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Abstract. Inspired by several real-life applications in audio processing and medical

image analysis, where the quantity of interest is generated by several sources to be

accurately modeled and separated, as well as by recent advances in regularization

theory and optimization, we study the conditions on optimal support recovery in

inverse problems of unmixing type by means of multi-penalty regularization.

We consider and analyze a regularization functional composed of a data-fidelity

term, where signal and noise are additively mixed, a non-smooth, convex, sparsity

promoting term, and a quadratic penalty term to model the noise. We prove not

only that the well-established theory for sparse recovery in the single parameter

case can be translated to the multi-penalty settings, but we also demonstrate the

enhanced properties of multi-penalty regularization in terms of support identification

compared to sole `1-minimization. We additionally confirm and support the theoretical

results by extensive numerical simulations, which give a statistics of robustness of the

multi-penalty regularization scheme with respect to the single-parameter counterpart.

Eventually, we confirm a significant improvement in performance compared to standard

`1-regularization for compressive sensing problems considered in our experiments.

1. Introduction

In many real-life applications such as audio processing or medical image analysis, one

encounters the situation when given observations (most likely noisy) have been generated

by several sources ui that one wishes to reconstruct separately. In this case, the

reconstruction problem can be understood as an inverse problem of unmixing type,

where the solution u† consists of several (two or more) components of different nature,

which have to be identified and separated.
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In mathematical terms, an unmixing problem can be stated as the solution of an

equation

Au† = y,

where u† =
∑L

i=1 ui, ui ∈ Vi and V1 + . . . + VL = RN but 〈Vi, Vj〉 ' 0 for i 6= j in the

sense that

|〈vi, vj〉| ' δij (1)

for all vi ∈ Vi and vj ∈ Vj, ‖vi‖`2 = ‖vj‖`2 = 1, i 6= j. In general, we are interested to

acquire the minimal amount of information on u so that we can selectively reconstruct

with the best accuracy one of the components uı̂, but not necessarily also the other

components uj for j 6= ı̂. In this settings, we further assume that A cannot be specifically

tuned to recover uı̂ but should be suited to gain universal information to recover uı̂ by

a specifically tuned decoder.

A concrete example of this setting is the noise folding phenomenon arising in

compressed sensing, related to noise in the signal that is eventually amplified by the

measurement procedure. In this setting, it is reasonable to consider a model problem of

the type

A(u+ v) = y, (2)

where v is the random Gaussian noise with variance σv on the original signal u ∈ RN and

A ∈ Rm×N is the linear measurement matrix. Several recent works (see, for instance,

[1] and the references therein) illustrate how the measurement process actually causes

the noise folding phenomenon. To be more specific, one can show that (2) is equivalent

to solving

Âu+ ω = y, (3)

where ω is composed by i.i.d. Gaussian entries with distribution N(0, σω), and the

variance σω is related to the variance of the original signal by σ2
ω = N

m
σ2
v . This implies

that the variance of the noise on the original signal is amplified by a factor of N/m.

Under the assumption that A satisfies the so-called restricted isometry property, it

is known from the work on the Dantzig selector in [4] that one can reconstruct u† from

measurements y as in (3) such that

‖u− u†‖22 ≤ C22
(

(1 + k)
N

m
σ2
v

)
logN, (4)

where k denotes the number of nonzero elements of the solution u. The estimate (4)

is considered (folklore) nearly-optimal in the sense that no other method can really

improve the asymptotic error O(N
m
σ2
v). Therefore, the noise folding phenomenon may

in practice significantly reduce the potential advantages of compressed sensing in terms

of the trade-off between robustness and efficient compression (given by the factor N/m

here) compared to other more traditional subsampling methods [5].

In [2] the authors present a two-step numerical method which allows not

only to recover the large entries of the original signal u accurately, but also has
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enhanced properties in terms of support identification over simple `1-minimization

based algorithms. In particular, because of the lack of separation between noise and

reconstructed signal components, the latter ones can easily fail to recover the support

when the support is not given a priori. However, the computational cost of the second

phase of the procedure presented in [2], being a non-smooth and non-convex optimization

problem, is too demanding to be performed on problems with realistic dimensionalities.

