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ABSTRACT
The use of modern Natural Language Processing (NLP) techniques

has shown to be beneficial for software engineering tasks, such

as vulnerability detection and type inference. However, training

deep NLPmodels requires significant computational resources. This

paper explores techniques that aim at achieving the best usage of

resources and available information in these models.

We propose a generic approach, EarlyBIRD, to build compos-

ite representations of code from the early layers of a pre-trained

transformer model. We empirically investigate the viability of this

approach on the CodeBERT model by comparing the performance

of 12 strategies for creating composite representations with the

standard practice of only using the last encoder layer.

Our evaluation on four datasets shows that several early layer

combinations yield better performance on defect detection, and

some combinations improve multi-class classification. More specif-

ically, we obtain a +2 average improvement of detection accuracy

on Devign with only 3 out of 12 layers of CodeBERT and a 3.3x

speed-up of fine-tuning. These findings show that early layers can

be used to obtain better results using the same resources, as well as

to reduce resource usage during fine-tuning and inference.
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• Software and its engineering; • Computing methodologies
→ Neural networks; Natural language processing; Information
extraction;

KEYWORDS
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1 INTRODUCTION
Automation of software engineering (SE) tasks supports developers

in creation and maintenance of source code. Recently, deep learning

(DL) models have been trained on large open-source code corpora

and used to perform code analysis tasks [1–4]. Motivated by the

naturalness hypothesis stating that code and natural language share

statistical similarities, researchers and tool vendors have started
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training deep NLP models on code and fine-tuning them on SE

tasks [5]. Amongst others, such models have been applied to type

inference [6], code clone detection [7], program repair [8–11], and

defect prediction [12–15]. In NLP-based approaches, SE tasks are

frequently translated to code classification problems. For example,

detection of software vulnerabilities is a binary classification prob-

lem, bug type inference is a multi-class classification setting, and

type inference is a multi-label multi-class classification task in case

a type is predicted for each variable in the program.

Most modern NLP models build on the transformer architec-

ture [16]. This architecture uses attention mechanism and consists

of an encoder that converts an input sequence to a representation
through a series of layers, followed by decoder layers that convert
this representation to an output sequence. Although effective in

terms of learning capabilities, the transformer design results in

multi-layer models that need large amounts of data for training

from scratch. A well-known disadvantage of these models is the

high resource usage that is required for training due to both model

and data sizes. While a number of pre-trained models have been

published recently, fine-tuning these models for specific tasks still

requires additional computational resources [4].

This paper explores techniques that aim at optimizing the use

of resources and information available in the models during fine-

tuning. In particular, we consider open white-box models, for which

the weights from each layer can be extracted. We focus on encoder-

only models, as they are commonly used for SE classification tasks,

in particular, the transformer-based encoders. The standard prac-

tice in encoder models is to obtain the representation of the input

sequence from the last layer of the model [17], while information

from earlier layers is usually discarded [18]. In detail, the early lay-

ers are used only once at the inference stage, to obtain the last-layer

representation, but are not used for representing the input directly.

To exemplify the amount of discarded information at inference,

when fine-tuning a 12-layered encoder, such as CodeBERT [17],

for bug detection, 92% of the code embeddings are ignored.
1
How-

ever, it has been shown for natural language that early layers of an

encoder capture lower-level syntactical features better than later

layers [19–22], which can benefit downstream tasks.

Inspired by the line of research that exploits early layers of

models, we propose EarlyBIRD,
2
a novel and generic approach for

building composite representations from the early layers of a pre-

trained encoder model. EarlyBIRD aims to leverage all available

1
weights from 11 out of 12 layers

2
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information in existing pre-trained encoder models during fine-

tuning to either improve results or achieve competitive results at

reduced resource usage during code classification. We empirically

evaluate EarlyBIRD on CodeBERT [17], a popular pre-trained en-

coder model for code, and four benchmark datasets that cover three

tasks: defect detection with the Devign and ReVeal datasets [23,

24], bug type inference with the data from Yasunaga et al. [10],

and exception type classification [13]. The evaluation compares the

baseline representation that uses the last encoder layer with results

obtained via EarlyBIRD. We both fine-tune the full-size encoder

and its pruned version with only several early layers present in

the model. The latter scenario analyzes the trade-off between only

using a partial model and the performance impact on SE tasks.

Contributions: In this paper, wemake the following contributions:

(1) We propose EarlyBIRD, an approach for creating composite rep-
resentations of code using the early layers of a transformer-based
encoder model. The goal is to achieve better code classification

performance at equal resource usage or comparable performance

at lower resource usage.

(2) We conduct a thorough empirical evaluation of the proposed ap-
proach. We show the effect of using composite EarlyBIRD repre-

sentations while fine-tuning the original-size CodeBERT model on

four real-world code classification datasets. We run EarlyBIRD with

10 different random initializations of non-fixed trainable parame-

ters and mark the EarlyBIRD representations that yield statistically

significant improvement over the baseline.

(3) We investigate resource usage and performance of pruned models.
We analyze the trade-off between removing the later layers of a

model and the impact this has on classification performance.

Mainfindings: With EarlyBIRD, we achieve performance improve-

ments over the baseline code representation with the majority of

representations obtained from single early layers on the defect

detection task and selected combinations on bug type and excep-

tion type classification. Moreover, out of the reduced-size models

with pruned later layers, we obtain a +2 average accuracy improve-

ment on Devign with 3.3x speed-up of fine-tuning, as well as +0.4

accuracy improvement with 3.7x speed-up on average for ReVeal.

The remainder of the paper is organized as follows. We present

related work in Section 2 and provide background details of the

study in Section 3. The methodology is described in Section 4 which

is followed by experimental setup in Section 5. We present and

discuss results in Section 6 and conclude with Section 7.

2 RELATEDWORK
Here, we give an overview of language models for SE tasks and

recent encoder models, specifically, as well as different approaches

to use early layers of encoder models.

