
Helge Spieker

Software Testing in Continuous
Integration with Machine Learning
and Constraint Optimization

Thesis submitted for the degree of Philosophiae Doctor

Department of Informatics
The Faculty of Mathematics and Natural Sciences

Simula Research Laboratory

2020

© Helge Spieker, 2020

Series of dissertations submitted to the
The Faculty of Mathematics and Natural Sciences, University of Oslo
No. 2282

ISSN 1501-7710

All rights reserved. No part of this publication may be
reproduced or transmitted, in any form or by any means, without permission.

Cover: Hanne Baadsgaard Utigard.
Print production: Reprosentralen, University of Oslo.

Abstract

Software testing within a continuous integration process is a crucial task
for modern software development. It has the goal to evaluate a software’s
functionality and be confident about its quality after recent changes and before
the integration of new features or deployment. Further challenges are introduced
when testing software for cyber-physical systems that integrate both software
and dedicated hardware components, e.g. industrial robots or embedded devices.

This thesis investigates the usage of machine learning and constraint
optimization to achieve the desired efficiency and to create an intelligent
testing process. Specifically, we contribute new methodology for the test suite
optimization process of test case prioritization, test case scheduling, and test
case selection and assignment. All of these steps are relevant to decide which test
cases are most relevant in a continuous integration cycle and when to execute
them on which test agent. Within the context of the thesis, a test agent most
often refers to a cyber-physical system such as an industrial robot. Nevertheless,
all methods are also applicable to the more general use case of testing generic
software systems without the specialization on cyber-physical systems.

For test case prioritization, we contribute a method using reinforcement
learning, a machine learning technique, where the prioritization method learns
to continuously adapt to failure characteristics and error distribution of the
system-under-test.

In test case scheduling, we propose a constraint optimization model to
schedule a suite of test cases over multiple test agents with shared resources, e.g.
measurement devices that can only be used by a single agent at a time.

Our contribution in test case selection and assignment addresses a problem
when the number of tests outgrows the number of agents. At each resource-
constrained testing iteration only a subset of tests can be selected and only
be executed on single test agents, but over the course of multiple iterations
it is desirable to have all test cases executed on all compatible test agents.
We introduce a method that maintains rotational diversity, i.e. test cases are
subsequently selected and assigned such that all possible combinations are made
over time while also focusing on the most relevant test cases as given by their
priority in each individual cycle.

Finally, not directly integrated in the test suite optimization process,
but related to testing in continuous integration, we propose an extension to
metamorphic testing. Metamorphic Testing is a software testing paradigm which
aims at using necessary properties of a system-under-test, called metamorphic
relations, to either check its expected outputs, or to generate new test cases.
Metamorphic Testing has been successful to test programs for which a full
oracle is not available or to test programs for which there are uncertainties on

i

expected outputs such as learning systems. Our contribution is to introduce
Adaptive Metamorphic Testing, which utilizes contextual bandits, a machine
learning technique, to select one of the multiple metamorphic relations available
for a program. By receiving feedback about previous test results, Adaptive
Metamorphic Testing learns which metamorphic relations are likely to transform
a source test case, such that it has higher chance to discover faults.

In conclusion, this thesis focuses on the domain of software testing in
continuous integration with a focus on testing of cyber-physical systems.
We evaluate the usage of data-driven machine learning techniques, such as
reinforcement learning and contextual bandits, and exact, logic-based constraint
optimization techniques for dedicated tasks within the testing process.

ii

Preface
This thesis is submitted in partial fulfillment of the requirements for the degree
of Philosophiae Doctor at the University of Oslo. The research presented here is
conducted at Simula Research Laboratory, in the context of the Certus Centre
for Software Validation and Verification (Certus SFI), and the Department of
Informatics, University of Oslo. The primary supervisor was Arnaud Gotlieb
(Simula Research Laboratory). The secondary supervisors were Morten Mossige
(University of Stavanger, ABB Robotics Norway) and Magne Jørgensen (Simula
Metropolitan, University of Oslo).

The thesis is a collection of four papers (Papers A-D) with Paper C being an
extended version of a previous conference publication. These papers have been
published or are currently under submission in international conferences and
journals and are subject to the academic peer-review process. The papers are
printed in chronological order of their creation. All papers have been the result
of collaborations with great researchers, namely Arnaud Gotlieb (Paper A-D),
Morten Mossige (Paper A-C), Mats Carlsson (Paper B), Dusica Marijan (Paper
A), and Hein Meling (Paper B).

iii

Acknowledgements
Completing this thesis would not have been possible without the tremendous
support of several people. First and foremost, I would like to express my gratitude
to my supervisors. Arnaud, you in particular were an outstanding mentor to
me and I appreciate the motivation, effort and sympathy you brought with you.
Working together with you helped me develop myself as a researcher and having
your scientific and practical advice available made a huge contribution towards
the progress of my PhD project. Morten, thank you for grounding the work that
we are doing to the industrial reality and for offering us challenges that actually
matter. I have learned a lot from our discussions.

Furthermore, my thanks go to Simula Research Laboratory and the Certus
Centre for providing me with the opportunity to pursue a PhD at an excellent
workplace. Being located next to the Oslofjord and within a great academic
community allowed for the right environment, albeit relaxing and calm or
intellectually stimulating, whenever needed. My colleagues within the software
engineering department at Simula were a great inspiration for me and always
had an open ear and helpful advise in any situation.

Finally, my special gratitude goes to my family, and in particular to Neele,
for their encouragement and loving support through the PhD. Whenever I need
help, you are always there. Thank you!

Helge Spieker
Oslo, March 2020

v

List of Papers

Paper A

Spieker, Helge and Gotlieb, Arnaud and Marijan, Dusica and Mossige, Morten;
‘Reinforcement Learning for Automatic Test Case Prioritization and Selection
in Continuous Integration’. In: Proceedings of the 26th ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA) (2017),
pp. 12–22. DOI: 10.1145/3092703.3092709. Preprint: arXiv:1811.04122v1.

Paper B

Mossige, Morten and Gotlieb, Arnaud and Spieker, Helge and Meling, Hein and
Carlsson, Mats; ‘Time-aware Test Case Execution Scheduling for Cyber-Physical
Systems’. In: Principles and Practice of Constraint Programming (CP) (2017),
Lecture Notes in Computer Science, Vol. 10416, pp. 387–404.
DOI: 10.1007/978-3-319-66158-2_25. Preprint: arXiv:1902.04627v1.

Paper C

Spieker, Helge and Gotlieb, Arnaud and Mossige, Morten; ‘Rotational Diversity
in Multi-Cycle Assignment Problems’. In: Proceedings of the Thirty-Third AAAI
Conference on Artificial Intelligence Vol. 33 (2019), pp. 7724–7731.
DOI: 10.1609/aaai.v33i01.33017724. Preprint: arXiv:1811.03496v1.