It was also shown that other methods based on a different penalization of the signal and

noise can lead to higher support detection rate.

The follow up work [11], which addresses the noise folding scenario by

means of multi-penalty regularization, provides the first numerical evidence of the

superior performance of multi-penalty regularization compared to its single parameter

counterparts for problem (2). In particular, the authors consider the functional

Jp,q(u, v) := ‖A(u+ v)− y‖22 + α‖u‖pp +
(
β‖v‖qq + ε‖v‖22

)
, (5)

here α, β, ε ∈ R+ may all be considered as regularization parameters of the problem.

The parameter ε > 0 ensures the `2−coercivity of Jp,q(u, ·) also with respect to the

component v. In the infinite dimensional setting the authors presented a numerical

approach to the minimization of (5) for 0 ≤ p < 2, 2 ≤ q <∞, based on simple iterative

thresholding steps, and analyzed its convergence.

The results presented in this paper are very much inspired not only by the above-

mentioned works in the signal processing and compressed sensing fields, but also by

theoretical developments in sparsity-based regularization (see [8] and references therein)

and multi-penalty regularization ([9, 10], just to mention a few). While the latter two

directions are considered separately in most of the literature, there have also been some

efforts to understand regularization and convergence behavior for multiple parameters

and functionals, especially for image analysis [3, 12]. However, to the best of our

knowledge, the present paper is the first one providing a theoretical analysis of the

multi-penalty regularization with a non-smooth sparsity promoting regularization term,

and an explicit comparison with the single-parameter counterpart.

1.1. Content of the paper

In Section 2 we concisely recall the pertinent features and concepts of multi-penalty and

single-penalty regularization. We further show that `1-regularization can be considered

as the limiting case of the multi-penalty one, and thus the theory of `1-regularization

can be applied to multi-penalty setting. In Section 3 we recall and discuss conditions for

exact support recovery in the single-parameter case. The main contributions of the paper

are presented in Sections 4 and 5, where we extend and generalize the results from the

previous sections to the multi-penalty setting. In Section 5 we also open the discussion

on the set of admissible parameters for the exact support recovery for unmixing problem

in single-parameter as well as multi-penalty cases. In particular, we study the sensitivity

of the multi-penalty scheme with respect to the parameter choice. The theoretical

findings and discussion are illustrated and supported by extensive numerical validation
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tests presented in Section 6. Finally, in Section 7 we compare the performance of

the multi-penalty regularization and its single-parameter counterpart for compressive

sensing problems.

2. Multi-Penalty and Single-Penalty Regularization

We first provide a short reminder and collect some definitions of the standard notation

used in this paper.

The true solution u† of the unmixing problem (2) is called k-sparse if it has at most

k non-zero entries, i.e., #I = # supp(u†) ≤ k, where I := supp(u†) := {i : u†i 6= 0}
denotes the support of u†.

We propose to solve the unmixing problem (2) with k-sparse true solution using

multi-penalty Tikhonov regularization of the form

Tα,β(u, v) :=
1

2
‖A(u+ v)− y‖22 + α‖u‖1 +

β

2
‖v‖22 → min

u,v
, (6)

the solution of which we will denote by (uα,β, vα,β). We note that we can, formally,

interpret standard `1-regularization as the limiting case β =∞, setting

Tα,∞(u, v) :=


1

2
‖Au− y‖22 + α‖u‖1 if v = 0,

+∞ if v 6= 0.

Obviously, the pair of minimizers of Tα,∞ will always be equal to (uα, 0), where uα
minimizes 1

2
‖Au− y‖22 + α‖u‖1.

Definition 1 Let β ∈ R+ ∪ {∞} be fixed. We say that a set S ⊂ RN × RN is a set of

exact support recovery for the unmixing problem with operator A, if there exists α > 0,

such that supp(uα,β) = supp(u†) whenever the given data y has the form y = A(u† + v)

with (u†, v) ∈ S.

The parameters α > 0 for which this property holds are called admissible for S.