2.1 Transformer Models in Software
Engineering

The availability of open source code and increased hardware capa-

bilities popularized training and usage of Deep Learning, including

NLP and Large Language Models (LLMs), for SE tasks. To date, deep

NLP models have already been applied in at least 18 SE tasks [25].

Pre-trained language models available for fine-tuning on SE tasks

largely build on the transformer architecture, sequence-to-sequence

models, and the attention mechanism [1, 9, 16]. One widely used

benchmark to test different deep learning architectures on SE tasks

is CodeXGLUE [4]. The benchmark provides data, source code for

model evaluation, and a leader-board with models’ performance on

different tasks [4].

SE tasks can be translated to input sequence classification and

generation of code or text. Examples of generative tasks in SE are

code completion, code repair, generation of documentation from

code and vice versa, and translation between different program-

ming languages. Such tasks are frequently approached with neural

machine translation models. Full transformer models for translation

from a programming language (PL) to a natural language (NL) or PL-

PL tasks include PLBART [26], PYMT5 [27], TFix [28], CodeT5 [29],

Break-It-Fix-It [10]. Alternatively, generative models can include

the decoder-only part of the transformer as in GPT-type models.

In this case, the decoder both represents the input sequence and

transforms it into the output sequence. Decoder-based models for

code include, for example, Codex and CodeGPT [1, 4].

In the tasks that require code or documentation representation

and their subsequent classification, the encoder-only architectures

are used more frequently than in translation tasks. Examples of

code classification problems are code clone detection, detection of

general bugs, such as the presence of swapped operands, wrong

variable names, syntax errors, or security vulnerabilities. A number

of encoder models for code applied a widely-used bi-directional

encoder, BERT [30], to pre-train it on code, with some modifications

of the input. In this way, the CodeBERT [17], GraphCodeBERT [31],

CuBERT [24], and PolyglotCodeBERT [32] models were created.

In detail, the 12-layer RoBERTa-based CodeBERT model was pre-

trained on NL-PL tasks in multiple PLs and utilized only the textual

features of code. Note that RoBERTa is a type of BERT model with

optimized hyper-parameters and pre-training procedures [33]. To-

gether with the decoder-only CodeGPT model, the encoder-only

CodeBERT model was used as a baseline in CodeXGLUE. Graph-

CodeBERT utilizes both textual and structural properties of code to

encode its representations. PolyglotCodeBERT is the approach that

improves fine-tuning of the CodeBERT model on a multi-lingual

dataset for a target task even if the target task tests only one PL.

This paper focuses on the fine-tuning strategies which, by contrast

with PolyglotCodeBERT, do not increase the resource usage for

fine-tuning. CuBERT is a 24-layer pre-trained transformer-based

encoder tested on a number of code classification tasks, including

exception type classification. We test the performance of the pro-

posed EarlyBIRD composite representations on defect detection,

including the use of one of CodeXGLUE benchmarks, as well as on

error and exception type classification tasks. However, the goal

of this paper is to achieve improvement over the baseline model

when it is fine-tuned with composite code representations. We do

not aim to compare results with other models, but rather propose

an approach that is applicable to transformer-based encoders for

source code and show its performance gains compared to the same

model usage without the proposed approach.

2.2 Use of Early Encoder Layers
A number of studies explored different approaches to use informa-

tion from early layers of DL models for sequence representation,

such as probing single layers, pruning and variable learning rates.

One way to leverage information from early model layers is to give
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different priority to layers while fine-tuning the models [34, 35].

For example, the layer-wise learning rate decay (LLRD) strategy

and re-initialization of late encoder layers yielded improvement

over the standard fine-tuning of BERT on NLP tasks [36]. The LLRD

strategy was initially developed to tune the later encoder layers

with larger learning rate. In this way, the later layers can be better

adapted to a downstream task under consideration, because the

later layers are assumed to learn complex task-specific features

of input sequences [34]. Moreover, Peters et al. [37] showed that

the performance of fine-tuning improves if the encoder layers are

updated during fine-tuning in comparison with training only the

classifier on top of fixed (frozen) encoder layers.

Pruning later layers of transformer models is another way to

consider only early layers for fine-tuning [38–40]. Sajjad et al. [40]

investigated how the performance of transformer models on NLP

is affected when reducing their size by pruning layers. They con-

sidered six pruning strategies, including dropping from different

directions, alternated layer dropping, or dropping layers based on

importance, for four pre-trained models: BERT [30], RoBERTa [33],

XLNET [41], ALBERT [42]. By pruning model layers, Sajjad et al.

were able to reduce the number of parameters to 60% of the ini-

tial parameter set while maintaining a high level of performance.

While the performance on downstream tasks varies in their study,

the lower layers are critical for maintaining performance when

fine-tuning for downstream tasks. In other words, dropping ear-

lier layers is detrimental to performance. Overall, pruning layers

reduces model size and in turn reduces fine-tuning and inference

time. In line with the work of Sajjad et al. [40], we extend our exper-

iments with the pruning of later layers and keeping earlier layers

present in the model (see RQ2 in Section 6).

The use of information from single early layers in a number of

EarlyBIRD experiments is also inspired by Peters et al. [20]. In their

study, Peters et al. present an empirical evidence that language

models learn syntax and part-of-speech information on earlier lay-

ers of a neural network, while more complex information, such

as semantics and co-reference relationships, are captured better

by deeper (later) layers. In another study, Karmakar and Robbes

probed pre-trained models of code, including CodeBERT, on tasks

of understanding syntactic information, structure complexity, code

length, and semantic information [18]. While Karmakar and Robbes

probed frozen early layers of different models for code in a single

strategy, we use 12 different strategies for combining unfrozen early

layers during fine-tuning and focus on the tasks of bug detection

or bug type classification. The novelty of our study with respect to

Karmakar and Robbes is that we combine early layers in addition

to extracting each of them, while Karmakar and Robbes extracted

early layer representations and used them without composing new

representations.