The thesis contains an extended version “Multi-Cycle Assignment Problems
with Rotational Diversity” that has been submitted to: Journal of Artificial
Intelligence Research (May 2019). Preprint: arXiv:1811.03496v2.

Paper D

Spieker, Helge and Gotlieb, Arnaud; ‘Adaptive Metamorphic Testing’. Revision
submitted to: Journal of Systems and Software (March 2020).
Preprint: arXiv:1910.00262v2.

The above papers are self-contained and therefore some information might be
repeated among them. Some acronyms and terminology may be used differently
across papers.

vii

https://doi.org/10.1145/3092703.3092709
https://arxiv.org/abs/1811.04122v1
https://doi.org/10.1007/978-3-319-66158-2_25
https://arxiv.org/abs/1902.04627v1
https://doi.org/10.1609/aaai.v33i01.33017724
https://arxiv.org/abs/1811.03496v1
https://arxiv.org/abs/1811.03496v2
https://arxiv.org/abs/1910.00262v2

List of Papers

Papers not included in the thesis. Furthermore, I have been involved with
the following papers, which are not included in the thesis, as they focus on topics
that are outside the main context of the PhD project:

Paper E

Gotlieb, Arnaud and Marijan, Dusica and Spieker, Helge; ‘Stratified Constructive
Disjunction and Negation in Constraint Programming’. In: 2018 IEEE 30th
International Conference on Tools with Artificial Intelligence (ICTAI) (2018),
pp. 106–113. DOI: 10.1109/ICTAI.2018.00026. Preprint: arXiv:1811.03906v1.

Extended version “ITE: A Lightweight Implementation of Stratified Reasoning
for Constructive Logical Operators” submitted to International Journal on
Artificial Intelligence Tools (April 2019). Preprint: arXiv:1811.03906v2.

Paper F

Spieker, Helge; ‘Towards Sequence-to-Sequence Reinforcement Learning for
Constraint Solving with Constraint-Based Local Search’. In: Proceedings of the
AAAI Conference on Artificial Intelligence (Student Abstracts) Vol. 33 (2019),
pp. 10037-10038. DOI: 10.1609/aaai.v33i01.330110037.

The published papers are reprinted with permission from Association of
Computing Machinery and Springer Nature. All rights reserved.

viii

https://doi.org/10.1109/ICTAI.2018.00026
https://arxiv.org/abs/1811.03906v1
https://arxiv.org/abs/1811.03906v2
https://doi.org/10.1609/aaai.v33i01.330110037

Contents

Preface iii

Acknowledgements v

List of Papers vii

Contents ix

I Summary 1

1 Introduction 3
1.1 Motivation . 3
1.2 Research Objectives . 4
1.3 Contributions . 5
1.4 Structure of the Thesis . 7

2 Test Suite Optimization for Continuous Integration Testing 9
2.1 Software Testing . 9
2.2 Continuous Integration . 10
2.3 Machine Learning . 10
2.4 Constraint Programming 12
2.5 Test Suite Optimization 13

3 Summary of Results 17
3.1 Paper A . 17
3.2 Paper B . 18
3.3 Paper C . 18
3.4 Paper D . 20

4 Discussion 21
4.1 Future Work . 21
4.2 Conclusion . 22

References 23

ix

Contents

II Papers 27

A Reinforcement Learning for Automatic Test Case Prioriti-
zation and Selection in Continuous Integration 29
1 Introduction . 30
2 Formal Definitions . 32
3 The RETECS Method . 33
4 Experimental Evaluation 39
5 Related Work . 47
6 Conclusion . 48
References . 49

B Time-aware Test Case Execution Scheduling for Cyber-
Physical Systems 55
1 Introduction . 56
2 Existing Solutions and Related Work 57
3 Problem Modeling . 58
4 The TC-Sched Method . 62
5 Implementation and Exploitation 64
6 Experimental Evaluation 65
7 Conclusion . 69
References . 70

C Multi-Cycle Assignment Problems with Rotational Diversity 75
1 Introduction . 76
2 Related Work . 77
3 Problem Description . 79
4 Maintaining Rotational Diversity 81
5 Experimental Evaluation 87
6 Conclusion . 98
References . 99

D Adaptive Metamorphic Testing with Contextual Bandits 105
1 Introduction . 106
2 Background . 107
3 Adaptive Metamorphic Testing 111
4 Application Scenarios of Adaptive Metamorphic Testing . 115
5 Experimental Evaluation 116
6 Experimental Results . 122
7 Conclusion . 130
References . 131

x

Part I

Summary

Chapter 1

Introduction

1.1 Motivation

Industrial control systems cover hereby a wide range of possible actual systems.
One prominent example of control systems are robotic systems interacting
with their environment, but also distributed communication systems, such as
conference systems, are an example. The methods presented in this thesis do not
focus on a specific type of control system, but seek to find a general approach
towards them. However, often we discuss of cyber-physical systems (CPS) such
as industrial robots as the main case study application in our method, due to
the collaboration with ABB Robotics Norway, which have a central role in the
requirements analysis and data collection parts of the study. A main distinction
in testing of cyber-physical systems versus standard software is the dependency
on specific physical hardware, e.g. the robotic platform or an embedded device
like in Internet-of-Things scenarios. This physical hardware needs to be included
and therefore considered as a key component in the testing process.

Exhaustive software testing is a time-intensive task, even when using
automation. Recent years moved the best practice in software development
towards shorter development and release cycles, where at all time a releasable
software state is available. After each change in the software, a test suite is run
to check for possibly introduced errors in the system and complete functionality.
If errors are found, the developer is noticed and can react quickly, reducing
the time between discovery and elimination of an error. This process is called
continuous integration.

Early negative feedback, i.e. early detection of errors, is desirable, as well as
being able to trust a positive feedback. However, due to large test suite sizes,
execution all tests is not necessary within reasonable time frames or resource
amounts. Therefore, three main techniques to handle this problem have emerged,
namely test case prioritization, test case selection, and test case scheduling. The
first, test case prioritization, rates test case by their importance for the upcoming
test run. The second, test case selection or test case minimization, deals with
identification of unnecessary or redundant test cases, which can be skipped. The
third, test case scheduling, assigns test cases to test machines to be executed
at a specified time. By creating a dedicated schedule for test execution it sets
their order to maximize resource usage and possibly early failure detection. It is
important to note here, that the assignment and scheduling of test cases not only
concerns the selection of the test cases but to the same degree considers which
test agent is executing the test cases, as different test agents might represent
another subset of system functionality. These three techniques are interconnected
and each can make use of the others’ results.

3

1. Introduction

1.2 Research Objectives

The main research objective investigated in this PhD thesis is how software
testing of complex software systems, such as cyber-physical systems, in continuous
integration can be done efficiently. We investigate the usage of machine learning
and constraint optimization to achieve the desired efficiency and to create an
adaptive testing process. To further structure the goals of the thesis, we introduce
two other research objectives in more detail.