Specifically, we will study for c > d > 0 the sets

Sc,d,I := {(u, v) ∈ RN × RN : supp(u) = I, inf
i∈I
|ui| > c, ‖v‖∞ < d} (7)

and the corresponding class

Sc,d,k :=
⋃

#I≤k

Sc,d,I .

The set Sc,d,I is a set of exact support recovery, if there exists some regularization

parameter α > 0, such that we can apply multi-penalty regularization with parameters

α and β (or single-parameter `1-regularization with parameter α in case β =∞) to the

unmixing problem (2) and obtain a result with the correct support, provided that the

`∞-norm of the noise is smaller than d and the non-zero coefficients of u† are larger than

c. Typical examples of real-life signals that can be modeled by signals from the set Sc,d,I
can be found in Asteroseismology, see for instance [2].
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We note that this class of signals is very similar to the one studied in [2]. The main

difference is that we focus on the case where the noise v is bounded only componentwise

(that is, with respect to the `∞-norm), whereas [2] deals with noise that has a bounded

`p-norm for some 1 ≤ p ≤ 2. Additionally, we allow the noise also to mix with the signal

u† to be identified in the sense that the supports of v and u† may have a non-empty

intersection. In contrast, the signal and the noise are assumed to be strictly separated

in [2].

Throughout the paper we will several times refer to the sign function sgn, which

we always interpret as being the set valued function sgn(t) = 1 if t > 0, sgn(t) = −1 if

t < 0, and sgn(t) = [−1, 1] if t = 0, applied componentwise to the entries of the vector

uα.

We use the notation AI to denote the restriction of the operator A to the span of

the support of u†. Additionally, we denote by

J := {i : u†i = 0}

the complement of I, and by AJ the restriction of A to the span of J . We note that

the adjoints A∗I and A∗J are simply the compositions of the adjoint A∗ of A with the

projections onto the spans of I and J , respectively.

As a first result, we show that the solution of the multi-penalty problem (6)

simultaneously solves a related single-penalty problem.

Lemma 1 The pair (uα,β, vα,β) solves (6) if and only if

vα,β = (β + A∗A)−1(A∗y − A∗Auα,β)

and uα,β solves the optimization problem

1

2
‖Bβu− yβ‖22 + α‖u‖1 → min (8)

with

Bβ =
(

Id +
AA∗

β

)−1/2
A

and

yβ =
(

Id +
AA∗

β

)−1/2
y.

Proof: We can solve the optimization problem in (6) in two steps, first with respect to

v and then with respect to u. Assuming that u is fixed, the optimality condition for v

in (6) reads

A∗(A(u+ v)− y) + βv = 0. (9)

That is, for fixed u, the optimum in (6) with respect to v is obtained at

v(u) := (β + A∗A)−1(A∗y − A∗Au).
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Inserting this into the Tikhonov functional, we obtain the optimization problem

1

2
‖A(u+ v(u))− y‖22 + α‖u‖1 +

β

2
‖v(u)‖22 → min

u
.

Using (9), we can write

1

2
‖A(u+ v(u))− y‖22 =

1

2
〈A(u+ v(u))− y, Au− y〉

+
1

2
〈A∗(A(u+ v(u))− y), v(u)〉

=
1

2
〈A(u+ v(u))− y, Au− y〉 − β

2
‖v(u)‖22.

Thus the optimization problem for u simplifies to

1

2
〈A(u+ v(u))− y, Au− y〉+ α‖u‖1 → min

u
. (10)

Now note that

A(u+ v(u))− y = A(Id− (β + A∗A)−1A∗A)u− (Id− A(β + A∗A)−1A∗)y

= A(Id + A∗A/β)−1u− (Id + AA∗/β)−1y

= (Id + AA∗/β)−1(Au− y).

Inserting this equality in (10), we obtain the optimization problem

1

2
〈(Id + AA∗/β)−1(Au− y), Au− y〉+ α‖u‖1 → min

u
,

which is the same as (8). ut

Remark 1 As a consequence of Lemma 1, we can apply the theory of `1-regularization

also to the multi-penalty setting we consider here. In particular, this yields, for fixed

β > 0, estimates of the form

‖u† − uα,β‖1 ≤ C1,βα + C2,β
‖yβ −Bβu

†‖22
α

provided that u† satisfies a source condition of the form B∗βη ∈ ∂(‖u†‖1) with |(B∗βη)i| < 1

for every i 6∈ supp(u†), and the restriction of the mapping Bβ to the span of the support

of u† is injective (see [8]). Additionally, it is easy to show that these conditions hold for

Bβ provided that they hold for A and β is sufficiently large.

