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Abstract
The Exponentially Weighted Average (EWA) of observations is known to be a state-of-art estimator for tracking expectations
of dynamically varying data stream distributions. However, how to devise an EWA estimator to track quantiles of data stream
distributions is not obvious. In this paper, we present a lightweight quantile estimator using a generalized form of the EWA.
To the best of our knowledge, this work represents the first reported quantile estimator of this form in the literature. An
appealing property of the estimator is that the update step size is adjusted online proportionally to the difference between
current observation and the current quantile estimate. Thus, if the estimator is off-track compared to the data stream, large
steps will be taken to promptly get the estimator back on-track. The convergence of the estimator to the true quantile is
proven using the theory of stochastic learning. Extensive experimental results using both synthetic and real-life data show
that our estimator clearly outperforms legacy state-of-the-art quantile tracking estimators and achieves faster adaptivity in
dynamic environments. The quantile estimator was further tested on real-life data where the objective is efficient in online
control of indoor climate. We show that the estimator can be incorporated into a concept drift detector to efficiently decide
when a machine learning model used to predict future indoor temperature should be retrained/updated.

Keywords Concept drift detection · Data stream · Generalized exponentially weighted average · Quantile tracking

1 Introduction

The volumes of automatically generated data are constantly
increasing [27] and such data usually requires to be ana-
lyzed in real time [18]. Unfortunately, conventional statisti-
cal and data mining techniques are not applicable for such
real time analysis [20]. Analysis of automatically gener-
ated data has been transitioning from being predominantly
offline (or batch) to primarily online (or streaming) [18].
A wide range of streaming algorithms are continuously
being developed pointed at real time analysis, like cluster-
ing, filtering, cardinality estimation, estimation of moments
or quantiles, predictions and anomaly detection.
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In this paper we consider the problem of estimating
quantiles of streaming data. Streaming quantile estimation
has been considered for a wide range of applications like
portfolio risk measurement in the stock market [1, 15], fraud
detection [40], signal processing and filtering [32], climate
change monitoring [41], SLA violation monitoring [30,
31], network monitoring [7, 22], Monte Carlo simulation
[36], structural health monitoring [16] and non-parametric
statistical testing [21],

The first and the second moments of data, i.e. the
mean and variance, are most commonly used as features in
machine learning. However, as it is known in many real-life
applications, these features might sometimes be misleading.
Quantiles are better suited to extract the different aspects of
data [11, 12]. A feature selection technique can further be
applied to select the most appropriate quantile features such
as done in [9, 29, 35].

Suppose that we are interested in estimating the quantile
related to some probability q. The natural approach is to
use the q quantile of the sample distribution. Unfortunately,
such conventional approach has clear disadvantages for data
streams as computation time and memory requirement are
linear to the number of samples received so far from the
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data stream. Such methods thus are infeasible for large data
streams.

Several algorithms have been proposed to deal with those
challenges. Most of the proposed methods fall under the
category of what can be called histogram or batch based
methods. The methods are based on efficiently maintaining
a histogram estimate of the data stream distribution such
that only a small storage footprint is required. Another ally
of methods are the so-called incremental update methods.
The methods are based on performing small updates of
the quantile estimate every time a new sample is received
from the data stream. Generally, the current estimate is a
convex combination of the estimate at the previous time
step and a quantity depending on the current observation.
A thorough review of state-of-the-art streaming quantile
estimation methods is given in the related work section
(Section 2).

In data stream applications, a common situation is that
the distribution of the samples from the data stream varies
with time. Such system or environment is referred to as
a dynamical system in the literature. Given a dynamical
system, two main problems are considered namely to
i) dynamically update estimates of quantiles of all data
received from the stream so far or ii) estimate quantiles
of the current distribution of the data stream (tracking).
Incremental methods are well suited to address the tracking
problem ii while histogram and batch methods mainly
have been used to address problem i. Histogram and batch
based methods are not well suited for the tracking problem
ii and incremental methods typically are the only viable
lightweight alternatives [4].

To address tracking problem ii, several incremental
quantile estimators have been suggested [3–5, 22, 24, 34,
38]. The intuition behind the estimators is simple. If the
received sample has a value below some threshold, e.g.
the current quantile estimate, the estimate is decreased.
Alternatively, whenever the received sample has a value
above the same threshold, the estimate is increased. Even
though the estimators document state-of-the-art tracking
performance [38], neither of them use the values of the
received samples directly to update the estimate, but only
whether the value of the samples is above or below some
varying threshold. Intuitively, this seems like a waste of
information received from the data stream. In this paper,
we thus present an estimator that uses the values of the
received samples directly separating it from all incremental
estimators suggested in the literature. The estimator is such
that the update step size is proportional to the distance
between the current estimate and the value of the sample.
Thus if the current estimate is off-track compared to the data
stream, the estimator will perform large jumps to rapidly get
back on-track. A theoretical proof is provided to document
the convergence properties of the estimator in addition to

extensive simulation experiments. The experiments show
that the estimator outperforms several other legacy state-of-
the-art quantile tracking algorithms.

