
Geophys. J. Int. (2022) 230, 1305–1317 https://doi.org/10.1093/gji/ggac117
Advance Access publication 2022 March 22
GJI Seismology

Enhancing seismic calving event identification in Svalbard through
empirical matched field processing and machine learning
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S U M M A R Y
Seismic signals generated by iceberg calving can be used to monitor ice loss at tidewater
glaciers with high temporal resolution and independent of visibility. We combine the empirical
matched field (EMF) method and machine learning using convolutional neural networks
(CNNs) for calving event detection at the Spitsbergen (SPITS) seismic array and the single
broad-band station KBS on the Arctic Archipelago of Svalbard. EMF detection with seismic
arrays seeks to identify all signals generated by events in a confined target region similar
to single P and/or S phase templates by assessing the beam power obtained using empirical
phase delays between the array stations. The false detection rate depends on threshold settings
and therefore needs appropriate tuning or, alternatively, post-processing. We combine the
EMF detector at the SPITS array, as well as an STA/LTA (short term average/long term
average) detector at the KBS station, with a post-detection classification step using CNNs.
The CNN classifier uses waveforms of the three-component record at KBS as input. We
apply the methodology to detect and classify calving events at tidewater glaciers close to
the KBS station in the Kongsfjord region in Northwestern Svalbard. In a previous study, a
simpler method was implemented to find these calving events in KBS data, and we use it as
the baseline in our attempt to improve the detection and classification performance. The CNN
classifier is trained using classes of confirmed calving signals from four different glaciers in the
Kongsfjord region, seismic noise examples and regional tectonic seismic events. Subsequently,
we process continuous data of six months in 2016. We test different CNN architectures and data
augmentations to deal with the limited training data set available. Targeting Kronebreen, one
of the most active glaciers in the Kongsfjord region, we show that the best performing models
significantly improve the baseline classifier. This result is achieved for both the STA/LTA
detection at KBS followed by CNN classification, as well as EMF detection at SPITS combined
with a CNN classifier at KBS, despite of SPITS being located at 100 km distance from the
target glacier in contrast to KBS at 15 km distance. Our results will further increase confidence
in estimates of ice loss at Kronebreen derived from seismic observations which in turn can
help to better understand the impact of climate change in Svalbard.

Key words: Glaciology; Arctic region; Neural networks, fuzzy logic; Earthquake monitoring
and test-ban treaty verification.

1 I N T RO D U C T I O N

Routine seismic monitoring increasingly relies on automatic detec-
tion and discrimination of events or single seismic phase arrivals.
Detection is traditionally performed using characteristic functions
of the waveform data (e.g. short term average over long term aver-
age, STA/LTA, Allen 1982; Withers et al. 1998), either presented
as single channels or, in case of seismic arrays, as beams of all
channels steered towards a defined direction (backazimuth) with

a fixed apparent propagation velocity (Schweitzer et al. 2012). A
well-established recipe for building complete seismic event bul-
letins is to split this task into seismic phase detection and classifica-
tion followed by event association using multiple seismic stations
(Le Bras et al. 1994). However, there are a lot of application cases
where one is only interested in detecting specific repeating events,
either to sort them out to reduce the analyst’s workload, for ex-
ample, aftershocks and mine blasts (Gibbons et al. 2016), or to
use those events for dedicated studies or monitoring tasks. Seismic
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events in the cryosphere can fall into the latter category since they
allow us to better understand glacier dynamics (Podolskiy & Walter
2016; Aster & Winberry 2017), for example by monitoring iceberg
calving at tidewater glaciers (O’Neel et al. 2010; Walter et al. 2012;
Köhler et al. 2015). Such records can not only be used to moni-
tor relative changes in calving activity, but also to quantify the ice
loss (Bartholomaus et al. 2015; Köhler et al. 2016, 2019a; Minowa
et al. 2019; Sergeant et al. 2019), providing essential observations
on how glaciers react in a warming climate and contribute to sea
level rise (Gardner et al. 2013; Vaughan et al. 2013; Huss & Hock
2015).

Master event cross-correlation detection using single or multi-
ple channels is a well-established method for processing repeat-
ing events (e.g. Gibbons & Ringdal 2006). A challenge arises
if signals originating from the confined source area to be moni-
tored show considerable waveform variability. This issue can be
addressed by using multiple master event templates and more ad-
vanced methods such as subspace (Harris 2006) or cone detectors
(Carmichael 2016). Cross-correlation detectors can also be applied
to seismic arrays which allows for additional evaluation of the re-
liability of the detection by array processing methods (Gibbons &
Ringdal 2011). Empirical matched field processing (EMFP, Har-
ris & Kvaerna 2010; Gibbons et al. 2017a) is another array de-
tection method suitable for repeating events. EMFP does not rely
on waveform similarity but uses characteristic phase delays be-
tween the array sensors and waveform coherency across the array
to generate a detection statistic. A single event template is therefore
often sufficient even in case of varying source mechanisms. Sep-
arate templates are however required for different seismic arrivals
(e.g. P and S waves) since phase delays depend on the propagation
velocity.

The common issue for all the methods above relying on char-
acteristic functions, beam power or similarity statistics is to set
an appropriate detection threshold, either fixed or noise-adaptive
(Carmichael et al. 2015). If the number of missed events should be
minimized and, hence, a low threshold is being used, false positives
may have to be sorted out in a post-processing step, for example, by
event association on multiple stations. However, if the seismic event
is observed on too few or just a single station, other approaches have
to be undertaken.

Machine learning (ML) is now being used for many different
tasks in Earth sciences (Sun et al. 2022), including seismology
(Bergen et al. 2019; Kong et al. 2019; Yeck et al. 2021). Here,
we focus only on supervised ML methods which learn to clas-
sify unseen data using a set of labelled training data samples. Of
particular interest in seismology is the integration of ML meth-
ods in the seismic detection and classification processing pipeline.
In this context, convolutional neural networks (CNNs) have been
shown to be a powerful method for replacing traditional trigger
methods by performing detection and classification of signals in
continuous seismic data (Ross et al. 2018; Zhu & Beroza 2019;
Mousavi et al. 2020). The advantage of CNNs over other ML meth-
ods is that features, being useful for discriminating seismic signals,
do not have to be extracted before-hand from the raw (seismic)
data stream. The CNN takes the waveforms as input and learns
those features automatically using a series of hidden convolutional
layers. As an alternative to completely replacing traditional de-
tection schemes such as STA/LTA and array processing, we can
also augment those methods with ML in a post-detection step.
This approach has for example been shown to be very useful for
discrimination of seismic signals originating from glaciers (Gajek
et al. 2017).