3. Sets of Exact Support Recovery—Single-penalty Setting

The main focus of this paper is the question whether multi-penalty regularization allows

for the exact recovery of the support of the true solution u† and how it compares to

single-penalty regularization. Because, as we have seen in Lemma 1, multi-penalty

regularization can be rewritten as single-parameter regularization for the regularized

operator Bβ and right hand side yβ, we will first discuss recovery conditions in the

single-parameter setting.

In order to find conditions for exact support recovery, we first recall the necessary

and sufficient optimality condition for `1-regularization:
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Lemma 2 The vector uα minimizes

Tα(u) :=
1

2
‖Au− y‖22 + α‖u‖1,

if and only if

A∗(Auα − y) ∈ −α sgn(uα).

Using this result, we obtain a condition that guarantees exact support recovery for

the single-penalty method:

Lemma 3 We have supp(uα) = I, if and only if there exists wα ∈ (R \ {0})I such that

A∗I(AIwα − y) = −α sgn(wα),

‖A∗J(AIwα − y)‖∞ ≤ α,

Proof: This immediately follows from Lemma 2 by testing the optimality conditions on

the vector uα given by (uα)i = (wα)i for i ∈ I and (uα)i = 0 else. ut

Our main result concerning support recovery for single-parameter regularization is

the following:

Proposition 1 Assume that AI is injective and that

‖A∗JAI(A∗IAI)−1‖∞ < 1. (11)

Then the set Sc,d,I defined in (7) is a set of exact support recovery for the unmixing

problem whenever

c

d
>
‖A∗J(AI(A

∗
IAI)

−1A∗I − Id)A‖∞‖(A∗IAI)−1‖∞
1− ‖A∗JAI(A∗IAI)−1‖∞

+‖(A∗IAI)−1A∗IA‖∞.(12)

Moreover, every parameter α > 0 satisfying

d‖A∗J(AI(A
∗
IAI)

−1A∗I − Id)A‖∞
1− ‖A∗JAI(A∗IAI)−1‖∞

≤ α <
c− d‖(A∗IAI)−1A∗IA‖∞

‖(A∗IAI)−1‖∞
(13)

is admissible on Sc,d,I .

Proof: First we note that the injectivity of AI implies that the mapping A∗IAI is

invertible. Thus the condition (11) actually makes sense. Moreover, the inequality (12)

is necessary and sufficient for the existence of α satisfying (13).

Now let (u†, v) ∈ Sc,d,I and assume that α satisfies (13). We denote

s†i := sgn(u†i ), i ∈ I,

and define

wα := u†I + (A∗IAI)
−1A∗IAv − α(A∗IAI)

−1s†.

Because ‖s†‖∞ = 1, it follows from the second inequality in (13) that

|(wα)i − u†i | ≤ ‖(A∗IAI)−1A∗IA‖∞‖v‖∞ + α‖(A∗IAI)−1‖∞ < c ≤ |u†i |,

and therefore

sgn(wα) = sgn(u†I) = s†.
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Thus wα actually satisfies the equation

wα = u†I + (A∗IAI)
−1A∗IAv − α(A∗IAI)

−1 sgn(wα)

= (A∗IAI)
−1A∗I(AIu

†
I + Av)− α(A∗IAI)

−1 sgn(wα)

= (A∗IAI)
−1A∗Iy − α(A∗IAI)

−1 sgn(wα),

and thus

A∗I(AIwα − y) = −α sgn(wα),

which is the first condition in Lemma 3.

It remains to show that

‖A∗J(AIwα − y)‖∞ ≤ α.