3 ENCODERS FOR CODE CLASSIFICATION
In this section, we present the background on the transformer archi-

tecture and different uses of encoder-decoder – or full transformer –

architecture, encoder-only, and decoder-only variants. Because our

study focuses on encoder-only open-source models available for

fine-tuning, the distinction between transformer types is necessary

for understanding the methodology afterwards.

In sequence-to-sequence generation scenarios, the transformer

model consists of a multi-layer encoder that represents the input

sequence and a decoder that generates the output sequence based

on the sequence representation from the encoder and the available

output generated at previous steps [16]. For source code classi-

fication tasks, the transformer is frequently reduced to only its

encoder followed by a classification head, a component added to

the encoder to categorize the representation into different classes.

Dropping the decoder for classification is motivated by resource

efficiency, because the decoder is conceptually only needed for

token generation from the input sequence. During classification of

an input, the encoder represents the sequence and passes it to the

classification head. Based on this design, a number of pre-trained

encoders have been published in recent years, such as BERT and

RoBERTa which were pre-trained on natural language, and similar

models pre-trained on code, or a combination of code and natural

language [30, 33]. The goal of pre-training in the pre-train and fine-
tune scenario is to capture language patterns in general, so that

they can serve as a basis for domain-specific downstream tasks.

Pre-trained models can be fine-tuned on different downstream tasks

in NLP and SE.

Processing the input sequence for classification consists of sev-

eral steps: tokenization, initial embedding, encoding the sequence

with an encoder, and passing the sequence representation through

a classification head. Tokenization splits the input sequence, adds

special tokens, matches the tokens to their ID’s in the vocabulary

of tokens, and unifies the resulting token length for samples in

a dataset. Embedding transforms the one-dimensional token ID

to an initial multi-dimensional static vector representation of the

token and is usually a part of the pre-trained encoder model. This

representation is updated using the attention mechanism of the

encoder. Because of attention, the representation of the input is

influenced by all tokens in the sequence, so it is contextualized.

CodeBERT is a RoBERTa-basedmodel with 12 encoder layers pre-

trained on 6 programming languages (Python, Java, JavaScript, PHP,

Ruby, and Go), as well as text-to-code tasks [17]. Pre-training was

done on the masked language modeling (MLM) and replaced token

detection (RTD) tasks. These tasks respectively train the model to

derive what token is masked in MLM, and in RTD predict whether

any token in an original sequence is swapped with a different

token that should not be in the sequence. CodeBERT outputs a

bidirectional encoder representation of the input sequence, which

means that the model considers context from pre-pending and

subsequent words to represent each token in the input sequence.

A pre-trained model is usually released with a pre-trained to-

kenizer. The pre-trained tokenizer ensures that token ID’s corre-

spond to those processed during pre-training. The tokenizer also

adds special tokens, such as a CLS token at the start of each input

sequence, PAD tokens to unify lengths of input sequences, and the

EOS token to signify the end of the input string and the start of

padding sequence [30]. All tokens are transformed by the model

in each encoder layer. Out of all tokens, the CLS token representa-

tion from the last layer, which is updated by all encoder layers, is

typically used as a representation for the full sequence.

The standard practice of using the CLS token from the last en-

coder layer is motivated by the pre-training procedure. For example,

in MLM, the model predicts the masked token based on the CLS
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token representation from the 12
th
layer of BERT and CodeBERT.

However, the choice of token to represent the full sequence in fine-

tuning can be different. For example, in PLBART [26], a transformer

model for code with both an encoder and a decoder, the EOS token is
used for representing the input sequence. In this paper, we propose

different ways to represent the input sequence and use information

from early layers of the model in an effective way.

4 METHODOLOGY
In this paper, the architecture of the code classification model con-

sists of five parts: (1) a tokenizer, (2) an embedding layer, (3) an

encoder with several layers, (4) a set of operations to combine se-

quence representations from encoder layers with EarlyBIRD, and

(5) a classification head. The output of each step is used as input into

the next step. An overview of the architecture is shown in Figure 1

and described below. The main difference between this architecture

and the classification architecture discussed in Section 3 is step (4);

the standard architecture only consists of steps (1–3) and (5).

Steps (1)–(3) use a pre-trained tokenizer, embedder, and encoder.

EarlyBIRD is formulated in a generic way and can be applied to

any encoder, but for our experiments, we fix the CodeBERT model

and tokenizer. In step (4), we combine the information from all

the layers or some of the early layers of the encoder as opposed

to the baseline that uses the last layer of the encoder. Finally, the

classification head in step (5) consists of one dropout layer and one

linear layer with softmax.

The encoder model represents each token of an input sequence

with a vector of size 𝐻 , also known as hidden size. For each input

sequence of length 𝑆 , and a hidden size𝐻 , we obtain a matrix of size

𝑆 ×𝐻 for each of 𝐿 layers of the base model as shown in Figure 1.

For example, the CodeBERT architecture is fixed with 12 encoder

layers, i.e., 𝐿 = 12 for that model. All the information available in

the encoder for one input sequence is stored in a tensor of size

𝐿 × 𝑆 ×𝐻 . The EarlyBIRD combinations must produce one vector ®𝑅
of size 𝐻 that represents the input, as shown in Figure 1. Keeping

the output code representation of size 𝐻 is required to provide a

fair comparison of EarlyBIRD composite representations with the

standard code representation obtained from the last layer. In this

way, the dimension of the classification head is the same for all

combinations of early layers and has minimal possible influence

during fine-tuning.

To combine code representations from early layers, we use max-

imum pooling, slicing of one layer or one CLS token, and the

Figure 1: Model architecture for code classification.

weighted sum of representations over layers or tokens in an in-

put sequence. We also experiment with different sizes of the model.

The combination strategies that use all layers of the pre-trained

model are divided into two categories: the strategies that use CLS
tokens from the encoder layers; the strategies that use more tokens

than just CLS from encoder layers.