The first research objective is to consider the generic testing process, i.e. test
case selection, prioritization and scheduling, under consideration of safety and
reliability of the tested system. It considers how test management can learn
from historical test data to detect more important test cases and prioritize them
in the test schedule. Special interest on these methodologies stems from the
continuous integration perspective, which aims to automate the whole testing
process as much as possible. Through automation instead of manual efforts,
regular software builds and testing both increase the reliability of the overall
process and allow to repeat the build-test-deploy cycle more often than with a
manual process and its additional overhead. Without human intervention, the
continuous integration environment allows the machine learning mechanism to
fully take control and optimize the schedule for an efficient development cycle.
Automation results of following research questions would be integrated into the
mechanism for production usage. The thesis project aims at handling each of
the three testing mechanisms individually and in combination.

While the previous research objective addresses the testing process and the
management of test cases without detailed insight into each individual test
case, the second research objective focuses on a lower-level approach to software
testing. We consider the case where a system is tested with metamorphic testing.
Metamorphic testing is a software testing paradigm, in which a source test case
is transformed into a new follow-up test case for which the exact expected test
outcome is not known, but a relation between the source and follow-up test case
is available. By execution of the follow-up test case it can be confirmed whether
the system-under-test behaves according to the so-called metamorphic relation.
If the relation is violated, a failure in the system has been identified.

Metamorphic Testing has been successfully applied to test programs for
which a full test oracle is not available or to test programs for which there are
uncertainties on expected outputs such as machine learning systems. Examples
for applications of metamorphic testing are search engines, where it is generally
expected that additional keywords reduce the number of search results or learning
systems, where the exact reaction is not known, but similar inputs should reveal
similar results, given an adequate definition of similarity. Here, the thesis project
aims to improve the process of metamorphic testing in the context of continuous
integration, i.e. repeatedly testing the same system, but preferably with different
generated test cases.

4

Contributions

1.3 Contributions

1.3.1 Research Contributions

We have introduced new methods for each of the components of the testing
process. We propose a combination of data-driven machine learning, especially
reinforcement learning, which extracts domain knowledge from historical data
and experiences, with logic-driven constraint optimization, which is modeled
based on existing domain knowledge. Machine learning, on the one hand, is
useful where the exact rules are not known and can be extracted or refined over
time. Constraint optimization, on the other hand, is exact and follows a strict
set of rules to find a solution for a problem instance that has many requirements
and constraints to be valid and optimal. By combining both techniques, we
benefit from the characteristics of the different problems in the testing process.
Test case prioritization has only few strict constraints on the result, i.e. any
assignment of priorities is valid, but only few are good, but it is not possible to
determine the quality without execution of the tests.

Selection and scheduling, however, follow strict constraints on the available
resources, e.g. test machines, time, or external global resources that have to be
shared by multiple tests, and possible assignments between test cases and test
machines. While rules could be learned from historical assignments, there are
downsides to this approach. Historical schedules might only cover parts of the
total set of constraints. The human engineers, who created previous schedules,
follow best practices or simple heuristics to finish the schedules. Validation of
the generated rules and the corresponding schedules and assignments is still
necessary to avoid problems during their execution. Our approach is therefore to
apply exact optimization techniques where the constraints are explicitly modeled
from expert knowledge. A highly-optimized constraint solver can then find a
good or even optimal solution for every new problem instance by performing a
defined search strategy.

Both approaches are generally independent of each other, but are still
integrated and connected. If we consider the whole testing process, the output
of test case prioritization influences the selection and scheduling, because we
want to focus on the most important test cases and are willing to exclude test
cases with low priority. In the opposite direction, the scheduling and selection
influences for which test cases we have feedback to further train and improve
the test case prioritization technique. Thereby, the whole process is connected
and forms a feedback loop over all its components. We will now highlight the
connection between each of the components and the papers in the thesis.

In Paper A, we use reinforcement learning [1], a machine learning technique,
to derive project-specific test case prioritization over time by observing failures.
Our method receives feedback from the execution of previously highly prioritized
test cases and adjusts its strategy such that test cases similar to those that
failed will be ranked higher in future iterations. We have evaluated two ways to
represent the strategy, either by using tabular functions or neural networks, and
proposed five reward functions to formulate feedback for the agent. Experimental

5

1. Introduction

results on industry datasets show that an agent can, without any initial domain
knowledge, learn which test cases are more likely to fail and then assign those a
higher priority.

Paper B addresses the question of creating a test schedule, that follows
constraints on the usage of external equipment, e.g. measurement devices, and
minimizes the time taken to run all test cases. The proposed method uses
constraint optimization to model the problem as a constraint-based scheduling
problem where test cases tasks to execute on a set of machines, e.g. robots. Our
contributed model uses virtual dummy machines for each of the shared resources
and introduces a custom search heuristic to quickly derive near-optimal solutions
for a new problem instance.

In Paper C, the set of requirements and constraints changed in contrast
to Paper B to focus on a different problem variant. First, the focus is not to
generate the shortest schedule, but to select the most relevant test cases to fill
the available time for testing. Second, the time-limited test execution does not
allow to run each test case on every different test agent, which would be desirable
to maximize the confidence in the test results. To mitigate this issue, we design
a multi-cycle rotation mechanism, called rotational diversity, that rotates the
assignment of all available test cases to their compatible test agents over the
course of subsequent cycles. Our method extends the inner assignment problem
with an additional rotation mechanism that combines both the rotation goal
and the goal to select the most relevant test cases and is compatible with a wide
range of applications outside the software testing domain.

Towards the second research objective, we have introduced a machine learning-
based approach for the generation of follow-up test cases in metamorphic testing
[2, 3] in Paper D. Our new method, named adaptive metamorphic testing, uses
contextual bandits [4], a variant of reinforcement learning, to decide which
metamorphic relation to apply for a source test case. The contextual bandit
receives context information about the source test case and decides for one
of multiple metamorphic relations to generate a follow-up test case. From
its execution, a feedback is formulated and given to the bandit to update
its strategy. We have applied our method to test deep learning systems for
computer vision. Adaptive metamorphic testing showed to find the same failure
rate and distribution than exhaustive testing while requiring less test executions,
which can be costly or at least time-consuming. At the same time, its error
discovery is stronger than pure random testing, which is the common approach
to metamorphic testing, because it can adapt to the strengths of the available
metamorphic relations for certain test cases.