In this study, we use an EMF detector at a single seismic array
and an STA/LTA trigger at a single broad-band station to iden-
tify repeating calving events at a tidewater glacier on the Arctic
archipelago of Svalbard (78.88 ◦N, 12.55 ◦E). Cross-correlation de-
tection is not suitable here because of significant waveform vari-
ability due to complex source processes at the ice–ocean interface
(Bartholomaus et al. 2012; Köhler et al. 2015). Furthermore, since
different glaciers in the vicinity of the target glacier also generate
calving signals, and frequent tectonic earthquakes and noise bursts
are observed, a post-detection step is required, for which we test
CNN models applied to the three-component waveforms. We will
show that this approach performs better than a previously imple-
mented automatic processing pipeline for calving event detection
in Svalbard.

2 S T U DY S I T E A N D DATA

Our target in this study is Kronebreen, a grounded, fast-flowing
tidewater glacier in the Northwest of Svalbard about 15 km East of
Ny-Ålesund (Fig. 1), which is a research station hosting the three-
component seismic broad-band station KBS (STS-2 seismometer).
Mass loss at Kronebreen is dominated by frontal ablation, that
is, dynamic ice loss through calving and frontal melting (Nuth et al.
2012; Luckman et al. 2015). In recent years, the glacier has experi-
enced a rapid retreat (Schellenberger et al. 2015; Vallot et al. 2018;
Deschamps-Berger et al. 2019; Köhler et al. 2019a). Calving at
Kronebreen is being observed as seismic signals at KBS with up to
100 events per day during the melt season (Köhler et al. 2015; Gajek
et al. 2017). These observations have been successfully used to es-
timate the ice loss using empirical models calibrated with satellite
and terrestrial remote sensing data (Köhler et al. 2016, 2019a). The
larger events can also be observed at the small-aperture Spitsbergen
seismic array (SPITS) at 100 km distance. The SPITS array has an
aperture of 1 km and consists of 9 CMG-3T seismometers. While
Kronebreen is dominating the calving seismicity at KBS, calving
signals are also being recorded from other glaciers in the vicin-
ity of Kronebreen (Köhler et al. 2015), that is, Blomstrandbreen,
Kongsbreen and Aavatsmarkbreen (Fig. 1).

Using data of temporary seismic networks deployed in the study
area over several months in 2013 and 2016 to obtain precise event
locations, we had previously compiled a data set of reviewed calving
events observed at KBS (Köhler et al. 2016, 2019a) which will
be the basis for training and testing classifiers in this study. We
refer to it as Reference Data Set 1 (RD1, Table 1). RD1 is not
complete in the sense that not all calving activity at Kronebreen
during the temporary network deployment is captured. Only events
clearly observed at KBS (see signal-to-noise ratios, SNR, in Fig. A1)
and assignable to one of the four glaciers in the Kongsfjord area
are included. Reference Data Set 2 (RD2) is a complete record of
all calving events at Kronebreen which generated a seismic signal
on the temporary stations close to the terminus during 10 d of
observation between 2016 August 24 and September 3. Only about
10 per cent of these events are observed at KBS (Köhler et al.
2019a) because amplitudes of small events are being attenuated
below the noise level with distance. Tectonic earthquakes from the
nearby Atlantic mid-ocean ridge and from the Svalbard region are
also frequently observed at KBS. Training data for this tectonic
event class are obtained from NORSAR’s reviewed seismic bulletin
(NORSAR 1971a). Seismic background noise conditions at KBS
can vary over time depending on local weather conditions and ocean
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Figure 1. Left-hand panel: study area, location of seismic stations (white triangles) and tidewater glaciers in the vicinity of station KBS. Inlets show overview
of Svalbard and geometry of SPITS array. Background maps: courtesy of the Norwegian Polar Institute. Right-hand panel: examples of vertical component
waveforms recorded at KBS for calving and earthquake signals.

Table 1. Number of calving events at different glaciers in two reference data sets (RD1 and RD2).

Data set Time period Number of events

Kronebreen Blomstrandbreen Kongsbreen Aavatsmarkbreen

RD1 Apr–Sep (2013 and
2016)

1850 207 150 73

RD2 Aug 25–Sep 3 (2016) 3987 – – –

tides (Köhler & Weidle 2019), which is taken into account during
training data selection (see below).

3 M E T H O D S

Our objective in this study is to detect calving events at Kronebreen,
minimizing the number of missed as well as misclassified seismic
signals. We not only want to distinguish between calving events,
earthquakes and noise bursts, but also aim to avoid calving at other
glaciers to be assigned to Kronebreen. Signal detection in contin-
uous data from KBS was previously performed using an STA/LTA
detector in the calving frequency band (see Köhler et al. 2016,
for details). In that study, we classified events from Kronebreen by
first sorting out all known earthquakes included in the NORSAR
bulletin and then using a classifier based on a single feature, that
is, the average polarization direction computed from the horizontal
seismogram components of KBS. If the event was observed at the
SPITS array, additional features could be used to select Kronebreen
events, that is, the traveltime difference between P and S waves and
the backazimuth. A similar approach has been used by Gajek et al.
(2017) who also used an STA/LTA detector at KBS, but combined it

with a fuzzy logic algorithm to classify calving based on the signal
frequency and energy flow.

We consider the already implemented method of Köhler et al.
(2016) using only KBS data to be the baseline calving detector
which we aim to improve in this study. Our goal thereby is twofold:
first, we want to explore if the detector can be run on SPITS using
EMF processing and how it performs compared to the STA/LTA
trigger at KBS, the station which is located much closer to the
target glacier. Secondly, we aim to improve the simple previous
classifier by applying CNNs directly on the KBS waveforms for
all obtained detections. In the following, we introduce the methods
being used in more detail.