The EWA of observations is known to be state-of-the-art
estimator to track expectations of dynamically varying data
streams [14]. Interestingly, we will show that the suggested
quantile estimator in this paper is in fact an instance of a
generalized EWA such that quantiles and not expectations
are tracked. To the best of our knowledge, this is the first
EWA based quantile estimator found in the literature.

The paper is organized as follows. In Section 3, we
present the novel quantile estimator using an EWA of
observations. In Section 4, we present a quantile estimation
algorithms based on the estimator in Section 3. In Section 5,
we perform extensive experiments that document the
superiority of the suggested algorithm. Finally, in Section 6
we apply the quantile estimator on real-life data related to
the problem of efficient online control of indoor climate.
More specifically, the estimator is used to detect when
a machine learning model should be retrained/updated
which is commonly referred to as concept drift detection
[13].

2 Related work

In this Section, we shall review some of the related work
on estimating quantiles from data streams. However, as
we will explain later, these related works require some
memory restrictions which renders our work radically
distinct from them. In fact, our approach requires storing
only one sample value in order to update the estimate.
The most representative work for this type of “streaming”
quantile estimator is due to the seminal work of Munro
and Paterson [25]. In [25], Munro and Paterson described
a p-pass algorithm for selection using O(n1/(2p)) space for
any p ≥ 2. Cormode and Muthukrishnan [8] proposed
a more space-efficient data structure, called the Count-
Min sketch, which is inspired by Bloom filters, where one
estimates the quantiles of a stream as the quantiles of a
random sample of the input. The key idea is to maintain
a random sample of an appropriate size to estimate the
quantile, where the premise is to select a subset of elements
whose quantile approximates the true quantile. From this
perspective, the latter body of research requires a certain
amount of memory that increases as the required accuracy
of the estimator increases [37]. Furthermore, in the case
where the underlying distribution changes over time, those
methods suffer from large bias in the summary information
since the stored data might be stale [4].

As Arandjelovic remarks [2], most quantile estimation
algorithms are not single-pass algorithms and thus are not
applicable for streaming data. On the other hand, the single
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pass algorithms are concerned with the exact computation
of the quantile and thus require a storage space of the
order of the size of the data which is clearly an unfeasible
condition in the context of big data stream. Thus, we
submit that all work on quantile estimation using more than
one pass, or storage of the same order of the size of the
observations seen so far is not relevant in the context of this
paper.

When it comes to memory efficient methods that require
a small storage footprint, histogram based methods form an
important class. A representative work in this perspective is
due to Schmeiser and Deutsch [28]. In fact, they proposed
to use equidistant bins where the boundaries are adjusted
online. Arandjelovic et al. [2] used a different idea than
equidistant bins by attempting to maintain bins in a manner
that maximizes the entropy of the corresponding estimate
of the historical data distribution. Thus, the bin boundaries
are adjusted in an online manner. Nevertheless, histogram
based methods have problems addressing the problem of
tracking quantiles of the current data stream distribution
[4] and are mainly used to recursively update quantiles for
all data received so far. Finally, Lou et al. [23] perform
extensive experiments to compare several histogram based
algorithms.

Another group of methods are incremental quantile
algorithms, which are particularly suitable to track quantiles
of dynamically varying data stream distributions. In [3–
6], the authors proposed modifications of the stochastic
approximation algorithm [33]. While Tierney [33] uses a
sample mean update from previous quantile estimates, [3–6]
propose an exponential decay in the usage of old estimates
making them able to track quantiles of non-stationary data
stream distributions. Indeed, a “weighted” update scheme
is applied to incrementally build local approximations
of the distribution function in the neighborhood of the
quantiles. More recent approaches in this direction is
the Frugal algorithm by Ma et al. [24]. The RUMIQE
and DUMIQE algorithms by Yazidi and Hammer [38]
represents multiplicative updates compared to the additive
updates of other incremental methods. A nice property of
the RUMIQE and DUMIQE algorithms and the estimator
suggested in this paper that the update size is automatically
adjusted dependent on the scale/range of the data. This
makes the estimators robust to substantial changes in the
data stream. The DQTRE and DQTRSE algorithms by
Tiwari and Pandey [34] aim to achieve the same by
estimating the range of the data using peak and valley
detectors. However, a disadvantage with these algorithms is
that several tuning parameters are required to estimate the
range of the data which renders the algorithms difficult to
tune.