1.3.2 Industrial Adaptation

Besides the publication of research articles, the developed methods were
implemented in software for industrial usage. This software package, called
SWMOD which historically stands for software modularity project, covers test
case prioritization, test case selection and scheduling in a single tool. It is
currently integrated in the automated testing pipeline at ABB Robotics in

6

Structure of the Thesis

Norway and other international locations, where it handles the selection of test
cases and their assignment to a set of robot agents. These agents are either
virtual controllers that simulate the physical robot execution or the actual full
physical robot in an isolated testing environment. Everyday SWMOD organizes
the testing of different software subsystems, including the custom paint control
system, the robots’ safety systems, and the underlying robot operating systems
[5].

SWMOD is implemented in SICStus Prolog [6] and clp(FD) [7] and based
on the methods and research results presented in Paper B and Paper C. Since
2016, SWMOD is an on-going collaboration project between Simula Research
Laboratory and ABB Robotics Norway and under on-going development and
maintenance.

Recently, the work on test case prioritization and selection using reinforcement
learning (see Paper A) was inspiration for a new test management tool at Netflix1.
Following our approach, their software prioritizes the most relevant test cases of
a test suite which are then selected and distributed onto the actual test devices;
the result of the test execution is again used to improve the decision for future
iterations [8].

1.4 Structure of the Thesis

This thesis is a collection of papers and the remainder of the thesis is structured
as two parts.

Summary (Part 1) In Chapter 2, we introduce the relevant background and
context the thesis. Specifically, we discuss the application and use cases of
machine learning and artificial intelligence techniques in the software testing
domain. An overview of the key results of this thesis in Chapter 3, followed by a
concluding discussion in Chapter 4 closes the first part.

Papers (Part 2) This part holds four research papers, that form the main
content of the thesis. All papers have either been published or are currently
under submission in international, peer-reviewed conferences and journals. We
present the main findings of the papers in the thesis summary of the first part,
in Chapter 3.

1See https://www.simula.no/news/netflix-takes-inspiration-certus-sfi-research-paper

7

https://www.simula.no/news/netflix-takes-inspiration-certus-sfi-research-paper

Chapter 2

Test Suite Optimization for
Continuous Integration Testing

In this chapter, we discuss the background and general problem setting for the
thesis project in context of the existing literature. This context is summarized as
the process of test suite optimization, which we will define below, in Continuous
Integration (CI) testing. We discuss the application of artificial intelligence
(AI) techniques for the different steps within the process, which have varying
requirements and problem characteristics. Both data-driven machine learning
(ML) methods and exact logic-driven optimization techniques, such as Constraint
Programming (CP), are effective techniques to address specific subproblems in
test suite optimization.

In the context of CI testing with a focus on cyber-physical systems, we
structure the test suite optimization process into three tasks, that have to be
repeatedly solved in each CI cycle. These three tasks are a) test case prioritization,
b) test case selection, and c) test case assignment. Each of these tasks will be
discussed in detail, but first the necessary technical background on software
testing, machine learning, and constraint programming is presented.

2.1 Software Testing

We consider the task of automated software testing as the detection of faults in
an underlying system-under-test (SUT). The SUT is often a software program,
but can also represent a cyber-physical system, which combines software with
a specific physical hardware platform. Examples for cyber-physical systems
are robotic systems, internet of things (IoT) appliances, or generic embedded
systems with external sensors or actuators. When discussing software testing, we
refer specifically to automated software testing, where the setup, execution and
evaluation of a test can be performed automatically without human intervention.
Opposite to automated testing, there is the area of manual testing where the SUT
is exercised manually or with software-assistance by a human tester according
to a test protocol.

According to the IEEE Standard Glossary of Software Engineering Terminol-
ogy testing is “an activity in which a system or component is executed under
specified conditions, the results are observed or recorded, and an evaluation is
made of some aspect of the system or environment.” [9, p. 74]. In this activity,
we usually execute the system using test cases. A test case is defined as “A set of
test inputs, execution conditions, and expected results developed for a particular
objective, such as to exercise a particular program path or to verify compliance
with a specific requirement” [9, p. 74].

9

2. Test Suite Optimization for Continuous Integration Testing

The collection of one or more test cases is named as a test suite. We choose
a generic definition of a test suite as it can have several, more specific meanings.
A test suite can be dedicated for a certain component, for a certain functionality
of a system, focused on only test cases with short execution times, or generally
contain all test cases for a system.

2.2 Continuous Integration

Continuous Integration (CI) is a cost-effective software engineering practice with
wide adoption in the industry [10, 11, 12]. CI automates the repeated steps of
software compilation, build, test, and deployment, involving all recent changes
made to the software. The goal is to find faults and regressions in the software
through frequent, i.e. almost continuous, integration of changes. One iteration
of all steps in the CI process is named a cycle. CI cycles can be triggered upon
every single change, using a small test suite of short tests, or at fixed intervals,
for example, daily CI cycles that use the night for extensive testing.

By having limited time windows until a software change is integrated into
the overall systems, it is easier to detect faults and their causes. This reduces
the cost of debugging and bug fixing in later stages of the software development
process [12].

However, the effective use of CI also creates additional challenges. CI
requires the organization to make their compilation, build, test and deploy
tasks automatically executable without human intervention. Generally, it is
also desirable to control the duration of a CI cycle, such that the feedback
to the developers about the compatibility of their changes is not delayed too
much, or such that the time and resources available for the CI cycle are used as
good as possible. For the context of this discussion, we focus exclusively on the
testing step in CI and its resource requirements. We discuss the testing-related
challenges in CI together with the test suite optimization process in Section 2.5.

2.3 Machine Learning

Machine learning (ML) algorithms are data-driven statistical method that derive
a set of rules from data. How this data needs to be structured and what kind of
rules are derived depends on the category and type of ML algorithm.

ML algorithms are broadly grouped into three categories: In supervised
learning, the first category, a ML model is trained from a set of example inputs
and outputs. During training the model learns to approximate the mapping
between model inputs and the expected outputs. Examples for supervised ML
models are classification models, e.g. to identify an object on an image, or
regression models, for example, to predict the price of a house given a set of
attributes.

The second category is unsupervised learning, where only model inputs are
given, but without labeling of the expected output. These types of models are
often used to identify similarities or differences in the data. Example methods

10

Machine Learning

RL	Agent

Environment

Action	atReward	rtState	st

rt+1
st+1

Figure 2.1: The agent-environment interaction in reinforcement learning (adapted
from [1])

are clustering, where similar data points grouped into distinct clusters, or
compressing data for dimensionality reduction, i.e. identifying the most relevant
attributes to reduce the amount of data for further processing.

The third category is reinforcement learning where the model continuously
learns to interact with an external environment through the observation of the
outside state and issuing corresponding actions. Examples are game-playing
agents that learn to play video [13] or board games [14, 15] through trial-and-
error, learning robots [16, 17] or content placement agents that learn which
news articles or advertisements to recommend for certain users [4, 18]. We will
further introduce reinforcement learning in the following section as it is the most
relevant category for this thesis.

