
Generating Failing Test Suites for Quantum Programs with
Search (Hot Off the Press track at GECCO 2022)

Xinyi Wang
Simula Research Laboratory

Oslo, Norway
xinyi@simula.no

Paolo Arcaini
National Institute of Informatics

Tokyo, Japan
arcaini@nii.ac.jp

Tao Yue
Nanjing University of Aeronautics and Astronautics,

Simula Research Laboratory
Nanjing, China

taoyue@ieee.org

Shaukat Ali
Simula Research Laboratory

Oslo, Norway
shaukat@simula.no

ABSTRACT
The inherent complexity of quantum programs, due to features such
as superposition and entanglement, makes their testing particularly
challenging. To tackle these challenges, we present a search-based
approach, called Quantum Search-Based Testing (QuSBT), for auto-
matically generating test suites of a given size that possibly expose
failures of the quantum program under test. QuSBT encodes a test
suite as a search individual, and tries to maximize the objective func-
tion that counts the number of failing tests in the test suite. Due to
non-deterministic nature of quantum programs, the approach repeats
the execution of each test multiple times, and uses suitable statistical
tests to assess if a test passes or fails. QuSBT employs a genetic
algorithm to perform the search. Experiments on 30 faulty quantum
programs show that QuSBT is statistically better than random search,
and is able to efficiently generate maximal failing test suites.
This is an extended abstract of the paper [1]: X. Wang, P. Arcaini,
T. Yue, and S. Ali “Generating Failing Test Suites for Quantum
Programs With Search”, 13th International Symposium on Search-
Based Software Engineering (SSBSE 2021).

CCS CONCEPTS
• Theory of computation → Quantum computation theory; •
Software and its engineering → Search-based software engineer-
ing.

KEYWORDS
Quantum computing, genetic algorithms, search-based testing

ACM Reference Format:
Xinyi Wang, Paolo Arcaini, Tao Yue, and Shaukat Ali. 2022. Generating Fail-
ing Test Suites for Quantum Programs with Search (Hot Off the Press track at
GECCO 2022). In Genetic and Evolutionary Computation Conference Com-
panion (GECCO ’22 Companion), July 9–13, 2022, Boston, MA, USA. ACM,
New York, NY, USA, 2 pages. https://doi.org/10.1145/3520304.3534067

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9268-6/22/07.
https://doi.org/10.1145/3520304.3534067

1 INTRODUCTION
Quantum computing (QC) promises to solve profoundly complex
computational problems, and different research and industrial efforts
are being spent on it. QC frameworks and programming languages
such as Qiskit are also available to develop quantum programs. As
for classical programs, also for quantum programs assessing their
correctness is highly required. However, testing quantum programs
is not straightforward because of their unique features such as su-
perposition and entanglement. As for classical programs, the search
space of quantum programs can be particularly complex, and finding
the input that triggers a failure can be challenging. Search-based
approaches seem to be promising to this aim, and so, in [1], we pro-
posed a search-based test generator for quantum programs. We here
summarize it, by giving a minimal background in Sect. 2, presenting
the approach in Sect. 3, and reporting some results in Sect. 4.

2 BACKGROUND
Quantum bits (qubits) are the basic units of quantum programs and,
as classical bits, take value 0 or 1. However, a state of a qubit is
also defined with its amplitude (𝛼), a complex number given by a
magnitude and a phase. The magnitude denotes the probability of a
quantum program being in a particular state, while the phase is the
angle of this complex number in polar form ranging from 0 to 2𝜋
radians. Given a quantum program QP, we identify with 𝐼 the input
qubits, and with 𝑂 the output qubits; 𝐷𝐼 = B |𝐼 | are the input values,
and 𝐷𝑂 = B |𝑂 | the output values. A quantum program QP can then
be defined as a function QP : 𝐷𝐼 → 2𝐷𝑂 . We notice that, given the
same input value, QP can return different output values that occur by
following a certain probability distribution. If available, the program
specification PS specifies the expected probabilities of occurrence
of the output values, and can be used as oracle when testing QP. A
quantum program can be specified as a circuit composed of different
gates that manipulate the input values. Fig 1 shows the circuit of a
simple program encoded in Qiskit. In an equivalent way, a circuit
can also be specified in Python.

3 QUANTUM SEARCH-BASED TESTING
Quantum Search-Based Testing (QuSBT) is a search-based test gen-
erator for quantum programs. Given a given program QP, QuSBT
generates a test suite composed of 𝑀 tests, where 𝑀 is a parameter

https://orcid.org/0000-0001-5621-6140
https://orcid.org/0000-0002-6253-4062
https://orcid.org/0000-0003-3262-5577
https://orcid.org/0000-0002-9979-3519
https://doi.org/10.1145/3520304.3534067
https://doi.org/10.1145/3520304.3534067

GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA Xinyi Wang, Paolo Arcaini, Tao Yue, and Shaukat Ali

Figure 1: Circuit diagram of “swap test” program

of the approach. QuSBT is based on a genetic algorithm (GA) where
the search variables are integers 𝑥 = [𝑥1, . . . , 𝑥𝑀]. Each variable
represents a test input for QP taken from 𝐷𝐼 .
QuSBT searches for an assignment 𝑣 = [𝑣1, . . . , 𝑣𝑀] that maxi-

mizes the number of tests that fail. Namely, the fitness computation
is as follows. For each test assignment 𝑣 𝑗 of the 𝑗 th test:

• it identifies the number of times 𝑛 𝑗 that 𝑣 𝑗 must be repeated;
indeed, due to the non-deterministic nature of quantum pro-
grams, an input must be executed multiple times to character-
ize its output distribution. In [1], we devised an approach to
select a 𝑛 𝑗 which is suitable, i.e., that allows to have a faithful
representation of the real output distribution;

• QP is executed 𝑛 𝑗 times with the input 𝑣 𝑗 , obtaining the result
res = [𝑜1, . . . , 𝑜𝑛];

• two tests are used to assess if the result res follows the ex-
pected distribution (fail𝑗 is the assessment result):
– the first test checks if res contains some output value that is

not expected by the program specification; if it is so, fail𝑗
is set to true and the assessment terminates;

– the Pearson’s chi-square test checks if res follows the ex-
pected output distribution; if the null hypothesis is not
rejected, fail𝑗 is set false, otherwise to true.

Given the assessments ta = [fail1, . . . , fail𝑀] of all the tests,
the fitness function that must be maximized is as follows:

𝑓 (𝑣) = |{fail𝑗 ∈ ta | fail𝑖 = true}|
i.e., the number of failing tests of the test suite must be maximized.

4 EXPERIMENTS
We experimented the approach using six programs: (i) Bernstein-
Vazirani (BV) and Simon (SM) are two cryptography programs; (ii) QRAM
(QR) is a program to access and manipulate quantum random access
memory (iii) invQFT (IQ) implements inverse quantum Fourier trans-
form; (iv) Add Squared (AS) performs mathematical operations in
superposition; (v) Conditional Execution (CE) performs conditional
execution in superposition. BV, IQ, AS, CE have 10 input qubits, QR
has 9, while SM has 7. The number of gates ranges from 60 to 15.
Circuit depth goes from 3 to 56. For each of the six programs, we
produced five faulty versions, by introducing different types of faults
at various locations of the circuit. These 30 faulty programs are our
benchmarks used in our experiments.

We used Qiskit 0.23.2 to specify the quantum programs. Qiskit
also provides a simulator that we used to execute the programs. We
implemented a version of the approach based on the GA version
provided by jMetalPy 1.5.5. We set the population size as 10, and the
termination condition as the maximum number of generations (i.e.,
50). We also implemented a version of the search based on Random
Search (RS). RS was given the same number of fitness evaluations

BV1 BV2 BV3 BV4 BV5

20

30

40

50

N
F
T

(#
fa

ili
ng

te
st

s)

(a) Final # of failing tests NFT

0 10 20 30 40 50

20

30

40

50

Generation

N
F
T

(#
fa

ili
ng

te
st

s)

BV1
BV2
BV3
BV4
BV5

(b) Growth of # of failing tests NFT

Figure 2: Results of BV benchmarks

as GA, i.e., 500. The size of the test suite depends on the size of
the input domain; in the experiments, it is the 5% of the size of the
input domain 𝐷𝐼 : so, we need to generate 50 tests for BV, IQ, AS, CE,
26 for QR, and 7 for SM. To account for the non-determinism of the
search, we executed each experiment 30 times. Code and results are
available at https://github.com/Simula-COMPLEX/qusbt/.

4.1 Results
We analyze the experimental results using two research questions.

RQ1: Does GA-based QuSBT outperform Random Search (RS)? We
used the Mann-Whitney U test and the Â12 statistics to compare
the number of failing tests NFT found by the two approaches. We
observed that for 26 out of 30 benchmarks, the GA-based imple-
mentation of the approach is statistically significantly better than
the RS-based implementation, showing that the search problem is
complex and deserves an advanced search algorithm.

RQ2: How is QuSBT’s performance on the six benchmark programs?
We observed that, for the most complex benchmarks for which we
had to generate test suites of 50 tests, there is a high variability in
terms of number of failing tests NFT across the 30 runs, and the
maximum number of 50 failing tests was found seldomly: it could
be that there are not so many failing tests, or the search was not
given enough time. Fig. 2a shows the final results of BV benchmarks.
For the simple program SM, instead, the search was able to find the
maximum number of failing tests.

In terms of convergence of the search, we noticed that, for all
the benchmarks, the first generation already generates some failing
inputs. The speed of convergence, however, depends on the complex-
ity of the program and on the number of failing inputs that actually
exist. Fig. 2b shows the convergence of BV benchmarks.

ACKNOWLEDGMENTS
This work is supported by Qu-Test (Project#299827) funded by Re-
search Council of Norway and the National Natural Science Founda-
tion of China (No. 61872182). Paolo Arcaini is supported by ERATO
HASUO Metamathematics for Systems Design Project (No. JPM-
JER1603), JST. Funding Reference number: 10.13039/501100009024
ERATO.

REFERENCES
[1] Xinyi Wang, Paolo Arcaini, Tao Yue, and Shaukat Ali. 2021. Generating Failing Test

Suites for Quantum Programs With Search. In Search-Based Software Engineering.
Springer International Publishing, Cham, 9–25. https://doi.org/10.1007/978-3-
030-88106-1_2

https://github.com/Simula-COMPLEX/qusbt/
https://doi.org/10.1007/978-3-030-88106-1_2
https://doi.org/10.1007/978-3-030-88106-1_2

	Abstract
	1 Introduction
	2 Background
	3 Quantum Search-Based Testing
	4 Experiments
	4.1 Results

	Acknowledgments
	References