However,

A∗J(AIwα − y) = A∗J(AIwα − AIu†I − Av)

= A∗J(AI(A
∗
IAI)

−1A∗IAv − Av − αAI(A∗IAI)−1s†),

and thus

‖A∗J(AIwα − y)‖∞ ≤ d‖A∗J(AI(A
∗
IAI)

−1A∗I − Id)A‖∞
+ α‖A∗JAI(A∗IAI)−1‖∞.

Now the first inequality in (13) implies that this term is smaller than α. Thus wα
satisfies the conditions of Lemma 3, and thus supp(uα) = I. ut

Remark 2 In the case where A = Id is the identity operator, the conditions above

reduce to the conditions that c > 2d and d ≤ α < c − d. Since `1-regularization in this

setting reduces to soft thresholding, these conditions are very natural and are actually

both sufficient and necessary: Since the noise may componentwise reach the value of d,

it is necessary to choose a regularization parameter of at least d in order to remove it.

However, on the support I of the signal, the smallest values of the noisy signal value

are at least of size c− d. Thus they are retained as long as the regularization parameter

does not exceed this value.

For more complicated operators A, the situation is similar, i.e., a too small

regularization parameter α is not able to remove all the noise, while a too large one

destroys part of the signal as well. The exact bounds for the admissible regularization

parameters, however, are much more complicated.

4. Sets of Exact Support Recovery—Multi-Penalty Setting

We now consider the setting of multi-penalty regularization for the solution of the

unmixing problem. Applying Lemma 1, we can treat multi-penalty regularization

with the same methods as single-penalty regularization. To that end, we introduce

the regularized operator

Aβ :=
(
I +

AA∗

β

)−1
A. (14)
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In particular, we have with the notation of Lemma 3 that B∗βB = A∗βA and B∗βyβ = A∗βy.

As a first result, we obtain the following analogon to Lemma 3:

Lemma 4 We have supp(uα,β) = I, if and only if there exists wα ∈ (R \ {0})I such

that

A∗β,I(AIwα,β − y) = −α sgn(wα,β),

‖A∗β,J(AIwα − y)‖∞ ≤ α,

Proof: Applying Lemma 2 to the single-penalty problem (8), we obtain the conditions

B∗β,I(Bβ,Iwα,β − yβ) = −α sgn(wα,β),

‖B∗β,J(Bβ,Iwα,β − yβ)‖∞ ≤ α.

Now the claim follows from the equalities

B∗β,IBβ,I = A∗β,IAI , B∗β,Iyβ = A∗β,Iy,

B∗β,IBβ,I = A∗β,IAI , B∗β,Iyβ = A∗β,Iy.

ut
Since the proof of Proposition 1 only depends on the optimality conditions and the

representation of the data as y = Au† + Av, we immediately obtain a generalization of

Proposition 1 to the multi-penalty setting.

Proposition 2 Assume that 0 < β <∞ is such that

‖A∗β,JAI(A∗β,IAI)−1‖∞ < 1. (15)

Then the set Sc,d,I is a set of exact support recovery for the unmixing problem in the

multi-penalty setting whenever
c

d
> ‖(A∗β,IAI)−1A∗β,IA‖∞

+
‖A∗β,J(AI(A

∗
β,IAI)

−1A∗β,I − Id)A‖∞‖(A∗β,IAI)−1‖∞
1− ‖A∗β,JAI(A∗β,IAI)−1‖∞

. (16)

Moreover, all the pairs of parameter (α, β) satisfying (16) and

d‖A∗β,J(AI(A
∗
β,IAI)

−1A∗β,I − Id)A‖∞
1− ‖A∗β,JAI(A∗β,IAI)−1‖∞

≤ α <
c− d‖(A∗β,IAI)−1A∗β,IA‖∞

‖(A∗β,IAI)−1‖∞
(17)

are admissible on Sc,d,I .

Proof: The proof is analogous to the proof of Proposition 1. ut

Remark 3 We note that the condition

‖A∗JAI(A∗IAI)−1‖∞ < 1

implies the analogous inequality for Aβ provided that β is sufficiently large. Similarly,

if α satisfies the conditions in Proposition 1 that guarantee admissibility on Sc,d,I , the

pair (α, β) will satisfy the conditions for admissibility in Proposition 2 provided that

β is sufficiently large. The converse, however, need not be true: If the pair (α, β) is
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admissible for exact support recovery on Sc,d,k with multi-penalty regularization, it need

not be true that the single parameter α is admissble for the single-penalty setting as

well. Examples where this actually happens can be found in Section 6 (see in particular

Table 1).