3.1 Empirical matched field processing for event detection

The general idea behind beamforming is to align and stack array
waveforms so that the SNR of the coherent target signal is increased.
Doing so facilitates the detection of the signals using traditional
trigger algorithms. Aligning the waveforms is accomplished by ap-
plying time-shifts at each array station based on a wave propagation
model, an approach known as steering. In the frequency domain,
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the beam power P(ω) can be expressed in vectorised form as:

P(ω) = e(ω)H R(ω) e(ω), (1)

where e(ω) is the steering vector, H denotes the Hermitian transpose
and R(ω) is the spatial co-variance or cross-spectral matrix for
frequency ω:

R(ω) = E{Y(ω)Y(ω)H }. (2)

The vector Y(ω) includes the complex spectral values of all ar-
ray channels. The spectra are estimated for a short time window
including the target signal. This is indicated by the expectation op-
erator E. For short time windows and narrow-frequency bands, the
fast Fourier transform (FFT) might not provide a stable estimation
of the spectrum (Gibbons et al. 2017a) and using the multitaper
method of Prieto et al. (2009) is preferred. The steering vector e(ω)
is defined as:

e(ω) = e− jω�Ti , (3)

where �Ti is the time delay for which the beam is supposed to be
calculated for array station i. In case of continuous data, the cross-
spectral matrix can be computed using sliding time windows for
each time step t as R(ω, t) resulting in a beam power time-series
P(ω, t)

For traditional beamforming including frequency–wavenumber
(FK) analysis, the tested steering vectors correspond to plane waves
travelling over the array with a given slowness. In case of non-planar
waves, the steering vectors can be constructed accordingly from
the source location and the velocity model, an approach known as
matched field processing. Thus, rather then searching the slowness
space to fit an incoming signal as for FK analysis, the geographical
location is the target variable.

Furthermore, a steering vector can be computed directly from an
observed seismic signal. It can be shown that the principal eigenvec-
tor of the cross-spectral matrix can be used as an empirical steering
vector maximizing the beam power for the signal under investi-
gation (Harris & Kvaerna 2010; Gibbons et al. 2017a). In other
words, we can use the steering vector eT computed from a template
signal to find similar seismic signals by using the beam power as a
detection statistic, a method called EMFP:

Pemf (ω, t) = eT(ω)H R(ω, t) eT(ω). (4)

Gibbons et al. (2017b) suggested to take the time derivative
Ṗemf (ω, t) in order to enhance the signal detectability, a method we
follow in this study. The differentiated beam power time-series for
all frequencies can be referred to as the EMF pseudo-spectrogram
(Figs 2a–d). Finally, the beam power is normalized by the sum of
power spectra, which is the trace of R, to compute the relative beam
power. Furthermore, we can average incoherently over a frequency
band from ω1 to ω2 to get a scalar detection statistic for each time
step (Gibbons et al. 2017a):

P̂em f (t) =
∑

ω1<ω<ω2

d

[
Pem f (ω, t)

trace{R(ω, t)}
]

/dt (5)

This EMFP detection statistic is sensitive to signals originating
from locations close to the template event. The extent of this ge-
ographical footprint depends on the array geometry and aperture
(Kværna et al. 2021). Furthermore, there is a trade-off between
reducing the footprint area and not missing weak seismic signals
similar to the template when tuning the detection threshold. If we
choose a low threshold, post-processing may be required to remove
event detections too far away from the target location.

We use the P and S waves of a large calving event at Krone-
breen (2016-08-12 05:33:45 UTC at KBS) observed at SPITS as
templates for detecting all signals arriving with similar time delays
across SPITS. Both templates are 3 s long, which corresponds to
the window length for sliding windows processing in continuous
data with a step width of 0.5 s. A detection is declared if the relative
beam power exceeds fixed thresholds, 0.041 for the P (see Fig. 2)
and 0.025 for the S wave, and the time difference between both
detections is the same as the for the template event. Note that the
threshold values cannot be interpreted as typical coherency or sem-
blance values due to the beam power differentiation. We decided
for low thresholds obtained by scaling up the average background
noise beam power (0.008 for P-wave statistic and 0.003 for S-wave
statistic) by a factor of 5 and 8, and let the post-detection classifier
deal with false detections. These factors were found empirically by
visually inspecting selected time periods on SPITS and KBS. Fig. 2
demonstrates EMF processing by presenting the detection statis-
tic for the template and a selected detection. In case of the detected
event, a second, much smaller calving signal is recorded at KBS one
minute after the first one (see Figs 2f and h). Notably, the detection
statistics for P and S waves at SPITS exhibit clear peaks with time
difference similar to the one of the template, although the second
signal is hardly seen in the waveforms. In contrast, a clear P-wave
detection before the first event (at about 150 s) is not associated
with an S wave at the expected time and is therefore not included as
a detection.

3.2 Event classification with convolutional neural
networks

CNNs have shown strong performance in earthquake detection and
phase picking (Kong et al. 2019), but the classification objective
can also be source mechanism or location, as in our case. Mathe-
matically speaking, a CNN is a function that maps structured input
data, such as images or time-series, onto a set of output values. In
the classification setting, output values are bound to the range [0,
1], which indicating the degree of belief that an input data sample
belongs to a given class. Because the CNN is also a differentiable
function, its free parameters can be optimized from training data
through gradient descent.

Classification from a set of data features (such as amplitudes
and frequency content) is done by dense layers, which multiply
and add the learnable parameters to their inputs. The output goes
through an activation function, resulting a nonlinear relationship
to the input; for instance, a softmax activation function is used
in the final layer to ensure the output lies in the [0, 1] interval.
The recent, huge progress of neural networks are largely due to the
introduction of convolution layers, which are essentially performing
cross-correlation of the input and short template functions, where
the templates are in entirety learned from data. Successive steps
of convolution layers eliminate the need for manually computing
features, and ensures that the learned features are optimized for the
given data set. Activation functions are used also here, and force the
output to be non-negative. As for regular cross-correlation, signal
detection is independent of the signal’s location in time in input data.
Being interested only in the presence of signal, and not location in
time, the output of each filter in the final convolution layer can be
averaged (known as global average pooling), before being input
to the dense layers that perform classification. The parameters of
the convolution and the dense layers are all optimized in the same
training procedure. In the following, we take architecture to mean
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Figure 2. Demonstration of EMFP. (a)–(d) Pseudo-spectrogram for P and S waves showing the differentiated beam power time-series for different frequencies
for calving events at SPITS. Colour scale indicates beam power values. (e) and (f) Scalar detection statistic obtained by summing over frequencies. The event in
(e) is used to define P- and S-wave templates (2016-08-12 05:33:45 UTC at KBS). The events in (f) are examples of detected calving at Kronebreen (2016-08-04
04:37:25 UTC). (g) and (h) Same calving events recorded at KBS. Timescale is valid for all subplots.

the structural composition of the CNN, while we use model for a
specific CNN instance with optimized parameters.