The following combinations involve only CLS tokens:

(i) baseline: CLS token from the last layer, i.e., layer no. 𝐿;

(ii) CLS token from one layer
3
no. 𝑙, 𝑙 = 1, . . . (𝐿 − 1);

(iii) max pool over CLS tokens from all layers {𝑙 | 𝑙 = 1 . . . 𝐿};
(iv) weighted sum over CLS tokens from all layers {𝑙 | 𝑙 = 1 . . . 𝐿}.
The second set of combinations uses representations of all the

tokens in tokenized input sequences, including the CLS token:

(v) max pool tokens from one layer no. 𝑙, 𝑙 = 1 . . . 𝐿;

(vi) max pool over all layers for each token in the input sequence,

max pool over tokens;

(vii) max pool over all layers for each token in the input sequence;

weighted sum over tokens;

(viii) max pool over all tokens for each layer no. 𝑙, 𝑙 = 1 . . . 𝐿;

weighted sum over layers

(ix) weighted sum over tokens from one layer no. 𝑙, 𝑙 = 1 . . . 𝐿;

(x) weighted sum over tokens for each one layer no. 𝑙, 𝑙 = 1 . . . 𝐿;

weighted sum over all layers;

(xi) weighted sum over all layers for each token in the input

sequence; weighted sum over all tokens.

Note that weights in the weighted sums are learnable parameters.

However, the added number of learnable parameters for fine-tuning

constitutes 0.00042%
4
of the number of learnable parameters in the

baseline configuration. For this reason, we mention that the models

with combinations (ii-x) have the same model size while bearing in

mind the overhead of learnable weights in the weighted sums.

In addition to experiments with token combinations, we also

investigate performance of the model with first 𝑙 < 𝐿 layers and

the baseline token combination, described as follows:

(xii) CLS token from the last layer of the model with 𝑙 < 𝐿 encoder

layers.

Note that the baseline combination (i) with the usage of the CLS
token from layer 𝐿 corresponds to (ii) and (xii) if 𝑙 = 𝐿.

The combinations are presented in Figure 2. Similar combina-

tions are presented close to each other or are combined in the same

image if they only have minor differences and share the major parts.

For example, in Figure 2c, we illustrate combinations (iii) and (iv),

because both of them use CLS tokens from all layers combined using

max pooling or weighted sum. The roman numbers which indicate

combination types are preserved either in the descriptions below

the figures or in the figures themselves, but the order is changed.

We mention combination number corresponding to the description

in the current section, such as baseline combination (i) in Figure 2a

or combination (ii) for CLS token from one early layer in Figure 2b.

We highlight what parts of encoder layer outputs are used for each

3
We use each layer 𝑙 in this combination separately and mark the set of layers

{𝑙 | 𝑙 = 1 . . . 𝐿}; if several layers are used at once.

4
Weighted sum over tokens adds 𝑆 = 512 learnable weights. Because the weights

of the sum are shared across the layers, the maximum number of added weights is

𝐿 +𝐻 = 524 out of 124M learnable weights in the base model. Combinations without

weighted sums do not add extra learnable parameters to the base model. Weighted

sum over layers adds learnable 𝐿 = 12 weights for CodeBERT.
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(a) Baseline: CLS token of layer L (i). (b) Full model, CLS of layer l < L (ii). (c) Pruned model, CLS of last layer l (xii).

(d) Combinations of CLS tokens from all layers (iii, iv). (e) Combinations of all tokens from a single layer (v, ix).

(f) Combinations of all tokens combined across layers using
max pooling or weighted sum (vi, vii, xi).

(g) Combinations of all tokens combined for each single layer
first using max pooling or weighted sum (viii, x).

Figure 2: Combinations of early encoder layers that lead to code representation vector ®𝑅 for each tokenized input sequence.
The latin numbering in brackets corresponds to the combinations described in Section 4.

combination with color. White cells correspond to the tokens that

are not used in early layer combinations. The goal of all combi-

nations is to obtain a vector representation ®𝑅 for each input code

sample. For example, in Figure 2a, we consider the last layer 𝐿 and

extract only the CLS token marked as ®𝑅.
Another remark on the EarlyBIRD combinations concerns the

usage of all tokens or only code tokens. Code tokens are those that

correspond to tokenized input words or sub-words and are shown

in Figure 2 as token𝑖1 , ..., token𝑖𝑁 for an input sequence 𝑖 of size

𝑖𝑁 . For each combination that uses more than just a CLS token, i.e.,

combinations (v-xi), we experiment with code tokens only, as well

as with all tokens, including CLS, EOS, and PAD. The motivation

to check code tokens exclusively stems from the hypothesis that

information in special tokens may introduce noise into results.

5 EXPERIMENTAL SETUP
In this section, we describe the datasets used for empirical evalua-

tion and implementation details of fine-tuning with the proposed

EarlyBIRD approach. We investigate binary and multi-task code

classification scenarios to explore generalisability of our results.

5.1 Datasets
We fine-tune and test the CodeBERT model using the EarlyBIRD

approach on four datasets. The datasets span three tasks: defect

detection, error type classification and exception type classification

— with 2, 3, and 20 classes, respectively. They also contain data

in two programming languages, C++ and Python. In addition, the

chosen datasets have similar train subset sizes. In this way, we aim

to reduce the effect of the model’s exposure to different amounts

of training data during fine-tuning. Statistics of the datasets are

provided in Table 1. We report the size of the train/validation/test

splits. In addition, we compute the average number of tokens in

the input sequences upon tokenization with the pre-trained Code-

BERT tokenizer. Because the maximum input sequence size for the

CodeBERT model is limited to 𝑆 = 512, the number of tokens is

indicative of how much information the model gets access to or

how much information is cut off, in case of long inputs.

Devign: This dataset contains functions in C/C++ from two open-

source projects labelled as vulnerable or non-vulnerable [23]. We

reuse the train/validation/test split from the CodeXGLUE Defect
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Table 1: Statistics of Fine-Tuning Datasets.