5. Admissible parameters

As a consequence of Propositions 1 and 2, we obtain that the condition

sup
|I|≤k
‖A∗β,JAI(A∗β,IAI)−1‖∞ < 1 (18)

is sufficient for Sc,d,k to be a set of exact support recovery for the unmixing problem,

provided that the ratio c/d is sufficiently large; the condition for the single-parameter

case can be extracted from (18) by setting β =∞, in which case Aβ reduces to A.

Now define the signal-to-noise ratio of a pair (u, v) as

ρ(u, v) :=
inf{|ui| : i ∈ supp(u)}

‖v‖∞
.

That is, ρ(u, v) is the ratio of the smallest significant value of the signal u, and the

largest value of the noise v. Denote moreover

R(β, k) := max
|I|≤k

{‖A∗β,J(AI(A
∗
β,IAI)

−1A∗β,I − Id)A‖∞‖(A∗β,IAI)−1‖∞
1− ‖A∗β,JAI(A∗β,IAI)−1‖∞

+ ‖(A∗β,IAI)−1A∗β,IA‖∞
}
.

Then the inequality (16) implies that multi-penalty regularization with parameter β

allows for the recovery of the support of k-sparse vectors u from data A(u+ v) provided

the signal-to-noise ratio of the pair (u, v) satisfies

ρ(u, v) > Rβ,k.

Whenever the signal-to-noise ratio is larger than Rβ,k, we can recover the support of the

vector u with some regularization parameter α. There are, however, upper and lower

limits for the admissible parameters α, given by inequality (17). In order to visualize

them, we consider instead the ratio

θ(α, v) :=
α

‖v‖∞
.

Defining

Θmin
β,k := max

|I|≤k

‖A∗β,J(AI(A
∗
β,IAI)

−1A∗β,I − Id)A‖∞
1− ‖A∗β,JAI(A∗β,IAI)−1‖∞

and

Θmax
β,k (ϑ) := min

|I|≤k

ϑ− ‖(A∗β,IAI)−1A∗β,IA‖∞
‖(A∗β,IAI)−1‖∞

,

we then obtain the condition

Θmin
β,k ≤ θ(α, v) < Θmax

β,k (ρ(u, v)) (19)
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for exact support recovery. If the ratio θ(α, v) is smaller than Θmin
β,k , then it can happen

that some of the noise v is not filtered out by the regularization method. On the other

hand, if θ(α, v) is larger than Θmax
β,k (ρ(u, v)), then some parts of the signal u† might

actually be lost because of the regularization.

We note that the function Θmax
β,k is piecewise linear and concave, and

limϑ→∞Θmax
β,k (ϑ) = +∞. Thus the region of admissible parameters defined by (19)

is a convex and unbounded polyhedron. Moreover, we have that Θmax
β,k (Rβ,k) = Θmin

β,k .

Additionally, we note that the behaviour of the function Θmax
β,k near infinity is determined

by the term

Σβ,k := max
|I|≤k
‖(A∗β,IAI)−1‖∞.

If this value is small, then the slope of the function Θmax
β,k (ϑ) for large values of ϑ is large,

and thus the set of admissible parameter grows fast with increasing signal-to-noise ratio.

If, on the other hand, Σβ,k is large, then the set of admissible parameters is relatively

small even for large signal-to-noise ratio. Thus Σβ,k can be reasonably interpreted as

the sensitivity of multi-parameter regularization with respect to parameter choice. The

larger Σβ,k is, the more precise the parameter α has to be chosen in order to guarantee

exact support recovery.

6. Numerical Validation

The main motive behind the study and application of multi-penalty regularization is

the problem that `1-regularization is often not capable to identify the support of signal

correctly (see [2] and references therein). Including the additional `2-regularization term,

however, might lead to an improved performance in terms of support recovery, because

we can expect that the `2-term takes care of all the small noise components.