Table 1 Key notations with their meaning

Notation Meaning

Xn Possible outcomes from data stream at time n

fn Distribution of Xn

Fn Cumulative distribution of Xn

Qn(q) Quantile of Xn associated with probability q

̂Qn(q) Estimate of Qn(q)

μ− E(Xn|Xn < ̂Qn(q))

μ+ E(Xn|Xn > ̂Qn(q))

3 Quantile estimator using a generalized
exponentially weighted average
of observations

Let Xn denote a stochastic variable representing the possible
outcomes from a data stream at time n and let xn denote
a random sample (realization) of Xn. We assume that Xn

is distributed according to some distribution fn(x) that
varies dynamically over time n. We denote the cumulative
distribution of Xn with Fn(x), i.e. P(Xn ≤ x) = Fn(x).
Further, let Qn(q) denote the quantile associated with
probability q, i.e P(Xn ≤ Qn(q)) = Fn(Qn(q)) = q. A
summary of the most central notation is given in Table 1.

In 2017, Hammer and Yazidi suggested the DUMIQE
algorithm [38] given by

˜Qn+1(q) ← ˜Qn(q) + λq ˜Qn(q) if xn > ˜Qn(q)

˜Qn+1(q) ← ˜Qn(q) − λ(1 − q)˜Qn(q) if xn ≤ ˜Qn(q)

(1)

which documents state-of-the-art tracking performance.
However, a weakness of the DUMIQE and other proposed
quantile tracking algorithms is that neither of them use
the values of the received samples directly to update the
estimate, but only whether the value of the samples is
above or below some varying threshold. Intuitively, this
seems like a waste of information received from the data
stream. We now propose an incremental quantile estimator
where the update step size is proportional to the distance
between the received sample and current estimate. Thus, if
the current estimate is off-track compared to the data stream,
the estimator will initiate large jumps to rapidly get back
on-track and thus more efficient tracking is expected. The
suggested estimator is described formally as follows

̂Qn+1(q) ← ̂Qn(q) + λcn
q

μ+
n −̂Qn(q)

∣

∣xn − ̂Qn(q)
∣

∣ if xn > ̂Qn(q)

̂Qn+1(q) ← ̂Qn(q) − λcn
1−q

̂Qn(q)−μ−
n

∣

∣xn − ̂Qn(q)
∣

∣ if xn ≤ ̂Qn(q)

(2)
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where μ+ = E(Xn|Xn > ̂Qn(q)) and μ− = E(Xn|Xn <
̂Qn(q)). Naturally, the conditional expectations satisfy the
inequality

μ− < ̂Qn(q) < μ+

such that μ+
n − ̂Qn(q) > 0 and ̂Qn(q)−μ−

n > 0. The factors
q/(μ+

n − ̂Qn(q)) and (1 − q)/(̂Qn(q) − μ−
n ) are included

to ensure that the estimator converges to the true quantile
value.

The constants cn can be any sequence of positive and
bounded values. The estimator performed well when the
fractions in (2) were “normalized” as follows

cn =
(

q

μ+
n − ̂Qn(q)

+ 1 − q

̂Qn(q) − μ−
n

)−1

(3)

Substituting (3) into (2) we get

̂Qn+1(q) ← ̂Qn(q) + λan

∣

∣xn− ̂Qn(q)
∣

∣ if xn > ̂Qn(q)

̂Qn+1(q) ← ̂Qn(q) − λ(1 − an)
∣

∣xn − ̂Qn(q)
∣

∣ if xn ≤ ̂Qn(q)
(4)

where

an = q

μ+
n − ̂Qn(q)

/(

q

μ+
n − ̂Qn(q)

+ 1 − q

̂Qn(q) − μ−
n

)

(5)

Please note that since μ+
n − ̂Qn(q) > 0 and ̂Qn(q)−μ−

n > 0
we have that 0 < an < 1. By factoring out ̂Qn(q) and xn

we get

̂Qn+1(q) ←(1−λan)̂Qn(q)+λanxn if xn > ̂Qn(q)

̂Qn+1(q) ←(1 − λ(1 − an))̂Qn(q) + λ(1 − an)xn if xn ≤ ̂Qn(q)

which can be written as

̂Qn+1(q) ← (1 − bn)̂Qn(q) + bnxn (6)

where bn = λ
(

an + I
(

xn ≤ ̂Qn(q)
)

(1 − 2an)
)

and I (A)

the indicator function returning one (zero) if A is true
(false).

Now we will present a theorem that catalogs the
properties of the estimator ̂Qn(q) for a stationary data
stream, i.e. Xn = X ∼ F(x), n = 1, 2, . . ..

Theorem 1 Let Q(q) = F−1(q) be the true quantile to be
estimated. Applying the updating rule in (6), we obtain:

lim
nλ→∞,λ→0

̂Qn(q) = Q(q)

The proof of the theorem can be found in Appendix
A. Although the quantile estimator ̂Qn(q) given in (6) is
designed to track quantiles for dynamic environments, it is
an important requirement that the estimator converges to the
true quantile for static data streams as verified by Theorem 1.

