for the confidence.  

The work in [6] presents an approach to synthesize attributed 
feature models (AFM) from a set of product descriptions in the 
form of tables (i.e., configuration matrix). An algorithm is 
proposed that uses implication graph and mutex graph 
constructed from configuration matrix to extract the crosstree 
constraints. For extracting the relational constraints defined on 
values of attributes, the algorithm uses domain knowledge or 
selects the boundary values of attributes randomly when domain 
knowledge is not provided. The approach was validated using 
random configuration matrices as well as a real-world case study. 
Results show that the proposed algorithm can be used to mine a 
large number of rules for large-scale case studies. 

Davril et al. [45] proposed an approach to construct a feature 
model automatically from informal product descriptions available 
over the Internet. To mine the implication rules of features, CFP-
growth algorithm and Apriori algorithm are applied on 
configuration matrix (i.e., product-features matrix). The proposed 
approach was applied to a case study of antivirus software using 
the product descriptions available at SoftPedia [43].  

5.3 Summary 
All the approaches discussed above focus on mining binary 
crosstree constraints (requires and excludes) between different 
features of a product line or constraints on features’ attributes. In 
our study, we focus on mining rules between configuration 
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parameters and system behaviors of interacting products across 
product lines. Additionally, we defined three objectives (Section 
3.2) for generating configuration data, which are fed to the 
machine-learning tool in order to refine rules. To evaluate the 
quality of rules, all the approaches discussed above have used 
machine-learning quality measurements (e.g., Precision). We also 
evaluated the quality of constraints based on machine-learning 
quality measurements. Additionally, we also compared the rules 
produced using SBRM with the rules mined based on real data.  

6. CONCLUSION 
We presented an incremental and iterative approach (named as 
SBRM) for mining rules for configurations of communicating 
products belonging to different product lines. To mine rules, we 
combine multi-objective search with machine learning 
techniques. To use the search in the rule mining process, we 
defined three objectives and integrated them with the widely 
used multi-objective optimization algorithm—NSGA-II. We 
compared SBRM with RS based approach (RBRM) in terms of the 
three objectives, HV, and machine learning quality 
measurements. The results of the statistical tests show that SBRM 
performed significantly better than RBRM for all the three 
objectives, HV, and machine learning quality measurements. In 
comparison with the rules mined based on real data (RDBRM), 
SBRM has performed significantly better particularly for Failed 
Precision, Failed Recall, and Failed F-measure where SBRM 
improved them by 18%, 72%, and 59% respectively, when 
compared with RDBRM. 
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