In order to verify this observation, a series of numerical experiments was performed,

in which we illustrate for which parameters and Gaussian matrices the conditions for

support recovery derived in the previous section were satisfied. In addition, we studied

whether the inclusion of the `2-term indeed increases the performance.

In a first set of experiments, we have generated a set of 20 Gaussian random matrices

of different sizes and have tested for each three-dimensional subspace spanned by the

basis elements whether the condition (15) is satisfied, first for the single-penalty case,

and then for the multi-penalty case with different values of β. The results for matrices

of dimensions 30 times 60 and 40 times 80, respectively, are summarized in Table 1 and

Figure 1.

As to be expected from the bad numerical performance of `1-regularization in

terms of support recovery, the inequality (11) fails in a relatively large number of

cases, especially when the discrepancy between the dimension N of the vectors to be

recovered and the number of measurements m is quite large. For instance, in the case

N = 60 and m = 30, the condition most of the time failed for more than half of the
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three-dimensional subspaces. In contrast, the corresponding condition (15) for multi-

parameter regularization fails in the same situation only for about an eighth of the

subspaces if β = 1, and in even fewer cases for β = 0.1.

For other combinations of dimensionality of the problem and number of

measurements, the situation is similar. Introducing the additional `2-penalty term

always allows for the exact support reconstruction on a larger number of subspaces

than single-penalty regularization. Additionally, the results indicate that the number

of recoverable subspaces increases with decreasing β.

m = 30 Single-penalty Multi-penalty

N = 60 β = 10 β = 1 β = 0.1

Median 0.5425 0.3814 0.1214 0.0623

Mean 0.5559 0.3922 0.1225 0.0635

Standard deviation 0.05652 0.04142 0.01518 0.01083

m = 40 Single-penalty Multi-penalty

N = 80 β = 10 β = 1 β = 0.1

Median 0.2696 0.1523 0.0396 0.0256

Mean 0.2746 0.1547 0.0413 0.0262

Standard deviation 0.03060 0.01848 0.00659 0.00447

Table 1. Percentage of 3-sparse subspaces for which the condition (15) failed. The

condition was tested on samples of 20 Gaussian random matrices of dimensions 30 times

60 (upper table) and 40 times 80 (lower table). Other combinations of dimensionality

and number of measurements showed qualitatively similar results.

In the case where N = 80 and m = 60 (that is, we want to reconstruct 80-

dimensional vectors from 60 measurements), the sufficient condition (15) for multi-

penalty regularization was satisfied in our numerical experiments for all 3-sparse

subspaces for parameters β smaller than 5. In this situation, we have therefore

additionally computed the significant values Rβ,3 and Σβ,3, that is, the minimal

recoverable signal-to-noise ratio and the parameter sensitivity for three-dimensional

subspaces. The results of these numerical experiments are shown in Table 2 and Figure 2.

The results indicate that decreasing the regularization parameter β tends to

decrease the necessary signal-to-noise ratio Rβ,k as well. While a regularization

parameter β = 5 required always an unreasonably large signal-to-noise ratio in order

to guarantee the recoverability of the support, the ratios for β = 0.5 or β = 0.1

turned out to be much more reasonable. However, the results also showed that

decreasing the regularization parameter need not necessarily have a beneficial effect

on the recoverability. For some matrices it happened that the necessary signal-to-noise

ratio Rβ,k increased while the regularization parameter β was decreased (see Figure 2,

left).

Additionally, the results indicate that the parameter sensitivity Σβ,k increases

considerably as β decreases (see Figure 2, right). As a consequence, the range of
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Figure 1. Percentage of 3-sparse subspaces for which the condition (15) failed. For

each of the different settings the condition has been tested on 20 Gaussian random

matrices for multi-parameter regularization with β = 0.1, β = 1 and β = 10, and

for single parameter regularization. Upper left: Dimension 30 times 60. Upper right:

Dimension 30 times 80. Lower left: Dimension 40 times 60. Lower right: Dimension

40 times 80.

admissible parameters α tends to be significantly smaller for smaller β, and it can

happen much more easily that the combined effect of `2 and `1-regularization leads

to a classification of signals as noise. While multi-penalty regularization with a small

parameter β might therefore lead to a better necessary signal-to-noise ratio for recovery,

it requires at the same time a better balance between the two involved parameters α

and β.
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Figure 2. Influence of the regularization parameter β on the set of exact support

recovery and the admissible parameters. Left: Logarithm of base 10 of the recoverable

signal-to-noise ratio Rβ,3 for different values of β. Right: The sensitivity Σβ,3 for

different values of β.