We end this section with a remark.

Remark 1 If the conditional expectations are symmetrically
positioned on each side of the quantile estimate, then
̂Qn(q) − μ−

n = ̂Qn(q) − μ−
n and an = q which is equal to

DUMIQE. In other words, we can interpret that ̂Qn(q)−μ−
n

and ̂Qn(q) − μ−
n ensure that the update rules take into

account the asymmetries of the data stream distribution on
each side of the quantile.

3.1 Connection to the EWA

A simple and intuitive approach to track the expectation of
a data stream distribution, i.e. μn = E(Xn), is the weighted
moving average

μ̂n = 1

Wn

n
∑

i=0

wixi (7)

where Wn = ∑n
j=1 wj . Using wn−h = · · · = wn = 1 and

the other weights equal to zero, (7) reduces to the standard
moving average. Intuitively, it seems more reasonable to
use weights with decreasing values. The decrease should be
more rapid than the standard sample mean wi = 1/i to be
able to track the changes in the data stream.

Consider the following recursive update scheme

μ̂0 ← x0 (8)

μ̂n+1 ← (1 − α)μ̂n + αxn (9)

where the current estimate is a convex combination of the
estimate at the previous time step and the observation. By
substitution, we get

μ̂n+1 =α(xn+(1−α)xn−1+(1−α)2xn−2+· · ·+(1−α)n−1x1)+(1−α)nx0

(10)

Interestingly, from (10) we see that (8)-(9) can be
interpreted as an EWA of observations. The estimator
is highly popular and known to be the state-of-the-art
approach to track expectations of dynamically varying data
streams. Inspecting the incremental update form of our
quantile estimator in (6), we see that it is identical to the
update form of (9), except that the 0 < bn < 1 varies
with time. Thus by keeping the weights constant as in (9),
the estimator will track the expectation of the data stream
distribution, while using the weights 0 < bn < 1 in (6), the
estimator will track a quantile of the distribution.

4 Quantile estimation algorithm

The interpretation of the update rule in (6) as an EWA of
observations (recall Section 3.1) and Theorem 1 constitute
some intriguing theoretical results on the link between EWA
and quantile estimation. However, the update rule in (6)
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cannot be used directly since the conditional expectations,
μ+

n and μ−
n , are unknown and need to be estimated.

Probably the most natural approach is to track conditional
expectations using an EWA of observations as given in
(8)-(9). This results in the following update rules:

• ̂Qn+1(q)←(1 −̂bn)̂Qn(q) +̂bnxn (11)

• Ifxn > ̂Qn(q)

- μ̂+
n+1 ← ̂Qn+1(q) − ̂Qn(q) + (1 − γ )μ̂+

n + γ xn (12)

- μ̂−
n+1 ← ̂Qn+1(q) − ̂Qn(q) + μ̂−

n (13)

• Else

- μ̂+
n+1 ← ̂Qn+1(q) − ̂Qn(q) + μ̂+

n (14)

- μ̂−
n+1 ← ̂Qn+1(q) − ̂Qn(q) + (1 − γ )μ̂−

n + γ xn (15)

• ân+1 ← q

μ̂+
n+1 − ̂Qn+1(q)

/(

q

μ̂+
n+1 − ̂Qn+1(q)

+ 1 − q

̂Qn+1(q) − μ̂−
n+1

)

(16)

• ̂bn+1 ← λ
(

ân+1 + I
(

xn ≤ ̂Qn+1(q)
)

(1 − 2̂an+1)
)

(17)

In each of the (12)-(15), the part ̂Qn+1(q) − ̂Qn(q) is
included to ensure that the conditional expectation estimates
are relative to the current quantile estimate ̂Qn+1(q).

Thus (11) tracks the overall trends of the dynamical data
stream while (12)-(15) are responsible for estimating the

conditional expectations relative to the quantile estimate.
Thus, for most dynamic data streams it is reasonable to
use a value of the EWA tuning parameter, γ , that is on a
smaller scale than λ [19]. This is verified in our experiments.
In the rest of the paper, we denote this EWA quantile
estimator approach for QEWA. We end this section with a
remark.

Remark1: We evaluated a second approach based on esti-
mating the streaming distribution, fn(x), and computing the
unknown conditional expectations from the estimated distri-
bution. The streaming distribution were estimated by track-
ing several quantiles Qn(q1), Qn(q2), . . . , . . . , Qn(qK) and
a linear spline were interpolated between the quantile
estimates. However experiments showed that the QEWA
approach performed better than this spline approach. The
spline approach therefore is not followed any further in the
paper.