3.2.1 Training data preparation

The three-component KBS record is cut into 80 s long time win-
dows for all calving events in reference data set RD1 starting 20 s

before the detection time at KBS, and the waveforms are detrended,
bandpass filtered between 2 and 15 Hz and normalized with the
maximum amplitude. The same is done for 236 regional earthquake
records with P-wave picks at KBS in the NORSAR bulletin (NOR-
SAR 1971a) between April and September in the years 2013 and
2016. Finally, a noise class is added by randomly selecting 318
noise instances of 80 s length without STA/LTA triggers in the
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RD1 time period. In addition, 80 noise samples are added within
two time periods of strong ocean wave-generated tremors which
are described in Köhler & Weidle (2019): (1) 2016-04-10 13:30:00
until 2016-04-10 16:00:00 UTC and (2) 2016-05-27 02:30:00 until
2016-05-27 06:00:00 UTC. The prepared data are split into training
(70 per cent) and test (30 per cent) sets.

3.2.2 Training data augmentation

Training data are augmented due to the low number of ground-true
events available and to provide a more generalized representation of
events at KBS. First, two duplicates are created of all calving events
and regional earthquakes. Real noise recordings at KBS are added to
both duplicates to artificially lower the SNRs to 3 and 6, respectively.
The noise recordings are drawn from the set of noise class samples
described above. The motivation for this augmentation is that low
SNR events are underrepresented in RD1 (Fig. A1) because they
were less likely to be locatable with the temporary seismic networks
used to generate RD1. Since multiple calving events can occur with
short inter-event times, we also prepare additional training samples
by stacking each calving signal, not including those augmented by
noise, and a randomly selected second event at the same glacier, the
latter one randomly shifted in the time window.

Random cropping is commonly used in image recognition tasks to
limit bias toward irrelevant information, for example, backgrounds
(Takahashi et al. 2019). In the present work, we use random cropping
of the waveforms to decrease the bias toward the small variances in
arrival times. We still make sure to retain the majority of the time
window including the signal and apply a 10 per cent crop, that is, 10
per cent of the 80 s long signal sampled with 40 Hz is dropped,
either at head or tail, or a combination. Hence, the final input layer
has 2880 nodes per channel (Fig. 3). No augmented events were
used in the final evaluation using the test data set.

3.2.3 CNN architectures

Even after augmentation, the size of our training data limits the CNN
model complexity compared to previous studies which used several
hundred thousand earthquakes for model training (Ross et al. 2018;
Zhu & Beroza 2019). Our neural network model consists therefore
of only three convolution layers with increasing filter (kernel) sizes,
each followed by ReLU activation, followed by a flattening layer, and
finally two densely connected layers (Fig. 3). No pooling between
convolution layers is included. The network training is regularized
by spatial dropout, that is, by randomly dropping a percentage of the
convolution filters during training. The models are implemented in
the Keras (Chollet et al. 2015) framework, using TensorFlow (Abadi
et al. 2015) as backend.

We start with a one-stage model with six classes, that is, noise,
earthquakes and four glaciers (Model 1). Furthermore, two-stage
and dual output models are tested. Model 2 includes simply two
CNNs as used in Model 1 applied after each other, first to classify
the superclasses tectonic earthquakes, calving events and noise,
and then to classify subclasses of calving events at the individual
glaciers. Inspired by animal image classification (e.g. La Grassa
et al. 2021), where each taxonomic level can be classified individ-
ually, we construct Model 3, a multi-output CNN (fig. 1, La Grassa
et al. 2021). Here, we have a simpler taxonomy of only two levels,
namely, the superclasses as in Model 2 and subclasses for calving.
This model uses the same architecture as Model 1 for the convolu-
tional layers to learn latent features. These latent features are then

used in two model branches containing dense layers, as seen in
Fig. 3. A small modification needs to be made to the training pro-
cedure: when the model predicts the tectonic or noise as superclass,
we should not optimize for the subclass output. This is done by
zeroing the gradients for these samples (for the subclass branch). In
practice, this is done by setting the sample weights to zero.

3.2.4 Class imbalance

When optimizing a model it is beneficial to have equal amount of
samples per class. However, this is rare in natural data sets and there
is class imbalance in RD1 as seen in Table 1, that is, Kronebreen is
dominating the calving classes. For earthquakes and noise we can
easily add more samples, which however did not improve results
in our case, and we decided therefore for a class size only slightly
larger than those for the non-Kronebreen classes. Class imbalance
is best solved by over/undersampling techniques, or as in this case
the modelling framework accepts class weights as an input, and
no re-sampling is required. The weight for an individual class is
N/(|C|Nc) (King & Zeng 2001), where Nc and N are the number of
samples in class c and in the full data set, respectively. C is the set
of classes. In addition, we also tested leaving out 50 per cent of the
samples of the over-represented Kronebreen class randomly during
training, which did not improve results.

3.2.5 Model training

The models are all trained under the same parameters. We use the
Adam (Kingma & Ba 2017) optimizer with learning rate 0.002 over
175 epochs with a batch size of 12. As for the free model parame-
ters (i.e. number and dimension of layers), training parameters are
specific to the data set and are found by trial and error using a subset
of data that is not included during training. We reduce the learning
rate by half if there is no improvement to validation accuracy over
seven epochs. If the validation accuracy does not improve over 15
epochs we stop training. We validate the models using stratified
fivefold cross validations. Stratification ensures identical class dis-
tribution among the folds. The final prediction is an average of the
five models.