2.3.1 Reinforcement Learning

In the reinforcement learning (RL) setting (see Figure 2.1) an agent observes
the state st of the environment at time t and picks an action at according to its
internal policy. For this action, it later receives a reward rt from the environment
[1]. After an action has been selected, it is executed within the environment and
a new state st+1 is received. The policy is represented by a ML model that is
continuously trained via the tuple of state, action, received reward and follow-up
state 〈st, at, rt, st+1〉.

RL is thereby a sequential decision making algorithm where an action in one
state influences which state is observed next. This is an important characteristic
as the agents learns how its actions influence the environment and how they lead
to states that can yield high rewards, e.g. winning a game or identifying faults
in a software system.

The goal of the RL agent is to maximize the sum of total rewards over all
subsequent episodes, that is, at each state the action for which the highest future
reward is expected should be chosen. This is not necessarily the action with
the highest immediate reward, but instead the trajectories of multiple future
decisions has to be considered

11

2. Test Suite Optimization for Continuous Integration Testing

A specific variant of RL are contextual bandits [4, 19] with the main distinction
that an agents actions do not affect the environment such that it influences the
next. This means each state is independent of the previous state regardless the
chosen action, unlike in the previously explained RL setting where the earlier
state and action influence future states. Scenarios with this setting include, for
example, news placement on websites. Independent of which news article is
chosen for a visitor, it does not have an influence on who visits the website next.

Otherwise, contextual bandits work similar to RL agents. They observe the
state of the environment, which is here called context, and select an action, here
called arm in correspondence to multi-armed bandits. Afterwards a reward is
received, which is here often called either feedback or cost.

Due to the simpler setting of not being designed for sequential decision
making, contextual bandits have been more in focus of researchers before and
the underlying theory is more advanced than the theory of RL. For a dedicated
introduction to RL and contextual bandits, we refer to the books by Sutton and
Barto [1] respectively Lattimore and Szepesvari [19].

2.4 Constraint Programming

Constraint Programming (CP) [20] is a programming paradigm for solving
combinatorial problems with additional constraints. Programs in this paradigm
are called constraint satisfaction problems (CSPs).

CSPs are defined via a set of variables V , each with a domain of possible
values D, and a set of constraints C that form relations between the variables.
The goal is to find an assignment of values to all variables such that all constraints
are satisfied, i.e. a satisfiable assignment. Finding this assignment is referred
to as constraint reasoning or solving the constraint satisfaction problem [21].
Constraint reasoning is usually performed via a dedicated constraint solver, such
as SICStus Prolog [6] and its clp(FD) library [7] or Gecode [22]. These solvers
implement dedicated filtering techniques and search heuristics to efficiently
remove infeasible domain values and derive a solution for the constraint system.
Constraint satisfaction is sufficient when the problem only has a single solution
or if there is no preference between one of the multiple solutions of the problem.
In other cases, where the solutions are of different quality that can be quantified,
constraint optimization can be applied. Constraint optimization problems (COPs)
extend CSPs by introducing an additional objective function over the variables.
In this scenario, not only a satisfying solution has to be found, but also the
objective function has to be either minimized or maximized. Examples for
COPs are scheduling problems, where the assignment from tasks to workers has
to satisfy several constraints, e.g. each worker can only be used by one task
at a time, and at the same time the total duration of the schedule has to be
minimized.

Using CP for combinatorial problems consists of modeling the problem in
terms of constraints, which requires the availability of domain knowledge either
through a domain expert or from thorough analysis of the problem. The model

12

Test Suite Optimization

describes how a solution to the problem looks like, i.e. which constraints does
it follow and how does it relate to the specific instance of the problem that is
to be solved. From this model, the solver tries to find a solution using variant
of branch-and-bound tree search. To further improve the search process, a
problem-specific search heuristic can be defined to instrument the solver how to
traverse the search tree to reach satisfiable and high-quality solutions earlier.

One particular strength of CP for solving combinatorial problems is the
availability of global constraints. Global constraints are building blocks that can
be used to solve common subproblems in combinatorial modeling and for which
efficient filtering techniques are available. Using these global constraints rather
than the naive modeling of the subproblems using a number of other, simpler
constraints enables faster solving and reasoning by the solver and makes CP
efficient. An example for a global constraint is alldifferent. This constraint
restricts all involved variables, over which it is defined, to take a different value.
Naively this would be modeled by adding inequality constraints between all
variables, but the intention behind this construct would not be known to the
solver and no optimization can take place.

However, CP is not only the only suitable approach for combinatorial
problems. Alternatives include are satisfiability (SAT) and satisfiability modulo
theories (SMT) solvers, as well as mixed-integer programming (MIP), which
is commonly used in mathematical optimization and operations research. An
important distinction has to be made regarding the possible values of a domain.
Within the context of this thesis, we focus only on the finite domain that holds a
discrete set of values, for example integers, as opposed to the real-valued domain
of floating point values. For a further reading on CP and its variants, we refer
to the book by Rossi, Beek, and Walsh [21].

2.5 Test Suite Optimization

The test suite optimization process aims to provide tools and methods for the
efficient usage of the limited time available for testing in CI. Traditionally, for
pure software systems, this includes selecting subsets of tests, their prioritization
to establish an order, and their execution. This assumes that the execution
environment is generic or decoupled from the software, and the test suite can be
executed on any test environment. For testing of cyber-physical systems it is
further relevant to include the test environment into the test suite optimization
process as its resources need to be managed and considered, too. In 2012,
Yoo and Harman published a major review on test minimization, selection and
prioritization, and we refer the interested reader to this survey for an in-depth
overview of the earlier literature [23].

2.5.1 Test Case Prioritization

Test case prioritization is the ordering of test cases for high effectiveness [24].
The effectiveness is expressed such that failing test cases should be executed

13

2. Test Suite Optimization for Continuous Integration Testing

before passing test cases to identify faults in the SUT as soon as possible. For
the sequential execution of the test cases, the test case prioritization method can
directly sort the test cases. More formally, the test case prioritization method
assigns a rank, e.g. a numerical priority, to each test case, but a downstream
task decides on the actual order, i.e. sorting in the sequential case or more
dedicated assignment and scheduling in more complex cases.

Test case prioritization has been extensively studied in the research community
since the seminal works by Rothermel, Untch, Chu, and Harrold [24] and
Elbaum, Malishevsky, and Rothermel [25] and the relevance of the problem is
also addressed in industrial settings and use cases, for example, to name a few
published case studies, at Cisco [26], Google [27, 28, 29], Salesforce.com [30], or
Westermo Research and Development AB [31, 32].