5 Experiments based on synthetic data

In this section we perform a thorough comparison of the
performance of the suggested algorithm QEWA and other
quantile estimators in the literature. Figure 1 shows tracking
of the quantile with probability q = 0.7 for the suggested
algorithm QEWA and DUMIQE. The true quantile is given
as the dashed black line. The tuning parameters are adjusted

Fig. 1 Quantile estimates in
every iteration using the
DUMIQE and the suggested
algorithm QEWA using ratio
γ /λ = 1/100
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Fig. 2 Normal distribution smooth case: The left and right columns
show results for T = 100 and T = 500, respectively. The rows
from top to bottom show results when estimating quantile Qn(q =

0.5), Qn(q = 0.7) and Qn(q = 0.9), respectively. Ratio refers to the
ratio between the tuning parameters, i.e. ratio = γ /λ. The upper x axis
refers to the step size in the Frugal algorithms
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Fig. 3 Normal distribution switch case: The left and right columns
show results for T = 100 and T = 500, respectively. The rows
from top to bottom show results when estimating quantile Qn(q =

0.5), Qn(q = 0.7) and Qn(q = 0.9), respectively. Ratio refers to the
ratio between the tuning parameters, i.e. ratio = γ /λ. The upper x axis
refers to the step size in the Frugal algorithms
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Fig. 4 χ2 distribution smooth case: The left and right columns show
results for T = 100 and T = 500, respectively. The rows from top to
bottom show results when estimating quantile Qn(q = 0.5), Qn(q =

0.7) and Qn(q = 0.9), respectively. Ratio refers to the ratio between
the tuning parameters, i.e. ratio = γ /λ. The upper x axis refers to the
step size in the Frugal algorithms
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Fig. 5 χ2 distribution switch case: The left and right columns show
results for T = 100 and T = 500, respectively. The rows from top to
bottom show results when estimating quantile Qn(q = 0.5), Qn(q =

0.7) and Qn(q = 0.9), respectively. Ratio refers to the ratio between
the tuning parameters, i.e. ratio = γ /λ. The upper x axis refers to the
step size in the Frugal algorithms
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Table 2 Normal distribution smooth case: Root mean squared
estimation error for the selection algorithm [17]

q = 0.5 q = 0.7 q = 0.9

T = 100 1.4278 1.5279 1.7646

T = 500 1.4233 1.5433 1.7342

such that the estimation error in the stationary parts after
convergence is the same for the two algorithms. We see
that the proposed algorithm QEWA tracks the true quantile
more efficiently after a switch than the DUMIQE. For
the suggested algorithm, the step size is proportional to
the difference between the observations and the quantile
estimate (recall (4)). After a switch, these differences are
large, and our devised algorithm makes large steps to get
back on track. The DUMIQE, and the other state-of-the art
incremental algorithms, use the same step size independent
of these difference, resulting in poorer tracking.

The results below show a more systematic evaluation of
the performance of the suggested algorithm against seven
state-of-the-art quantile estimators namely the DUMIQE
and RUMIQE by Yazidi and Hammer [38], the estimator
due to Cao et al. [3], the Frugal approach by Ma et al.
[24], the selection algorithm by Guha and McGregor [17]
and the DQTRE and DQTRSE algorithms by Tiwari and
Pandey [34]. For the DQTRE and DQTRSE algorithms we
used values of the tuning parameters recommended in [34],
namely α = 0.1, β = (1 − α)λ, pb = 1/10 and l = 1/4
which performed well in our experiments.

The estimator in this paper is designed to perform well
for dynamically changing data streams and the experiments
will focus on such streams.

We considered four different data cases. For the first case,
the data stream distributions were normally distributed and
the expectations, μn, varied smoothly as follows

μn = a sin

(

2π

T
n

)

, n = 1, 2, 3, . . .

which is a sinus function with period T . For the second case,
the data stream distributions were also normally distributed,
but the expectation switched between values a and −a

μn =
{

a if n mod T ≤ T/2
−a else

Table 3 Normal distribution switch case: Root mean squared
estimation error for the selection algorithm [17]

q = 0.5 q = 0.7 q = 0.9

T = 100 2.0541 2.3171 2.5479

T = 500 2.0947 2.3489 2.5427

Table 4 χ2 distribution smooth case: Root mean squared estimation
error for the selection algorithm [17]

q = 0.5 q = 0.7 q = 0.9

T = 100 1.4441 1.7423 2.4316

T = 500 1.4386 1.7273 2.6951

We assumed that the standard deviation of the normal
distributions did not vary with time and was equal to one.
For the two remaining cases, the data stream distributions
were χ2 distributed, one with smooth changes and one with
rapid switches. For the smooth case the number of degrees
of freedom, νn, varied with time as follows

νn = a sin

(

2π

T
n

)

+ b, n = 1, 2, 3, . . .

where b > a such that νn > 0 for all n. For the switch case,
the number of degrees of freedom switched between values
a + b and −a + b

μn =
{

a + b if n mod T ≤ T/2
−a + b else

In the experiments we used a = 2 and b = 6.
We estimated quantiles of both the normally and χ2

distributed data streams above using two different periods,
namely T = 100 (rapid variation) and T = 500 (slow
variation), i.e. in total eight different data streams. For each
data stream we estimated the 50, 70 and 90% quantiles
ending up with a total of 24 different estimation tasks.