4 R E S U LT S

4.1 Model evaluation on test data

The trained CNNs are assessed using the test data set which was
not used for training. Table 2 presents different common metrics for
the classification performance (Berrar 2019) for all trained models,
and Table 3 shows the confusion matrices for the best performing
models. From Table 2, we can see that class-weighting, augmenta-
tion and random cropping improves all models. We see that Model
3 with this setting performs best of the models presented here, how-
ever, only marginally. We see only minor reduction in performance
when removing half of calving samples from Kronebreen, indicat-
ing that these contain some redundant information. Table 3 affirms
the same as Table 2; Model 3 performs better than the others but
only slightly. Model 2, however, has a bit more problems classifying
the events from the Kronebreen class correctly.
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Enhancing seismic calving identification 1311

Figure 3. Neural network model architectures used for seismic signal classification. Input nodes are three-component waveforms of station KBS. For the input
and Conv 1-D layers, the vertical numbers indicate the length of the data vector, while the horizontal numbers indicate the number of channels. Input has 2880
samples per channel which corresponds to a 80 s time window sampled with 40 Hz and cropped by 10 per cent. After the flattening layer, data are concatenated
to 1-D array, with length indicated by the horizontal numbers. Figure created using net2vis (Bäuerle et al. 2021).

4.2 Detection and classification of Kronebreen calving in
continuous data

The STA/LTA detector at KBS and EMFP at SPITS are applied to 6
months of continuous data from 2016 April until end of September.
We use the same STA/LTA processing as described in Köhler et al.
(2015). First, the KBS waveforms are transformed into a time-series
of spectral amplitudes between 2 and 8 Hz computed from 10 s long,
sliding time windows. The trigger algorithm is applied to this time-
series with STA length of one sample (10 s), LTA length of 25

samples (250 s) and STA/LTA threshold of 1.5. Subsequently, the
trained CNNs are applied to KBS waveforms (same preprocessing
as training data) using a time window of 80 s length starting 20
s before the trigger time of the STA/LTA detector at KBS or 40 s
before the EMFP detection time, taking into account the traveltime
from KBS to SPITS for the latter. In addition, we apply the CNNs
in a sliding-window processing mode, without the detection step, to
continuous KBS data with a step width of 8 s.

Table 4 shows the number of detections and classifications for
both detectors for the best performing models (Models 1 and 3).
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Table 2. Metrics across the test set (see Berrar 2019, for details). GA is the (unweighted) global accuracy, AUC is the area
under the receiver operating characteristic (ROC) curve and F1 is the harmonic mean of precision and recall. AUC and F1
are calculated as the mean of per-class metrics. The three leftmost metrics relate to the event type classification (calving,
earthquake and noise), while the rightmost are the metrics for glacier classification (Aavatsmarkbreen, Blomstrandbreen,
Kongsbreen and Kronebreen). The training settings are described using cw—class-weighted, a—augmented, cp—crop
and kbx—kronebreen (x percent re-sampling).

Training setting Event type Glacier
GA AUC F1 GA AUC F1

Model 1
0.98 0.99 0.96 0.91 0.75 0.56

cw 0.98 0.99 0.96 0.94 0.87 0.80
cw, a 0.99 0.99 0.98 0.94 0.88 0.82
cw, a, cp 0.99 1.00 0.99 0.96 0.94 0.88
cw, a, cp, kb50 percent 1.00 1.00 0.99 0.96 0.94 0.89

Model 2
0.99 0.99 0.98 0.89 0.72 0.48

cw 0.99 0.99 0.97 0.90 0.87 0.73
cw, a 0.99 0.99 0.98 0.93 0.87 0.77
cw, a, cp 1.00 1.00 0.99 0.94 0.95 0.84
cw, a, cp, kb50 percent 1.00 1.00 0.99 0.92 0.94 0.79

Model 3
0.99 0.98 0.97 0.91 0.75 0.56

cw 0.99 0.99 0.98 0.88 0.85 0.69
cw, a 0.98 0.98 0.95 0.78 0.84 0.63
cw, a, cp 1.00 1.00 1.00 0.96 0.95 0.88
cw, a, cp, kb50 percent 1.00 1.00 1.00 0.94 0.94 0.83

Table 3. Confusion matrices for Models 1–3 applied to test data set not used for training. All models include class-weighting, data augmentation and random
cropping. Columns are predicted and rows are true labels. AB: Aavatsmarkbreen, BB: Blomstrandbreen, KOB: Kongsbreen, KRB: Kronebreen, E: Earthquakes
and N: Noise.

AB BB KOB KRB E N AB BB KOB KRB E N

Test data Model 1
AB 19 16 0 0 3 0 0
BB 62 2 59 0 0 0 1
KOB 47 0 7 39 1 0 0
KRB 557 3 9 2 540 2 1
E 71 0 0 0 0 70 1
N 119 0 0 0 0 0 119

Model 2 Model 3
AB 17 0 0 2 0 0 17 0 0 2 0 0
BB 2 59 0 0 1 0 2 60 0 0 0 0
KOB 0 7 39 1 0 0 0 7 39 1 0 0
KRB 14 10 2 530 1 0 5 8 4 539 1 0
E 1 0 0 0 70 0 0 0 0 0 71 0
N 0 0 0 0 0 119 0 0 0 0 0 119

Table 4. Total number of detections for STA/LTA and EMFP and number of events assigned to each class for best performing models (Models 1 and 3 with
class-weighting, data augmentation and random cropping).

Detector Detections Calving Earthquakes Noise

AB BB KOB KRB

Model 1
STA/LTA KBS 31 180 2568 5380 2287 11 171 8530 1244
EMFP SPITS 21 679 667 1557 2203 9371 2806 5177

Model 3
STA/LTA KBS 31 180 4235 6011 2906 10 401 6813 814
EMFP SPITS 21 679 971 1760 2656 9581 2863 3850

For the STA/LTA method, detections assigned to the noise class
exhibit the lowest number as expected. The detector is unlikely to
trigger on pure noise with exception of noise bursts and other local
signals not belonging to the calving classes or the earthquakes class.

The EMF detector on the other hand generated a larger number
of noise instances since the events might be falsely triggered at
SPITS and no signal is observed at KBS at the corresponding time.
Kronebreen is the most active glacier in the study region and as
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expected exhibits the highest number of classifications. From the
STA/LTA detector at KBS we obtain between 10 000 and 11 000
calving events originating at Kronebreen depending on the CNN
model, while the number from EMFP at SPITS at a much larger
distance is only 7–16 per cent lower.

As for Kronebreen, the STA/LTA and EMFP detectors combined
with CNNs produce also similar number of detections for Kongs-
breen (Table 4). In contrast, the number of detections for the other
two glaciers is clearly lower for EMFP compared to STA/LTA. This
result gives an idea about the EMFP footprint. Kronebreen and
Kongsbreen are located in very close proximity (see Fig. 1). Hence,
the direction and P–S traveltime difference for calving signals ar-
riving at SPITS is very similar. Consequently, the EMF detection
statistic is sensitive to events at both glaciers. Events from Blom-
strandbreen and Aavatsmarkbreen are still picked up by EMFP,
however, less frequently since backazimuth and distance differ more
with respect to the template event.