2.5.2 Test Case Selection

Once a priority has been assigned, the test case selection step picks the most
relevant test cases for actual execution. Selection is necessary when the resources
for test execution are limited, e.g. only a fixed time period is allowed for test
execution. For the case of sequential execution, the selection method can choose
the most highly-prioritized test cases that fill the available resources. Test case
selection is also referred to as test suite minimization [33] or reduction [34, 35,
36] as it reduces the number of test cases from the full initial test suite to the test
suite that is actually executed. More complex approaches to test case selection
can consider additional constraints and requirements on the resulting test suite
like demanding certain coverage criteria to be fulfilled to cover the whole system
even though the risk of failure in some systems is lower prioritized than in other
areas, or by considering more resource constraints than just the available time,
such as compatibility to available test agents or dependencies on external devices.

Test case selection is often combined with test case prioritization and
sometimes seen as a combined technique. Nevertheless, both tasks are different
and might entail a variation of requirements and constraints. Within the context
of test suite optimization, which could also be seen as a single task from a higher
level, these tasks are separated.

2.5.3 Test Case Scheduling

The third subtask, test case scheduling, is again linked with the selection of
test cases. Scheduling describes the generation of a test execution plan that
defines which test case is executed at which time on which test agent. It thereby
differs from test case selection, which only picks a subset, by also making an
assignment to an execution time and location. The scheduling model captures
the constraints of the individual assignment between test cases and test agents
as well as potential constraints on the execution orders of test cases. While
test cases should generally be independent of each other, it can be necessary to
group certain kinds of test cases to avoid costly setup times, or to avoid certain
groupings of test cases because they rely on similar external resources. These

14

Test Suite Optimization

constraints need to be developed together with domain experts, e.g. the quality
engineers developing the tests, and need to be formalized and stored as metadata
for the test cases.

The task of scheduling is not specific to software testing, but has a long
history as its own area of research [37, 38, 39, 40] and many application domains,
e.g. machine scheduling, project scheduling, or sports league scheduling. For
testing purposes, we can rely on many of the developed techniques and best
practices, e.g. from constraint programming [41, 42, 43] and adapt them to the
specific constraints of the domain [44].

15

Chapter 3

Summary of Results
In this chapter, we present a summary and the key contributions for each of the
papers included in this thesis.

The first three papers address the test optimization process for repeated
testing in Continuous Integration environments, consisting of test case prioriti-
zation, selection, and scheduling.. The fourth paper focuses on the application
of machine learning to generate follow-up test cases for an existing test suite,
which is complementary to the previous methods, but not specifically focused
on the optimization of the testing process.

3.1 Paper A

‘Reinforcement Learning for Automatic Test Case Prioritization and Selection
in Continuous Integration’. Spieker, Helge and Gotlieb, Arnaud and Marijan,
Dusica and Mossige, Morten. In: Proceedings of the 26th ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA) (2017),
pp. 12–22. DOI: 10.1145/3092703.3092709.

Test Cases Prioritization Prioritized
Test Cases

Selection &
Scheduling

Test
Schedule Test Execution

Developer
Feedback

Evaluation
Reinforcement
Learning Policy

Figure 3.1: Testing in CI process: Retecs uses test execution results for
learning test case prioritization (solid boxes: Included in Retecs, dashed boxes:
Interfaces to the CI environment)

In this paper, we explore the usage of reinforcement learning (RL) for
prioritizing test cases in a Continuous Integration (CI) environment (see
Figure 3.1). Testing in a CI environment is characterized by its repeated
and frequent execution, which accumulates historical data and insights about the
error distribution and its characteristics in a software project. By using RL, our
method, named Retecs (Reinforced Test Case Selection), captures this error
distribution from historical test executions and learns to prioritize likely-to-fail
test cases higher.

Still, the design of a RL method requires several decisions, including the
selection of a memory representation, the design of an action space, and the
selection of a reward function. Our study evaluates different choices for these
components and compares them empirically on three datasets: one dataset of

17

https://doi.org/10.1145/3092703.3092709

3. Summary of Results

test executions from Google, and two datasets from our industrial partner ABB
Robotics Norway. The experiments show, that Retecs is capable of learning
project-specific test case prioritization strategies and improves its performance
over time. The implementation of Retecs and our datasets are available at:
https://bitbucket.org/helges/retecs and https://bitbucket.org/HelgeS/atcs-data

3.2 Paper B

‘Time-aware Test Case Execution Scheduling for Cyber-Physical Systems’.
Mossige, Morten and Gotlieb, Arnaud and Spieker, Helge and Meling, Hein
and Carlsson, Mats. In: Principles and Practice of Constraint Programming
(CP) (2017), Lecture Notes in Computer Science, Vol. 10416, pp. 387–404.
DOI: 10.1007/978-3-319-66158-2_25

When testing large-scale systems with hundreds of test cases in continuous
integration, it is crucial to minimize the round-trip time, that is, the time from
when a source code change is committed until the test results are reported back
to the developer. To this end, scheduling as many test case executions as possible
in the minimum amount of time is essential to increasing the effectiveness of
continuous integration.

In contrast to Paper C, this paper is concerned with the minimization of a
test schedule, i.e. how to assign tests such that the required time is minimized,
whereas the previous work aims to maximize the value of the assignment under
resource constraints. Both scenarios have practical applications in software
testing, depending on the actual testing setup and which constraints apply on
the environment.

More specifically, this paper introduces TC-Sched, a time-aware method for
test execution scheduling on multiple machines with constraints on accessible
resources, such as measurement devices or network equipment. The method
uses as input a test suite, a set of machines, and a set of shared resources and
produces an execution schedule. The schedule guarantees that each test will be
executed once and minimizes the round-trip time.

TC-Sched has undergone extensive experimental evaluation using generated
test suites derived from existing industrial test suites augmented with randomly-
selected values. Our results provide evidence that TC-Sched conducts effective
test execution scheduling and is suitable for deployment in continuous integration.
In particular, we show that automatic optimal scheduling of 500 test cases over
100 machines is reachable in less than 4 minutes for 96.6% of the instances.

3.3 Paper C

‘Rotational Diversity in Multi-Cycle Assignment Problems’. Spieker, Helge and
Gotlieb, Arnaud and Mossige, Morten. In: Proceedings of the Thirty-Third
AAAI Conference on Artificial Intelligence, Vol. 33 (2019), pp. 7724–7731.
DOI: 10.1609/aaai.v33i01.33017724

18

https://bitbucket.org/helges/retecs
https://bitbucket.org/HelgeS/atcs-data
https://doi.org/10.1007/978-3-319-66158-2_25
https://doi.org/10.1609/aaai.v33i01.33017724

Paper C

Cycle 1: GAP(T1,A1)

Balance
Profit vs. Rotation

Cycle 2: GAP(T2,A2)

Balance
Profit vs. Rotation

. . .

Cycle k: GAP(Tk,Ak)

Balance
Profit vs. Rotation

. . .

T1

T2

...

Tn1

A1

A2

...

Am1

T1

T2

...

Tn2

A1

A2

...

Am2

T1

T2

...

Tnk

A1

A2

...