Dataset # classes

Avg #

tokens

# code samples

Train Valid Test

Devign 2 614 21,854 2,732 2,732

ReVeal 2 512 18,187 2,273 2,274

BIFI 3 119 20,325 2,259 15,055

Exception Type 20 404 18,480 2,088 10,348

detection benchmark.
5
The dataset is balanced: the ratio of non-

vulnerable functions is 54%.

ReVeal: Similarly to Devign, ReVeal is a vulnerability detection

dataset of C/C++ functions [13]. The dataset is not balanced: it

contains 90% non-vulnerable code snippets. Both the Devign and

ReVeal datasets contain real-world vulnerable and non-vulnerable

functions from open-source projects.

Break-It-Fix-It (BIFI): The dataset contains function-level code

snippets in Python with syntax errors [10]. We use the original

buggy functions and formulate a task of classifying the code into

three classes: Unbalanced Parentheses with 43% of the total number

of code examples in BIFI, Indentation Error with 31% code samples,

Invalid Syntax containing 26% samples. The provided train/test

split is reused, and the validation set is extracted as 10% of train

data.

Exception Type: The dataset consists of short functions in Python
with an inserted __HOLE__ token in place of one exception in code.6

The task is to predict one of 20 masked exception types for each

input function and is unbalanced. The dataset was initially created

from the ETH Py150 Open corpus
7
as described in the original

paper [24]. We reuse the train/validation/test split provided by the

authors.

5.2 Implementation
The architecture is based on the CodeBERT

8
tokenizer and encoder

model. The model defines the maximum sequence length, hidden

size, and has 12 layers, so 𝑆 = 512, 𝐻 = 768, 𝐿 = 12. Hyper-

parameters in the experiments are set to 𝐵 = 64, learning rate is

1𝑒-5, and dropout probability is 0.1. If the tokenized input sample

is longer than 𝑆 = 512, we prune the tokens in the end to make the

input fit into the model. We run fine-tuning with Adam optimizer

and testing for each combination 10 times with different seeds for 10

epochs and report the performance for the best epoch on average

over 10 runs. The best epoch is defined by measuring accuracy

on a validation set. We use Python 3.7 and Cuda 11.6, and run

experiments on one Nvidia Volta A100 GPU.

5.3 Evaluation Metrics
To present the impact of early layer combinations, we compare

the accuracy on the test set for all datasets, because it allows us

to compare our results with other benchmarks. In addition, we

report weighted F1-score denoted as F1 (w) for a detailed analysis

5
https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/Defect-detection

6
https://github.com/google-research/google-research/tree/master/cubert

7
https://www.sri.inf.ethz.ch/py150

8
https://huggingface.co/microsoft/codebert-base

of selected combinations to account for class imbalance. To obtain

the weighted F1-score, the regular F1-score is calculated for each

label and their weighted mean is taken. The weights are equal to

the number of samples in a class.

We also report results of the Wilcoxon signed-rank test on the

corresponding metrics for the combinations that show improve-

ment over the baseline [43]. The Wilcoxon test is a non-parametric

test suitable for the setting in which different model variants are

tested on the same test set, because it is a paired test. The Wilcoxon

test checks the null hypothesis whether two related paired samples

come from the same distribution. We reject the null hypothesis

if p-value is less than 𝛼 = 0.05. In case we obtain improvement

of a metric over the baseline with an EarlyBIRD combination and

the null hypothesis is rejected, we conclude that the combination

performs better and the result is statistically significant.

5.4 Research Questions
During our empirical evaluation of composite EarlyBIRD code rep-

resentations, we address the following research questions:

RQ1. Composite Code Representations with SameModel Size:
What is the effect of using combinations (ii-xi) of early layers with

the samemodel size in comparison to the baseline approach of using

only the CLS token from the last layer, i.e., combination (i), for code

representation on model performance in the code classification

scenario? The goal is to find out whether any of the EarlyBIRD

combination types work consistently better for different datasets

and tasks.

RQ2. PrunedModels: What is the effect of reducing the number of

pre-trained encoder layers in combinations (xii) on resource usage

and model performance on code classification tasks? As opposed to

RQ1, in which we consider the combinations that do not reduce the

model size, this research question is devoted to investigation of the

trade-off between using less resources with reduced-size models

and performance variation in terms of classification metrics.

For both research questions, we evaluate the composite repre-

sentations on binary and multi-task code classification scenarios to

explore generalisability of the results obtained for the binary case.

We investigate if and what combinations result in better perfor-

mance, averaged over 10 runswith different seeds. For combinations

that improve the baseline on average, we also explore if the results

are statistically significant according to the Wilcoxon test.

6 RESULTS AND DISCUSSION
6.1 EarlyBIRD with Fixed-Size Models
To answer RQ1, we explore one-layer combinations, multi-layer

combinations, and estimate statistical significance of the perfor-

mance improvement.

6.1.1 Combinations of Tokens in Single Selected Early Layers. We

show the difference between average accuracy obtained with each

combination that uses only one selected early layer in Figure 3.

In addition, we note the value of the metric improvement at the

crossing of the combination type and the layer number if the combi-

nation performs better on average than the baseline. Otherwise, we

leave the combinations that have negative or neutral effect colored

6
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Figure 3: Absolute difference of mean accuracy between
EarlyBIRD and baseline (bsln) performance. The marker ∗

indicates statistically significant improvements.

but not annotated. Statistically significant improvements according

to the Wilcoxon test are marked with
∗
next to the improvement

details. Combinations that correspond to the baseline are marked

with “bsln” and have zero difference, correspondingly. The results

for weighted F1-score are similar to accuracy. They are visualized

in the same way in Figure 4.

The first rows in Figures 3a and 3b correspond to the combina-

tions (ii) CLS token layer 𝑙 . With this combination type, average

improvement over the baseline is achieved with the majority of

early layers. Specifically, we have obtained accuracy improvements

ranging from +0.2 to +2.0 for Devign in 8 out of 11 layers, and accu-

racy improvement from +0.1 to +0.8 for ReVeal in 9 out of 11 layers.