In order to quantify and evaluate the performance of detect-
ing calving at Kronebreen, we compute different metrics. The first
metric is based on matches with the incomplete reference data set
RD1. Recall 1 is computed by dividing the number of true positives
TPRD1, that is, number of events correctly classified as Kronebreen
calving with respect to reference data set RD1, by the total number
of Kronebreen events in RD1 NRD1:

Recall 1 = T PR D1

NR D1
. (6)

Maximizing Recall 1 means avoiding false negatives, that
is, missed calving events at Kronebreen previously confirmed at
station KBS. Recall 2 with respect to RD2 is also computed:

Recall 2 = T PR D2

NR D2
. (7)

Since not all calving events occurring at the glacier (NRD2) are
observed at KBS, Recall 2 is expected to be not larger than about 10
per cent as mentioned above. Precision 2 is computed as the ratio of
the number of true positives with respect to reference data set RD2
and all events classified as Kronebreen calving by the CNN (true
positives TPRD2 and false positives FPRD2):

Precision 2 = T PR D2

(T PR D2 + F PR D2)
. (8)

Since a complete calving event catalog is used as reference (RD2),
Precision 2 is an indicator for events falsely classified as Krone-
breen calving. It does not make sense to evaluate Precision 1 since
RD1 is not complete, that is, there are more calving signals from
Kronebreen observed at KBS than included in RD1. All metrics
are computed with a tolerance of ±12 s when matching classified
detections and events in the reference data sets.

The results presented in Table 5 show the baseline performance
using the method of Köhler et al. (2016) with Recall 1 of 81 per cent
and a rather low Precision 2 of 58 per cent. Recall 2 with 7.8 per cent
reflects the fact that only about 10 per cent of calving at Kronebreen
is actually observed at KBS. Without post-detection classification,
the STA/LTA at KBS naturally finds all Kronebreen calving events
in RD1, however, Precision 2 drops to about 28 per cent since any
signal at KBS would then be attributed to this glacier. Essentially,
this value tells us that about 28 per cent of all detectable signals at
KBS originate at Kronebreen. Similar, Recall 2 around 12 per cent
confirms the percentage of observable calving signals from Krone-
breen at KBS. Notably, EMFP at SPITS still detects most of Kro-
nebreen calving in RD1 (91 per cent) and Precision 2 without CNN

Table 5. Performance of detectors and classifiers for Kronebreen calving
classification. Model modifications: cw—class-weighted, a—augmented,
cp—ṁcrop. Best preferred model is highlighted (bold).

Classifier
Recall 1

(per cent)
Recall 2

(per cent)
Precision 2 (per

cent)

STA/LTA Detection at KBS
Baseline 80.9 7.8 57.6
Only detection 100.0 11.6 28.1
Model 1 97.1 9.1 74.2
Model 2 96.2 8.9 76.2
Model 3 96.7 8.8 78.5
Model 3 no cp 79.9 7.9 60.3
Model 3 no cp, no a 90.5 9.4 47.5
Model 3 no cp, no a, no cw 99.4 10.0 40.0

EMFP Detection at SPITS
Only detection 91.0 12.6 36.4
Model 1 90.5 9.1 76.0
Model 2 90.2 9.5 74.5
Model 3 90.5 9.3 76.1
Model 3 no cp 77.1 7.1 73.5
Model 3 no cp, no a 84.3 9.2 66.5
Model 3 no cp, no a, no cw 90.8 10.2 64.2

Continuous time windows at KBS
Model 3 90.7 27.7 39.7

classification is about 8 per cent higher than with the STA/LTA at
KBS. This confirms EMFP to be a powerful detector which is very
selective when triggering events at SPITS, that is, has a footprint
only around the target area, and is very sensitive to weak seismic
arrivals even at 100 km distance.

Classifying the detections decreases Recall 1 only slightly for all
models, that is, only a few of the confirmed Kronebreen events end
up in a different class. The decrease is a bit more pronounced for
Recall 2 which reflects the limited training data available not fully
representing the variability of calving signals from Kronebreen.
However, a large increase in Precision 2 from 36 per cent up to
75 per cent on average is obtained as expected when classifying
detections.

The most important assessment is the comparison with the base-
line classifier. Our results in Table 5 show that all CNN models
perform significantly better for all three metrics, even EMFP which
relies on detections made at 100 km distance. Precision 2 increases
from 58 per cent to 75 per cent for both detection methods which
ensures a calving record for Kronebreen less contaminated by other
glaciers than previously. A further increase towards 100 per cent is
of course desirable, but would require extended training data de-
rived from additional local measurements at the terminus. Recall 1
and Recall 2 increase as well compared to the baseline indicating
improvement of the completeness of the calving record. Even if
Recall 1 is larger for the STA/LTA trigger, EMFP performs slightly
better when it comes to Recall 2 and has a similar precision.

While all our CNN models perform similarly better compared
to the baseline, the metrics slightly favour Model 1, the one stage
classifier, and Model 3, the dual output classifier, over Model 2. If
we compare Models1 and 3 and put more weight on obtaining a
higher precision, Model 3 would be the better choice. The results in
Tables 3 and 5 also show that training data augmentation, random
cropping and class weighting improve performance of the classifiers
significantly, especially Precision 2.
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5 D I S C U S S I O N

The complexity of seismic calving signals in combination with
the short and partly incomplete record of confirmed events is a
limiting factor for training our classifiers. Calving at a particular
glacier can be considered as a repeating event when it comes to the
location on a regional scale (i.e. for EMFP), but not with respect
to the source time function dominating the signal at short distance.
Learning the signal complexity and variability due to different ice–
water interaction mechanisms, styles of calving and location along
the terminus would benefit from an extended training data which
requires further logistical effort by acquiring more local seismic
and direct calving observations. Nevertheless, we find that taking
these obstacles into account by designing CNNs with limited size
and augmenting the training data, a good classifier performance can
be achieved. Using ML clearly improved the simple classifier used
previously to detect calving at Kronebreen. This result will therefore
increase confidence in the ice loss estimated for Kronebreen from
seismic observations at KBS.