Amk

Inner Problem

Outer Problem

Figure 3.2: Multi-Cycle Assignment Problem: At each cycle an independent
assignment problem is solved while maintaining rotational diversity over multiple
cycles. Our contribution introduces metrics and strategies to achieve frequent
rotation while maintaining high assignment quality in each cycle.

Testing of cyber-physical systems imposes additional challenges over testing
of stand-alone software. Ideally, all test cases should be run on all physical
test agents in every testing iteration, but this is often not possible in practice.
For example, the availability of test cases and test agents can not be planned
or assured in advance, but changes unforeseeable. Another challenge, that we
address in this paper, is the trade-off between having limited resources for testing
available and the desire to maximize the coverage of test cases to test agents.
Therefore, the goal is to select a subset of the test cases that maximize an
objective function, in this case the sum of test case priorities, while following
resource constraints such as the available time for test execution.

We have developed a method to achieve rotational diversity in multi-cycle,
i.e. iterative, testing processes. The problem of assigning test cases to test
agents is formulated as a general assignment problem, one of the most general
and well-studied, but nevertheless challenging problems in computer science.
Our method assigns the most highly prioritized test cases, as defined by an
external process (e.g. from Paper A), in one iteration and manages to rotate the
assignment from test cases to test agents over the course of multiple cycles. To
balance rotation and maximization of profits, i.e. assigned test case priorities,
the problem is split into an outer problem that considers long-term decisions
and an inner problem that optimizes the assignment in each individual iteration
(see Figure 3.2) Using this technique, we achieve to maintain a frequent rotation
while only reducing the quality, as measured by the priority of test cases, by a
small margin.

More technically, we introduce a metric to quantify the affinity between a
test case and an agent and propose multiple strategies to consider these affinities

19

3. Summary of Results

in the optimization process. Besides the application for test case selection and
assignment, we propose our solution for rotational diversity in a general setting
for assignment problems and show results for the multi-cycle multiple knapsack
problem, a variant of the general assignment problem with additional constraints.

The version of the paper that is printed in the thesis is an extension of
the original conference paper. In the extended version, we further investigate
methods to balance priority optimization and rotation and include an additional
application, the multi-cycle multiple subset sum problem, for the experimental
evaluation. One newly introduced approach is to limit the possible assignments
of test cases to agents artificially and thereby enforce assignments that are
overdue. In our experiments, we observe that this limitation increases the
ability to maintain rotational diversity, but comes with a trade-off in priority
optimization. Our implementation and data generators are available at:
https://github.com/HelgeS/mcap_rotational_diversity

3.4 Paper D

‘Adaptive Metamorphic Testing’. Spieker, Helge and Gotlieb, Arnaud. Re-
vision submitted to: Journal of Systems and Software (2019). Preprint:
arXiv:1910.00262

Metamorphic testing is a testing paradigm, in which a source test case is
transformed into a new follow-up test case for which the exact expected outcome
is unknown, but a relation between the source and follow-up test case is available.
By execution of the follow-up test case it can be confirmed whether the system-
under-test behaves according to the so-called metamorphic relation. If the
relation is violated, a failure in the system has been identified. Metamorphic
testing thereby addresses the oracle problem in software testing, where it is
impossible or difficult to know the exact system output for a test case. Examples
for successful applications of metamorphic testing are search engines, where it is
generally expected that additional keywords reduce the number of search results
or learning systems, where the exact reaction is unknown, but similar inputs
should reveal similar results, given an adequate definition of similarity.

Our new method, named adaptive metamorphic testing, uses contextual
bandits, a variant of reinforcement learning, to decide which metamorphic relation
to apply for a source test case. The contextual bandit receives context information
about the source test case and decides for one of multiple metamorphic relations
to generate a follow-up test case. From its execution, a feedback is formulated
and given to the bandit to update its strategy.

We have applied our method to test deep learning systems for computer
vision. Adaptive metamorphic testing showed to find the same failure rate and
distribution than exhaustive testing while requiring less test executions, which
can be costly or at least time-consuming. At the same time, it’s error discovery
is stronger than pure random testing, because it can adapt to the strengths of
the available metamorphic relations for certain test cases. Our implementation
and datasets are available at: https://github.com/HelgeS/tetraband

20

https://github.com/HelgeS/mcap_rotational_diversity
https://arxiv.org/abs/1910.00262
https://github.com/HelgeS/tetraband

Chapter 4

Discussion

This thesis investigates automatic management and optimization of software
testing in Continuous Integration (CI) environments with a focus on cyber-
physical systems. Methods for test case prioritization, test case scheduling, test
case selection and assignment, and generation of new test cases are proposed,
which utilize machine learning and constraint optimization.

Machine learning, in our context reinforcement learning and contextual
bandits, requires the availability of historical data and an external feedback
signal are available for learning. It has shown to be beneficial in scenarios where
an exact heuristic or algorithm can not be explicitly modeled without in-depth
domain knowledge and analysis, i.e. test case prioritization and the generation
of follow-up test case in metamorphic testing.

In settings with strict constraints, where a set of limited resources has to
utilized for testing, we applied constraint optimization, an exact combinatorial
optimization technique. Our applications are test case scheduling, i.e. assigning
test cases to a set of test agents while minimizing the total execution time
required, and test case selection and assignment, i.e. selecting the subset of
test cases that best make use of a given time period. Both applications have
strict constraints on satisfying and acceptable solutions, while requiring to be
repeatedly solved with different inputs due to variations in test cases and test
agents from cycle to cycle.

The thesis bridges multiple subfields in computer science and makes
contribution both to the application domain, software testing, as well as the
technical domain of constraint optimization respectively constraint programming,
and artificial intelligence in general. This is reflected in the chosen publication
venues of the included papers and the nature of the technical contributions
made, which are, e.g. in the case of rotational diversity (see Paper C), also wider
applicable than only the software testing area.

4.1 Future Work

As research is rarely complete, there are also directions for future research in this
case. While the work on test case prioritization using reinforcement learning (see
Paper A) shows promising results, there are further steps that can be taken. Our
method uses a lightweight set of historical test case metadata for prioritization.
Further work should also consider the actual changes made and the affected
components of the system-under-test. At the same time, this also increases the
complexity of the method in each CI cycle - for change analysis - and requires
source code access, while our current approach is easier to integrate in any
existing CI environment.

21

4. Discussion

For our work on test case scheduling (see Paper B) as well as test case
selection and assignment (see Paper C), a technical challenge for future work
is to introduce some of the experiences made with learning directly into the
optimization model. So far, in each CI cycle, the optimization model starts from
scratch using the test case and test agent data to create a solution. Still, in a
CI environment the actual tasks to be solved in each cycle are often similar to
previous cycles. Future work on re-using the previous results should allow for
potential speedups in future cycles. Another challenge

Regarding the usage of machine learning in metamorphic testing (see Paper D),
future work should extend beyond the selection among a set of metamorphic
relations to generate follow-up test cases to the discovery or to the approximating
of actual metamorphic relations. Currently, our setup still requires the set of
metamorphic relations to be available for application of adaptive metamorphic
testing, but, given a sufficient observation of the system behavior, machine
learning could be used to identify and learn new metamorphic relations. These
metamorphic relations can then be used for the normal metamorphic testing
process or be inspected by a domain expert whether these metamorphic relations
should hold for a system or if a faulty relation is discovered.