The dynamics of the metric change over selected layer numbers
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(b) ReVeal, F1 (w).
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Figure 4: Absolute difference of mean weighted F1-scores
(F1 (w)) between EarlyBIRD and baseline (bsln). The marker
∗ indicates statistically significant improvements.

is different for Devign and ReVeal. In detail, the average perfor-

mance of combination (ii) is best with layer 3 on Devign (a +2.0

accuracy improvement) and with layer 1 for ReVeal (a +0.8 accuracy

improvement). The best improvement in terms of F1 (w) matches

with layer 3 for Devign and is observed at layer 2 for ReVeal as

shown in Figure 4.

Max pooling over all available tokens from a selected layer in

combination (v) also achieves performance improvement over the

baseline, as shown in rows 2 and 3 of Figures 3a, 3b. In general,

layers 4–11 yield higher accuracy and layers 2–11 higher F1 (w)

with max pooling for Devign than the baseline. For ReVeal, all layers

except layer 11 result in better average accuracy and layers 2–10

— higher average F1 (w). Max pooling over all tokens, including
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special tokens, achieves the best statistically significant average

improvement of accuracy of +0.9 of all combinations for ReVeal.

The weighted sum of all tokens or code tokens exclusively in

combination (ix) does not improve the baseline performance. We

assume that fine-tuning for 10 epochs is not enough for this type

of combination, because the loss at epoch 10 on both training and

validation splits is higher for combinations (ix) than for combina-

tions with max pooling. Since the goal of this study is to use the

same or less resources for fine-tuning, we have not fine-tuned this

combination for more than 10 epochs.

While combinations (ii) and (v) perform better for the majority

of layers on the defect detection task, multi-class classification for

bug or exception type prediction does not benefit from the combi-

nations to the same extent as the binary task. Only max pooling

of tokens of the last encoder layer achieves better performance

than the baseline for BIFI (+0.1 accuracy, +0.1 weighted F1-score

improvements) and Exception Type (a +0.2 accuracy, +0.1 weighted

F1-score improvements) datasets.

The impact of using all tokens or code tokens exclusively depends

on the dataset. The difference between performance of single-layer

combinations with max pooling of all tokens and only code tokens

constitute 0.0-0.1 accuracy or F1 (w). For the multi-class tasks, the

average results improve with the use of each later layer in the

model. We obtain performance improvement with the max pooling

combination (v), while other one-layer combinations do not perform

better than the baseline.

The best performing results on Devign and Exception Type

classification datasets are statistically significant according to the

Wilcoxon test. For ReVeal, the second best result is statistically

significant. We have not obtained statistically significant improve-

ments for BIFI. We explain it by the fact that the baseline metric is

already high, i.e., 96.7 accuracy. Achieving improvement is usually

more challenging when the baseline performs at this level.

In essence, the combinations that involve CLS tokens correspond-
ing to the single layer (ii), as well as the max pooling combina-

tions (v) perform better on average for defect detection datasets

Devign and Reveal. However, only the max pooling combination (v)

of tokens from the last encoder layer outperforms the baseline

on average for multi-class datasets BIFI and Exception Type. The

weighted sum of tokens from a selected layer (ix) performs worse

than the baseline if fine-tuned for the same number of epochs for all

tasks. Multi-class classification tasks require the information from

the last layer for better performance in our experiments, while the

binary task of defect detection allows us to use early layers and

improve the performance over the baseline.

6.1.2 Multi-Layer Combinations. The average performance differ-

ence with the baseline of combinations that utilize early layers is

shown in Figures 5 and 6. We annotate the difference with the base-

line if a combination outperforms the baseline on average and add a

star (
∗
) to the number if the improvement is statistically significant.

If we use all information from the available layers, the improve-

ment over the baseline is less than what is observed in Section 6.1.1,

where one specific layer has been used. In detail, out of combina-

tions that involve CLS tokens from all early layers, no combination

performs better than the baseline for ReVeal, BIFI, or Exception Type

D

(iii) max pool CLS tokens

(iv) w sum CLS tokens

(vi) max pool layers, max pool all tokens

(vi) max pool layers, max pool code tokens

(vii) max pool layers, w sum all tokens

(vii) max pool layers, w sum code tokens

(viii) max pool all tokens, w sum layers

(viii) max pool code tokens, w sum layers

(xi) w sum layers, w sum all tokens

(xi) w sum layers, w sum code tokens

(x) w sum all tokens, w sum layers

(x) w sum code tokens, w sum layers
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-10
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0
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Datasets∗ indicates a statistically significant improvement

Figure 5: Absolute difference of average accuracy between
EarlyBIRD and baseline performance on D (Devign), R (Re-
Veal), B (BIFI), E (Exception Type).

datasets. However, the best improvement (+0.6 accuracy) out of ex-

periments with all layers is obtained on Devign with the weighted

sum of CLS tokens in the combination (iv), which is less than the

maximum improvement with the combinations from one selected

early layer in Section 6.1.1. The improvement of F1 (w) is shown in

Figure 6. We obtained slightly better improvements of F1 (w) for

Devign, no F1 (w) improvement for the unbalanced ReVeal dataset.

The average F1 (w) difference with the baseline for multi-class tasks

are the same as accuracy difference.

If we consider the combinations that involve all tokens, the

combination (vi) with two max pooling operations outperforms the

baseline for Devign, Reveal, and BIFI with accuracy improvement

between +0.1 and +0.3. No combination that involves all layers

outperforms the baseline on average for Exception Type dataset.

Combinations that involve one max pooling and one weighted

sum of all tokens perform worse or neutral in comparison with

the baseline. The combinations with only weighted sums perform

worse than the baseline on average.

Answer to RQ1. EarlyBIRD achieves statistically significant ac-

curacy and F1-score improvements for defect detection datasets

by using single-layer combinations that involve the CLS token
or max pooling over all tokens. For bug type and exception type

classification, max pooling of the tokens from the last encoder

layer has improved the performance. Weighted sum of tokens

does not improve performance over the baseline.