The dimension of the matrix is in all cases 60 times 80, and 20 Gaussian random

matrices have been used for each parameter β.

β

0.1 0.3 0.5 1 5

minimum 1.623 5.961 12.05 49.14 3599.3

Rβ,3 median 2.252 11.84 28.17 205.7 15041.4

maximum 5.546 262.5 302.85 6178.4 203621.6

minimum 31.07 13.35 9.379 6.517 3.793

Σβ,3 median 35.17 15.31 11.086 7.517 4.278

maximum 44.00 19.02 13.474 9.154 4.977

Table 2. Influence of the parameter β on the values of Rβ,k and Σβ,k. The values

have been computed for 20 Gaussian random matrices of dimension 60 times 80 with

k = 3.

7. Applications. Numerical experiments

In order to support our theoretical findings even further, we present in this section some

statistical data obtained by solving series of compressive sensing problems by means of

multi-penalty and `1-regularization. Similarly to [11, 2] we consider in our numerical

experiments the model problem of the type

y = T (u† + v),

where T ∈ Rm×N is an i.i.d. Gaussian matrix, u† is a sparse vector and v is a noise

vector. The choice of T corresponds to compressed sensing measurements [7].
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In the experiments, we consider 30 problems of this type with u† randomly

generated, infi∈I |u†| > 1.5 and # supp(u†) = 7, and v is a random vector whose

components are uniformly distributed on [−1, 1], and normalized such that ‖v‖∞ = 0.3.

We also consider the Gaussian matrices of the size m = 50, N = 100.

In order to approximate minimizers of the multi-penalty (6) and the corresponding

single-penalty functional we use the iterative soft-thresholding algorithm [6]. The

regularization parameters α and β were chosen from the grid Qk
α0
× Qk

β0
, where

Qk
α0

:= {α = αi = α0k
i , α0 = 0.0002, k = 1.25, i = 0, . . . , 50}, and Qk

β0
:= {β =

βi = β0k
i, β0 = 0.01, q = 1.15, i = 0, . . . , 30}. For all possible combinations of (α, β) we

run the iterative soft-thresholding algorithm with fifty inner loop iterations and starting

values u(0) = v(0) = 0.

In order to assess the obtained results, we compare the performance of the

considered regularization schemes. We measure the approximation error (AE) by

‖u − u†‖2, as well as by the number of elements in the symmetric difference (SD)

#(supp(u)∆ supp(u†)). The SD is defined as follows: i ∈ supp(u)∆ supp(u†) if and only

if either i /∈ supp(u) and i ∈ supp(u†) or i ∈ supp(u) and i /∈ supp(u†).

For each problem we compute the best multi-penalty solution u† = u†(α, β) meaning

that no other pairs (α, β) ∈ Qk
α0
× Qk

β0
can improve the accuracy of the algorithm.

Simultaneously, for each problem from our data set we compute the best mono-penalty

solution u† = u†(α). Then, we compute the mean value of the AE and SD. The respective

results are shown in table 3. Additionally, figure 3 shows an example of the typical results

obtained for single- and for multi-penalty regularization.

AE SD α β

minimum 5.00 3 4.59

SP mean 11.21 6 5.74

maximum 13.74 8 11.21

minimum 1.05 1 3.67 0.76

MP mean 5.92 3 5.74 7.09

maximum 8.55 5 8.97 9.42

Table 3. For 30 problems for the solution of the single-penalty (upper panel) as well

as multi-penalty regularization (lower panel) the minimum / maximum AE, SD and

optimal values of the regularization parameters are provided. The mean values are

also provided.
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