Fig. 4 shows the number of Kronebreen calving events per day in
the study time period. The temporal variability is very similar for
both detectors and the baseline method. Interestingly, EMFP yields
lower number of events only in certain time periods, such as in June
and July when the number drops to about 50 per cent of the number
of STA/LTA detections at KBS. This is most likely due to increased
seismic noise levels at SPITS which impair the EMFP detection
statistic. During that time period, the snow or ice cover shielding
the SPITS borehole sensors from noise generated at the surface has
usually disappeared. Furthermore, noise due to fluvial processes
and increased icequake activity at close-by mountain glaciers may
contribute to decreasing the detection capability.

Overall, the number of Kronebreen events from the baseline
method is about 10 per cent larger than from the CNN classification
(Fig. 4). This can be explained by the better precision, that is, less
events from other glaciers are assigned to Kronebreen. On the other
hand, the temporal variability of the calving observations seem to
be very similar. However, note that calving at the other glaciers in
the study area may follow similar variations due to similar meteo-
rological conditions. As our comparison with the reference data set
shows, the baseline method does most likely include more events
from other glaciers and misses more events from Kronebreen com-
pared to the CNN classifier. Hence, while using our new method
does not affect the conclusions derived from previously published
results when it comes to seasonal calving variability and long-term
trends (Köhler et al. 2016, 2019a), the new classification scheme
has the potential to improve the ice loss rates estimated from seis-
mic data in those studies. Since seismic event observations were
calibrated with directly measured ice loss empirically in the previ-
ous works, the absolute cumulative ice loss will most likely not be
affected much. However, we expect that uncertainties of the empir-
ical ice loss estimates can be decreased by providing more precise
calving event time-series for Kronebreen. Furthermore, on longer
timescales the improved classification may prevent overestimation
of the cumulative ice loss at Kronebreen, considering that the new
results suggest less calving than the baseline.

We tested different CNN architectures, however, the training data
preparation turned out to be much more crucial for achieving good
performance than using one stage, two stage or dual output mod-
els. One could argue to favour the simplest model in this case (one
stage, Model 1). However, the dual output architecture could still
be beneficial and may perform better for other applications in seis-
mology where introducing super- and subclasses of seismic events

is appropriate. We therefore consider our study as a successful test
of such CNN architectures.

The advantage of CNNs is that features which are best suitable
to distinguish the given classes are generated automatically from
the raw waveforms. The baseline classifier used the polarization at
KBS as the only feature to classify the origin glacier of calving and
did not include a separate class for earthquakes and noise. While
the learned latent features allowing the CNNs to differentiate be-
tween earthquakes, calving and noise probably include information
from frequency content, shape of waveforms and polarization, it is
reasonable to assume that polarization, that is, the different relative
amplitudes on the horizontal components over time, is the main
reason why the four different glaciers around KBS are so well sep-
arable. Visually, it is hard to tell from the waveforms alone if a
calving event recorded at KBS originated from a particular glacier
due to the huge in-class variability of waveforms and the overall
similar frequency content. This demonstrates how powerful CNNs
using waveforms as input are for seismic signal classification. We
also tested spectrograms for classification with CNNs instead of
using waveforms as input, however, this did not achieve satisfying
performance for the glacier classification.

The continuous mode application (see Table 5), where the CNN
acts as a detector and classifier, yields a Recall 1 of 91 per cent
which is similar as for EMFP and lower than for STA/LTA post-
detection classification but still higher than the baseline. However,
note that about 46 800 detections are obtained for the Kronebreen
class which is 50 per cent higher than all STA/LTA detections at
KBS (all classes). In fact, we tested the statistical significance of
the occurrence of matches between detected events and ground true
data and found that 14 per cent of the matches with RD1 could
be explained by coincidence. The same is the case for Recall 2 of
28 per cent where 14 per cent matching could be achieved by ran-
domly distributing the number of events classified as Kronebreen in
the RD2 time period. Most importantly, Precision 2 with about 40
per cent is significantly lower than the baseline result. Thus, the con-
tinuous classifier seems to classify too many time windows falsely
as Kronebreen calving, that is, it struggles to distinguish between
noise and calving events, which is a result of the limited training
data set. Ideally, one would like to use ML for the full processing
pipelines as has been shown in previous studies. However, we find
that pre-detection of events indeed helps to overcome the shortage
in training examples in our case.

Having demonstrated the usefulness of CNNs for post-detection
classification, a question concerning the benefit of using EMFP at
SPITS remains. For monitoring calving at Kronebreen, one would
prefer the STA/LTA detector at KBS due to its proximity to Kro-
nebreen and therefore slightly better performance when it comes
to catalogue completeness. Nevertheless, our results show that the
EMF detector at the distant SPITS array is sensitive enough to find
a high percentage of the events detected at KBS. This fact is im-
portant for the ability to monitor calving at other tidewater glaciers
in Svalbard without seismic stations in their proximity. For these
glaciers, EMFP at SPITS will be a powerful method once calibra-
tion data from local calving observations are available. The detector
threshold at SPITS would have to be increased without a seismic
station close to the glacier in order to avoid false detections. Fur-
thermore, close glaciers might not always be distinguishable using
EMFP at SPITS alone (such as for Kronebreen and Kongsbreen).
However, larger events can still be used as a proxy for ice loss as
we have demonstrated in Köhler et al. (2016) where we also used
only calving events observed at SPITS to estimate the ice loss at
Kronebreen in additional to the estimation with KBS observations.
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Figure 4. Number of Kronebreen calving events per day for best-performing CNN model (Model 3) applied to continuous detections in SPITS (EMFP) and
KBS data (STA/LTA) for six months from 2016 April until September. Results of baseline classifier are shown for comparison. Plot starts at date 2016-04-01.
Total number of events are given for each model.

In that study, the events were first detected at KBS. This step can
now be replaced by EMFP at SPITS. Furthermore, one could ap-
ply post-detection classification with CNNs directly on the SPITS
waveforms, that is, using the SPITS beam steered towards the target
glacier. Moreover, it could be explored to what extent EMFP can
benefit from including the horizontal component record at SPITS
(Gibbons et al. 2011) and how obtaining the empirical steering vec-
tor as an ensemble average over more than one template (Harris
& Kvaerna 2010) might further improve the detector. Testing these
approaches is beyond the scope of this study and will be subject of
future research.