6.2 Pruned Models
This section is devoted to the combinations of early layers that are

initialized with the first 𝑙 < 𝐿 early layers from the pre-trained

model and fine-tuned as 𝑙-layer models — combinations (xii). We

start by comparing the performance of using the CLS token from

layer 𝑙 of the full-size model, i.e., combination (ii), and using the

CLS token from layer 𝑙 of the model that has 𝑙 layers in total —

combination (xii). Figure 7 presents average accuracy obtained

with these two combinations depending on the used layer, as well
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Figure 7: Model performance with a subset of 𝑙 < 𝐿 layers (xii)
vs. models with all layers (ii); CLS token from layer 𝑙 .

as the baseline combination of using CLS from the last layer 𝐿 =

12 of CodeBERT. On average, the pruned models with reduced

size perform on par with the full-size model for defect detection

on the balanced Devign dataset, and for bug type and exception

type classification. However, the performance of the two analogical

combinations diverges for the unbalanced defect detection dataset

ReVeal in layers 4 and 6–11.

Most importantly, the results show that reducing the model size

and using the CLS token from the last layer of the reduced model

performs on par with the baseline for the defect detection task.

The best improvement with the reduced model is achieved with

the 3-layer encoder for Devign and the 1-layer encoder for ReVeal.

This result shows that it is possible to both reduce resources and

improve the model’s performance during fine-tuning on the defect

detection task with both a balanced and unbalanced dataset.

To explore the trade-off between resource usage and perfor-

mance degradation for bug type and exception type identification,

we show the average speed-up of one fine-tuning epoch and the

performance loss compared to the baseline for BIFI and Exception

Type datasets in Table 2. We also report the corresponding values

for Devign and ReVeal, for which both gains and losses of perfor-

mance are indicated. The speed up is reported as a scaling factor

of the baseline time. The metric difference is shown as gain or loss

of the weighted F1-score and accuracy compared to the baseline

performance. Statistically significant improvements are reported in

bold, while statistically insignificant losses are marked with a star

(
∗
). We also underline and discuss selected results that improve the

metric values and reduce resource usage.

The majority of combinations (xii) with pruned models outper-

form the baseline for Devign and ReVeal. Furthermore, models with

2–10 layers show statistically significant improvements of both

metrics on Devign, with the 3-layer model achieving +2 accuracy

improvement with a 3.3-times average speed-up of fine-tuning with

the same hardware and software. Not only does the 3-layer model

improve the accuracy over CodeBERT baseline to 63.7, but also

outperforms several other models tested on Devign and reported

on the CodeXGLUE benchmark [4]. In particular, the 3-layer Code-

BERT model outperforms the full-transformer model PLBART [26],

and code2vec code representations pre-trained on abstract syntax

trees and code tokens in a joint manner [26]. However, our pruned

model does not outperform the best performing model reported on

CodeXGLUE, CoText, that achieves 66.62 accuracy [44].

Models with 1 and 11 layers achieve statistically significant accu-

racy improvements for ReVeal. However, the 1-layer model reduces

the F1 (w) score. The use of layer 11 does not impact the speed of

fine-tuning, while the 1-layer model yields the 3.7x acceleration of

the baseline fine-tuning speed. The lack of speed-up with 11-layer

model can be explained by the fact that the number of trainable

parameters does not decrease linearly with the removal of later

layers, since the additional embedding layer and classification head

remain unchanged. The 2-layer model results in the best improve-

ment of F1 (w) which is statistically significant. The 2-layer model

improves accuracy on ReVeal as well.

For BIFI, we obtain statistically insignificant decrease of F1 (w)

and accuracy according to the Wilcoxon test which brings about

1.2x speed-up of the fine-tuning with the 11-layer model. If we

decrease the number of layers to 8, the performance on BIFI stays

within the (baseline metric−1) limit, but we gain up to 1.7x average

speed-up of one-epoch fine-tuning. In case of using models with 1–

10 layers, we observe a statistically significant change of distribution

and decrease of metric values.

For the unbalanced Exception Type dataset, the performance

drops faster and the speed-up is less prominent than for BIFI. The

change of mean values of the metrics for all models is statistically

significant. In detail, the metrics decrease by -1.0 absolute metric

value at 11 layers with 1.1x fine-tuning speed-up and by -1.8 with

10 layers with 1.2x speed-up. We explain the sharper decline of

the combinations performance by the lower baseline metric values

(75.39 accuracy, 75.30 weighted F1-score) than in the case of BIFI

(96.7 accuracy and weighted F1-score). We conclude that for the

BIFI dataset with high-performing baseline and 3 classes, the per-

formance loss at removing each layer is less than for the Exception

Type classification dataset with lower baseline performance and 20

classes. The resource usage, which is correlated with time spent on
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Table 2: Comparison of reduced sizemodels with the baseline.We reportmetric performance for the baseline and difference with
the baseline for reduced models, average time for one-epoch fine-tuning (Time) in mm:ss format, speed up and performance
variation obtainedwithmodels with 𝑙 layers. Statistically significant improvements aremarked in bold, statistically insignificant
performance losses are marked with *. Best metric improvement with highest speed-up factors are underlined.