To measure estimation error, we used the root mean
squares error (RMSE) for each quantile given as:

RMSE =
√

√

√

√

1

N

N
∑

n=1

(

Qn(q) − ̂Qn(q)
)2

(18)

where N is the total number of samples received from
the data stream. In the experiments, we used N = 106

which efficiently removed any Monte Carlo errors in the
experimental results. In order to obain a good overview
of the performance of the algorithms, we measured the
estimation error for a large set of different values of the
tuning parameters of the algorithms.

Figures 2, 3, 4 and 5 illustrate the results of our
experiments. For the normal distribution period case
(Fig. 2), we see that the QEWA algorithm outperforms
all the algorithms in the literature. In accordance with the

Table 5 χ2 distribution switch case: Root mean squared estimation
error for the selection algorithm [17]

q = 0.5 q = 0.7 q = 0.9

T = 100 2.0367 2.3913 3.3717

T = 500 2.0462 2.4137 3.1166
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Fig. 6 The left and right panels refer to dining room and bed room, respectively. The x-axis refers to the number of days since the observation
started. The gray curves show the forecasting error predicting 15 minutes into the future. The red curves show the linear trends in the forecasting
error

analysis in Section 4, the QEWA algorithm performed the
best using a small value of the ratio γ /λ. The Cao et
al. algorithm struggled with numerical problems for some
choices of the tuning parameters and therefore some of the
curves are short.

For the normal distribution switch case (Fig. 3), we
see that the QEWA algorithm again outperforms all the
algorithms in the literature. Again we see that the QEWA
performs best using a small value of the ratio γ /λ.

For the χ2 distribution cases we see that the QEWA
algorithm also here outperforms the other algorithms. For
q = 0.9, the QEWA algorithm documents competitive
results to the best performing alternative algorithms. Also
here a small value of the ratio γ /λ is the preferable
choice.

Among the alternative algorithms there were no consis-
tency in which algorithms were closest to the performance
of the QEWA, but overall the DUMIQE and DQTRE seem
to be closest. However, all the alternative algorithms suffer
with significantly poorer results than the QEWA for at least
some cases. E.g. DQTRE performed poorly when estimat-
ing quantiles in the tails (q = 0.9) and DUMIQE for the
switch cases.

Tables 2, 3, 4 and 5 show results for the selection
algorithm [17]. The algorithm does not have any tuning
parameters and the results are presented in the tables. We
see that QEWA outperforms the selection algorithm with a
clear margin for all the different cases.

In summary the QEWA algorithm outperforms all the
different state-of-the-art algorithms from the literature. Best

Fig. 7 The left and right panels refer to dining room and bed room,
respectively. The x-axis refers to the number of days since the obser-
vation started. The gray curves show the forecasting error predicting
15 minutes into the future. The blue curves show tracking of the 80%

quantiles of the forecasting error data streams. The black dots along
the x-axis show when the model was retrained. The red show the linear
trends in the forecasting error
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performance is achieved using a small value of the ratio
γ /λ.

6 Real-life data experiments – concept drift
detection

In most challenging data prediction tasks, the relation
between input and output data evolves over time. Thus
if static relationships are assumed, prediction performance
will degrade with time. In the field of machine learning
and data mining this phenomenon is referred to as concept
drift [13]. Different strategies have been suggested to detect
when the performance of the predictive model degrades and
thus should be retrained/updated [13]. Current state-of-the-
art strategies monitor the average predictive error, but for
real-life applications it is often more relevant to control
that the prediction error rarely goes above some critical
threshold. In this example we demonstrate how to perform
concept drift detection and adaptation on such a critical
threshold by tracking an upper quantile of the prediction
error distribution, e.g. the 80% quantile. As an application
domain, we investigate the case of efficient control of indoor
climate.

Heating, ventilation and air conditioning (HVAC) sys-
tems typically control indoor climate by reacting on the
current room conditions such as indoor temperature. How-
ever, given the time required for a HVAC system to adjust
to changes in the indoor climate, such strategies always
will lag behind resulting in poor control of indoor climate
and energy usage. This raises the need for building models
that forecast future indoor climate temperature and to use
this as input to the HVAC system. Zamora-Martı́nez et al.
[39] propose to use artificial neural network (ANN) mod-
els to forecast future indoor temperature based on a total
of 20 features including outdoor climate variables such as
temperature and precipitation amounts and indoor climates
variables such as CO2 level. Since more observations are
received with time and the relation between input and out-
put may evolve with time, the model is retrained in an online
manner. The authors however do not take advantage of con-
cept drift detection in order to efficiently decide when to
retrain the model.