6 C O N C LU S I O N S

In this study, we combined STA/LTA triggering, the EMF method
and CNNs to detect seismic calving events originating at Kro-
nebreen, one of the most active tidewater glaciers on the Arctic
Archipelago of Svalbard. We apply the STA/LTA detector on the
single three-component station KBS in the vicinity of the glacier
and the EMF detector at the SPITS seismic array at 100 km dis-
tance. The benefit of EMF is that preferably signals originating in
the target region are triggered in contrast to STA/LTA which is not
source sensitive. In both cases, we then apply trained CNN classi-
fiers on the three-component KBS waveforms of all detections in a
6 months time period to distinguish between earthquakes, noise and
four different active tidewater glaciers close to KBS. We find that
this approach works better for both detectors than a previous method
implemented for calving monitoring at Kronebreen based on KBS
data. The completeness of the calving record as well as false assign-
ment of events originating from other glaciers to Kronebeen could
be reduced significantly. Training data augmentation and adjusting
for class imbalance was crucial to achieve these results. We in-
troduced a novel CNN architecture for seismic event classification
which treats calving at different glaciers as subclasses of a calv-
ing class that is distinguished from regional earthquakes and noise
records. Our results open new possibilities for calving monitoring
all over Svalbard. This will potentially allow us to estimate the ice
loss at more tidewater glaciers from seismic observations and, thus,
enable us to assess and better understand the impact of a warming
climate in Svalbard.

A C K N OW L E D G M E N T S

Waveform figures were generated and seismic data processing was
done using Obspy (Beyreuther et al. 2010). We thank Wojciech
Gajek, Tormod Kværna and one more anonymous reviewer for their
comments and suggestions that helped to improve this manuscript.

This study was partly funded by The Research Council of Norway
(project number 311596, GEObyIT). Author contribution: AK did
the data processing and wrote the paper. SM implemented and tested
CNN models 1 and 2. EM developed CNN model 3 and re-trained
and tested all models. SM and EM contributed to the manuscript
text.

DATA AVA I L A B I L I T Y

KBS and SPITS data are available via IRIS (Albuquerque Seis-
mological Laboratory (ASL)/USGS 1988) or the Norwegian EIDA
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Bäuerle, A., Van Onzenoodt, C. & Ropinski, T., 2021. Net2Vis—a visual
grammar for automatically generating publication-tailored CNN archi-
tecture visualizations, IEEE Trans. Visual. Comput. Graph., 27(6), 2980–
2991.

Bergen, K.J., Chen, T. & Li, Z., 2019. Preface to the focus section on machine
learning in seismology, Seismol. Res. Lett., 90(2A), 477–480.

Berrar, D., 2019. Performance measures for binary classification, Reference
Module in Life Sciences, Encycl. Bioinform. Comput. Biol., 1, 546–560.

Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y. & Wassermann,
J., 2010. ObsPy: a Python toolbox for seismology, Seismol. Res. Lett.,
81(3), 530–533.

Carmichael, J.D., 2016. A waveform detector that targets template-
decorrelated signals and achieves its predicted performance, Part I:
demonstration with IMS data, Bull. seism. Soc. Am., 106(5), 1998–2012.

Carmichael, J.D., Joughin, I., Behn, M.D., Das, S., King, M.A., Stevens, L.
& Lizarralde, D., 2015. Seismicity on the western Greenland Ice Sheet:
surface fracture in the vicinity of active moulins, J. geophys. Res.: Earth
Surface, 120(6), 1082–1106.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/230/2/1305/6551899 by guest on 09 M

ay 2022

https://www.tensorflow.org
http://dx.doi.org/10.1785/BSSA07206B0225
http://dx.doi.org/10.1088/1361-6633/aa8473
http://dx.doi.org/10.1029/2012JF002513
http://dx.doi.org/10.1002/2015JF003641
http://dx.doi.org/10.1109/TVCG.2021.3057483
http://dx.doi.org/10.1785/0220190018
http://dx.doi.org/10.1016/B978-0-12-809633-8.20351-8
http://dx.doi.org/10.1785/gssrl.81.3.530
http://dx.doi.org/10.1785/0120160047
http://dx.doi.org/10.1002/2014JF003398
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Kværna, T., Gibbons, S.J. & Näsholm, S.P., 2021. Ctbt seismic monitoring
using coherent and incoherent array processing, J. Seismol., 25(5), 1189–
1207.

La Grassa, R., Gallo, I. & Landro, N., 2021. Learn class hierarchy using
convolutional neural networks, Appl. Intell., 51(10), 6622–6632.

Le Bras, R., Swanger, H., Sereno, T., Beall, G., Jenkins, R., Nagy, W. &
Henson, A., 1994. Global association; final report, Sci. Appl. Inter. Corp.
Tech. Rep.

Luckman, A., Benn, D.I., Cottier, F., Bevan, S., Nilsen, F. & Inall, M., 2015.
Calving rates at tidewater glaciers vary strongly with ocean temperature,
Nature Commun., 6(8566), doi:10.1038/ncomms9566.

Minowa, M., Podolskiy, E.A., Jouvet, G., Weidmann, Y., Sakakibara, D.,
Tsutaki, S., Genco, R. & Sugiyama, S., 2019. Calving flux estimation
from tsunami waves, Earth planet. Sci. Lett., 515, 283–290.

Mousavi, S.M., Ellsworth, W.L., Zhu, W., Chuang, L.Y. & Beroza, G.C.,
2020. Earthquake transformer–an attentive deep-learning model for si-
multaneous earthquake detection and phase picking, Nature Commun.,
11(1), 1–12.

NORSAR, 1971a. NORSAR Seismic Bulletins, https://doi.org/10.21348/b
.0001.

NORSAR, 1971b. NORSAR Station Network [Data set], https://doi.org/10
.21348/d.no.0001.

Nuth, C., Schuler, T.V., Kohler, J., Altena, B. & Hagen, J.O., 2012. Estimating
the long-term calving flux of Kronebreen, Svalbard, from geodetic eleva-
tion changes and mass-balance modelling, J. Glaciol., 58(207), 119–133.

O’Neel, S., Larsen, C., Rupert, N. & Hansen, R., 2010. Iceberg calving as
a primary source of regional-scale glacier-generated seismicity in the St.
Elias Mountains, J. geophys. Res., 115 F04034.
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Figure A1. SNRs for calving events in references data set RD1.

Reference data set details
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