𝑙
Devign ReVeal BIFI Exception Type

Time Speed-up Acc F1(w) Time Speed-up Acc F1(w) Time Speed-up Acc F1(w) Time Speed-up Acc F1(w)

12 8:50 1.0x 61.74 60.4 6:57 1.0x 89.15 88.53 8:41 1.0x 96.7 96.7 7:22 1.0x 75.39 75.3

11 8:03 1.1x +0.3 -0.1* 6:56 1.0x +0.6 +0.3 7:07 1.2x -0.1* -0.1* 6:33 1.1x -1.0 -1.0

10 7:13 1.2x +0.1 +0.3 6:20 1.1x +0.2 -0.0* 6:22 1.4x -0.3 -0.3 6:01 1.2x -1.8 -1.8

9 6:40 1.3x +0.3 +0.5 5:53 1.2x +0.3 -0.1* 5:46 1.5x -0.5 -0.5 5:29 1.3x -2.2 -2.3

8 5:52 1.5x +0.9 +1.1 5:15 1.3x +0.2 -0.1* 5:13 1.7x -0.6 -0.6 4:55 1.5x -3.0 -3.0

7 5:23 1.6x +1.4 +2.2 4:44 1.5x +0.3 +0.2 4:43 1.8x -1.1 -1.1 4:20 1.7x -4.1 -4.4

6 4:54 1.8x +1.4 +2.0 4:25 1.6x +0.3 +0.1 4:10 2.1x -1.7 -1.7 3:50 1.9x -6.1 -6.6

5 4:03 2.2x +1.0 +1.5 3:45 1.9x +0.1 +0.2 3:31 2.5x -3.0 -3.0 3:15 2.3x -7.3 -7.7

4 3:22 2.6x +1.2 +1.6 3:06 2.2x -0.2* +0.2 2:53 3.0x -6.8 -6.8 2:41 2.7x -8.3 -9.2

3 2:41 3.3x +2.0 +2.4 2:28 2.8x +0.1 +0.3 2:15 3.8x -11.3 -11.3 2:10 3.4x -10.7 -12.0

2 2:00 4.4x +1.0 +1.9 1:52 3.7x +0.4 +0.6 1:34 5.5x -14.7 -14.8 1:34 4.7x -15.4 -17.1

1 1:18 6.8x -3.2 -2.3 1:13 5.7x +0.8 -1.2 0:58 9.0x -27.2 -27.3 0:59 7.4x -27.3 -30.7

tuning, decreases faster for BIFI than for Exception Type. This is

partially explained by a larger classification head for the Exception

Type dataset, because this dataset has 20 classes as opposed to only

3 classes in BIFI.

Answer to RQ2.We obtain performance improvements over

the baseline as well as fine-tuning speed-ups for both defect

detection datasets by using the CLS token from the last layer

of pruned models. For multi-class classification, performance

decreases upon pruning each layer from the end of the model.

The decrease is sharper for the dataset with 20 exception types

than for the task with 3 bug types.

6.3 Threats to Validity
The main threat to external validity is that the results are empirical

and may not generalize to all code classification settings, including

other programming languages, tasks, and encoder-based models

for code. We have tested EarlyBIRD combinations on code in C

for defect detection and Python for bug type and exception type

classification in this study. The choice of the CodeBERT as the

encoder model and its internal structure affects the results. For

instance, an encoder model that takes smaller input sequences can

perform worse on the same datasets, because larger parts of input

code sequences have to be pruned in this case. The external validity

can be improved by testing on more datasets and encoder models.

The threats to internal validity concern the dependency of mod-

els on initializations of trainable parameters and the choice of

methods. Classification head and weighted sums with trainable

parameters in our experiments depend on the initialization of the

parameters and can lead the model to arrive at different local min-

ima during fine-tuning. To reduce the effect of different random

initializations, we have fine-tuned and tested all EarlyBIRD combi-

nations 10 times with different random seeds.

In addition, we used the Wilcoxon test to verify whether the

achieved improvements are statistically significant. However, the

Wilcoxon test only estimates whether measurements of baseline

values and EarlyBIRD combinations are drawn from different distri-

butions. The reported times spent on fine-tuning and corresponding

speed-ups have the purpose of illustrating the reduction in resource

usage, and will depend on the hardware used. Even when using

factors of speed-up for pruned models, there is a chance that these

numbers will be different on other hardware configurations.

We implemented the algorithms and statistical procedures in

Python, with the help of widely used libraries such as PyTorch,

NumPy and SciPy. However, we cannot guarantee the absence of

implementation errors which may have affected our evaluation.

7 CONCLUDING REMARKS
In this paper, we have proposed EarlyBIRD, an approach to combine

early layers of encoder models for code, and tested different early-

layer combinations on the software engineering tasks of defect

detection, bug type and exception type classification. Our study

is motivated by the hypothesis that early layers contain valuable

information that is discarded by the standard practice of repre-

senting the code with the CLS token from the last encoder layer.

EarlyBIRD provides ways to improve the performance of existing

models with the same resource utilization, as well as for resource

usage reduction while obtaining comparable results to the baseline.

Results: Using EarlyBIRD, we obtain statistically significant im-

provements over the baseline for the majority of the combinations

that involve a single encoder layer on defect detection, and with

selected EarlyBIRD combinations on bug type and exception type

classification. Max pooling of tokens from selected single layers

yields performance improvements for all datasets. Both the classifi-

cation performance and the average fine-tuning time for one epoch

are improved by pruning the pre-trained model to its early layers

and using the CLS token from the last layer of the pruned model.

For defect detection, this results in a +2.0 increase in accuracy and

a 3.3x fine-tuning speed-up on Devign, and up to +0.8 accuracy

improvement with a 3.7x speed-up on ReVeal. Pruned models do

not lead to multi-class classification performance gains, but they
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do show a fine-tuning speed-up and the associated decrease in

resource consumption.

The results show that pruned models with reduced size either

work better or can result in a reduction of resource usage during

fine-tuning with different levels of performance variation, which

indicates the potential of EarlyBIRD in resource-restricted scenar-

ios of deploying defect detection and but type classification in

production environments. For example, EarlyBIRD achieves a 2.1x

speed-up for BIFI while reducing accuracy from 96.7 to 95.0.

FutureWork: The study can be extended by investigating the gen-

eralization to other encoder models, such as CuBERT [24] which

uses 24 encoder layers. Moreover, it would be of interest to ex-

periment with other code classification tasks, such as general bug

detection and the prediction of vulnerability types. The latter could

be investigated using the CWE types from the Common Weakness

Enumeration as labeled in the CVEfixes dataset [45].
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