We now demonstrate how the suggested quantile
estimator in this paper can be used for concept drift
detection for the online indoor temperature forecasting
problem described above. We consider the same dataset
as in [39] where new observation of input and output
variables is received every 15 minutes. We forecasted
indoor temperature 15 minutes into the future using an
autoregressive (AR) model of order one. In addition to the
current indoor temperature, the current value of the other 20
features were used as input to the forecasting model. Given

the large number of features, regularization of the model
parameters was required to get a reliable forecasts and we
relied on LASSO regularization [10]3.

First, we trained the LASSO AR model based on eight
days of observations and used the model to predict 15
minutes into the future each time a new observation was
received. The results are shown in Fig. 6. The figure
demonstrates that if the model is not retrained after day
eight, the forecasting error gradually increases with time
(the red line). In other words, the data is subject to concept
drift and the forecasting model should be retrained as more
observations are received. Instead of retraining the model
regularly according to a fixed periodicity which is clearly
ineffective, a sophisticated approach consists of retraining
the model only if concept drift is detected.

We now build a concept drift and model retraining
procedure based on quantile tracking. We required that the
indoor temperature forecasting error rarely should go above
two degrees centigrade. We used the QEWA estimator to
track the 80% quantile of the forecasting error data stream
(the gray curves in Fig. 6). If the quantile estimate went
above two degrees centigrade, the model was retrained.
We trained the model for the first time after 24 hours of
observations. The results are shown in Fig. 7. After the
initial training after 24 hours of observations, the 80%
quantile estimate of the forecasting error distribution went
above two degrees three times and each time the model was
retrained. The results demonstrates that by a few selected
retrainings of the model, the forecasting error is controlled,
indicated by a horizontal linear trend (red curves) in Fig. 7.

In conclusion, the example demonstrates how the
suggested quantile estimator can be useful for concept drift
detection and model adaptation.

7 Closing remarks

The exponentially weighted moving average of observa-
tions is known to be the state-of-art estimator to track the
expectation of dynamically varying data stream distribu-
tions. In this paper, we have presented an incremental
quantile estimator that is in fact a generalized exponen-
tial weighted moving average estimator. To the best of our
knowledge, this is the first quantile estimator in the lit-
erature that falls within this well-known class of efficient
estimators. The experiments show that the estimator outper-
forms state-of-the-art quantile estimators in the literature.

3This model is a simple and natural forecasting model, but other and
more advanced machine learning models that predict on the continuous
scale, like ANN models, could also be used.
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We demonstrate how tracking of quantiles has applica-
tion in the field of machine learning. More particularly,
we show how the suggested estimator can be used for
tracking quantiles of the prediction error distribution in
order to detect when a machine learning model should be
retrained.

A potential ally for future research is to extend
the QEWA estimator to simultaneously track multiple
quantiles. One could of course, just run the QEWA
estimator for each quantile of interest, but this could
potentially lead to a violation of the monotone property
of quantiles. The monotone property of quantiles, refers
to the requirement that an estimate of a higher quantile
should be always bigger than an estimate of a lower quantile
e.g. the 50% quantile should always be above the 30%
quantile.

Appendix A: Proof of theorem 1

We will first present a theorem due to Norman [26] that will
be used to prove Theorem 1. Norman [26] studied distance
”diminishing models”. The convergence of ̂Qn(q) to Q(q)

is a consequence of this theorem.

Theorem 2 Let x(t) be a stationary Markov process
dependent on a constant parameter θ ∈ [0, 1]. Each x(t) ∈
I , where I is a subset of the real line. Let δx(t) = x(t +
1) − x(t). The following are assumed to hold:

1. I is compact
2. E[δx(t)|x(t) = y] = θw(y) + O(θ2)

3. V ar[δx(t)|x(t) = y] = θ2s(y) + O(θ2)

4. E[δx(t)3|x(t) = y] = O(θ3) where supy∈I
O(θk)

θk < ∞
for k = 2, 3 and supy∈I

o(θ2)

θ2 → 0 as θ → 0
5. w(y) has a Lipschitz derivative in I

6. s(y) is Lipschitz I .

If Assumptions 1 to 6 above hold, w(y) has a unique root y∗
in I and dw

dy

∣

∣

y=y∗ ≤ 0 then

1. var[δx(t)|x(0) = x] = O(θ) uniformly for all x ∈ I

and t ≥ 0. For any x ∈ I , the differential equation
dy(τ)
dτ

= w(y(t)) has a unique solution y(τ) = y(τ, x)

with y(0) = x and E[δx(t)|x(0) = x] = y(tθ) + O(θ)

uniformly for all x ∈ I and t ≥ 0.
2. x(t)−y(tθ)√

θ
has a normal distribution with zero mean and

finite variance as θ → 0 and tθ → ∞.

Having presented Theorem 2, we are now ready to prove
Theorem 1.

Proof We now start by showing that the Markov process
based on the updating rules in (6) and Theorem 1 satisfies

the assumptions 1 to 6 in Theorem 2. We start by verifying
assumption 2

E
(

δ ̂Qn(q)
∣

∣ ̂Qn(q)
)

= E
(

δ ̂Qn(q)
∣

∣ ̂Qn(q) ≥ X
)

P
(

̂Qn(q) ≥ X
)

+E
(

δ ̂Qn(q) | ̂Qn(q) < X
)

P
(

̂Qn(q) < X
)

= λcn

(

̂Qn(q)
) q

μ+
n − ̂Qn(q)

(

μ+
n − ̂Qn(q)

) (

1 − F
(

̂Qn(q)
))

−λcn

(

̂Qn(q)
) 1 − q

̂Qn(q) − μ−
n

(

̂Qn(q) − μ−
n

)

F
(

̂Qn(q)
)

= λcn

(

̂Qn(q)
) (

q − F
(

̂Qn(q)
))

(19)

where cn

(

̂Qn(q)
)

is as given in (3). We now let θ = λ,
y = ̂Qn(q) and w

(

̂Qn(q)
)

equal to “everything” in (19)
except λ. It is easy to see that assumption 2 in Theorem 2 is
satisfied. Further, since μ+

n − ̂Qn(q) > 0 and ̂Qn(q)−μ−
n >

0, w
(

̂Qn(q)
)

has a Lipschitz derivative and assumption 5 is
satisfied.

Next we turn to assumption 3.

E
(

δ ̂Qn(q)2
∣

∣ ̂Qn(q)
)

= E
(

δ ̂Qn(q)2
∣

∣ ̂Qn(q) ≥ X
)

P
(

̂Qn(q) ≥ X
) + E

(

δ ̂Qn(q)2
∣

∣ ̂Qn(q) < X
)

P
(

̂Qn(q) < X
) = λ2

(

cn

(

̂Qn(q)
) q

μ+
n − ̂Qn(q)

)2

×
(

μ2,+
n − 2̂Qn(q)μ+

n + ̂Qn(q)2
)

(

1 − F
(

̂Qn(q)
))

(20)

+λ2
(

cn

(

̂Qn(q)
) q

̂Qn(q) − μ−
n

)2

×
(

̂Qn(q)2 − 2̂Qn(q)μ−
n + μ2,−

n

)

F
(

̂Qn(q)
)

where μ
2,+
n = E(X2

n|Xn > ̂Qn(q)) and μ
2,−
n =

E(X2
n|Xn < ̂Qn(q)). Further we know that

V ar
(

δ ̂Qn(q)
∣

∣ ̂Qn(q)
) = E

(

δ ̂Qn(q)2
∣

∣ ̂Qn(q)
)

−E
(

δ ̂Qn(q)
∣

∣ ̂Qn(q)
)2

(21)

By substituting (19) and (20) into (21), we see that
assumption 3 is satisfied with s

(

̂Qn(q)
)

equal to everything
in (21) except λ2. Since μ+

n − ̂Qn(q) > 0 and ̂Qn(q)−μ−
n >

0, s
(

̂Qn(q)
)

is Lipschitz and assumption 6 is also satisfied.
Assumption 4 can now be proved in the same manner.

We will use the results of Norman to prove the
convergence. It is easy to see that w

(

̂Qn(q)
)

in (19)
admits one unique root ̂Qn(q) = F−1(q) = Q(q)
(

notecn

(

̂Qn(q)
)

> 0 ∀̂Qn(q)
)

.
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We now differentiate to get:

d w
(

̂Qn(q)
)

d ̂Qn(q)
= c′

n

(

̂Qn(q)
) (

q − F
(

̂Qn(q)
)) − cn

(

̂Qn(q)
)

f
(

̂Qn(q)
)

We substitute the unique root Q(q) for ̂Qn(q) and get

d w
(

̂Qn(q)
)

d ̂Qn(q)

∣

∣

∣
̂Qn(q)=Q(q) = c′

n (Qn(q)) (q − F (Qn(q)))

−cn (Qn(q)) f (Qn(q))

= 0−cn (Qn(q)) f (Qn(q))<0

This gives

lim
nλ→∞,λ→0

E
(

̂Qn(q)
) = Q(q) + O(λ)

and

V ar
(

̂Qn(q)
) = O(λ)

Consequently

lim
nλ→∞,λ→0

̂Qn(q) = Q(q)
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