4.2 Conclusion

In conclusion, we have presented methods for the automation of the test suite
optimization process in Continuous Integration testing, that individually, yet
integrated with each other can make decisions for a testing schedule under
consideration of historical test information and current resource constraints. Our
methods focus on testing of cyber-physical systems and use machine learning and
constraint optimization. The results of the thesis present an effective approach
for the whole test suite optimization pipeline and can be applied in a variety
of project environments, either as a whole, or through the modular nature of
test suite optimization, in individual aspects. Especially for environments with
physical agents or dedicated requirements on the execution environments for the
test cases, test case selection and assignment as well as scheduling enable the
automatic creation of test scenarios.

22

References
[1] Sutton, R. S. and Barto, A. G. Reinforcement Learning: An Introduction.

2nd. MIT Press, 2018.
[2] Chen, T., Cheung, S., and Yiu, S. Metamorphic Testing: A New Approach

for Generating Next Test Cases. Technical Report HKUST-CS98-01. Hong
Kong: Department of Computer Science, Hong Kong University of Science
and Technology, 1998.

[3] Segura, S., Fraser, G., Sanchez, A. B., and Ruiz-Cortes, A. “A Survey on
Metamorphic Testing”. In: IEEE Transactions on Software Engineering
vol. 42, no. 9 (2016), pp. 805–824.

[4] Langford, J. and Zhang, T. “The Epoch-Greedy Algorithm for Multi-
Armed Bandits with Side Information”. In: Advances in Neural Information
Processing Systems 20 (NIPS 2007). 2007, pp. 817–824.

[5] Mossige, M. A Brief History of CI-Based Testing at ABB Robotics, Bryne.
14th Certus User Partner Workshop (UPW), Larvik, Norway, Sept. 2019.

[6] Carlsson, M. et al. SICStus Prolog User’s Manual, Release 4.5.1. RISE
SICS AB, 2019.

[7] Carlsson, M., Ottosson, G., and Carlson, B. “An Open-Ended Finite
Domain Constraint Solver”. In: Proc. of the 9th Int. Symp. on Prog.
Languages, Implementations, Logics, and Programs (PLILP ’97). 1997,
pp. 191–206.

[8] Netflix Technology Blog. Lerner — Using RL Agents for Test Case
Scheduling. en. https://netflixtechblog.com/lerner-using-rl-agents-for-test-
case-scheduling-3e0686211198. May 2019.

[9] Standards Coordinating Committee. “IEEE Standard Glossary of Software
Engineering Terminology”. In: IEEE Std 610.12-1990 (Dec. 1990), pp. 1–
84.

[10] Booch, G. Object Oriented Design: With Applications. en. Benjamin/Cum-
mings Pub., 1991.

[11] Fowler, M. and Foemmel, M. Continuous Integration. 2006.
[12] Duvall, P. M., Matyas, S., and Glover, A. Continuous Integration: Improving

Software Quality and Reducing Risk. Pearson Education, 2007.
[13] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. a, Veness, J., Bellemare,

M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen,
S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra,
D., Legg, S., and Hassabis, D. “Human-Level Control through Deep
Reinforcement Learning”. In: Nature vol. 518, no. 7540 (2015), pp. 529–533.

23

References

[14] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche,
G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M.,
Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I.,
Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., and Hassabis,
D. “Mastering the Game of Go with Deep Neural Networks and Tree
Search”. In: Nature vol. 529, no. 7587 (2016), pp. 484–489.

[15] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A.,
Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan,
K., and Hassabis, D. “A General Reinforcement Learning Algorithm That
Masters Chess, Shogi, and Go through Self-Play”. en. In: Science vol. 362,
no. 6419 (2018), pp. 1140–1144.

[16] Kober, J., Bagnell, J. A., and Peters, J. “Reinforcement Learning in
Robotics: A Survey”. en. In: The International Journal of Robotics Research
vol. 32, no. 11 (Sept. 2013), pp. 1238–1274.

[17] Kormushev, P., Calinon, S., and Caldwell, D. “Reinforcement Learning
in Robotics: Applications and Real-World Challenges”. en. In: Robotics
vol. 2, no. 3 (July 2013), pp. 122–148.

[18] Tang, L., Rosales, R., Singh, A., and Agarwal, D. “Automatic Ad Format
Selection via Contextual Bandits”. In: Proceedings of the 22nd ACM
International Conference on Conference on Information & Knowledge
Management. 2013, pp. 1587–1594.

[19] Lattimore, T. and Szepesvari, C. Bandit Algorithms. en. Vol. Revision:
8b22b8b6131c37e388d5e3b2eecf0b4ff5d7db92. https://banditalgs.com/,
2019.

[20] Van Hentenryck, P. Constraint Satisfaction in Logic Programming. MIT
Press, 1989.

[21] Rossi, F., Beek, P. V., and Walsh, T. Handbook of Constraint Programming
(Foundations of Artificial Intelligence). New York, USA: Elsevier Science
Inc., 2006.

[22] Schulte, C., Tack, G., and Lagerkvist, M. Z. Modeling and Programming
with Gecode. 2018.

[23] Yoo, S. and Harman, M. “Regression Testing Minimization, Selection and
Prioritization: A Survey”. In: Software Testing, Verification and Reliability
vol. 22, no. 2 (2012), pp. 67–120.

[24] Rothermel, G., Untch, R. H., Chu, C., and Harrold, M. J. “Prioritizing
Test Cases For Regression Testing”. In: IEEE Transactions on Software
Engineering vol. 27, no. 10 (2001), pp. 929–948.

[25] Elbaum, S., Malishevsky, A., and Rothermel, G. “Test Case Prioritization:
A Family of Empirical Studies”. In: IEEE Transactions on Software
Engineering vol. 28, no. 2 (2002), pp. 159–182.

[26] Marijan, D., Gotlieb, A., and Sen, S. “Test Case Prioritization for
Continuous Regression Testing: An Industrial Case Study”. In: Proc. of Int.
Conf. on Soft. Maintenance (ICSM’13), Industry Track. 2013, pp. 540–543.

24

References

[27] Elbaum, S., Rothermel, G., and Penix, J. “Techniques for Improving
Regression Testing in Continuous Integration Development Environments”.
In: Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering - FSE 2014. ACM, 2014, pp. 235–245.

[28] Memon, A., Zebao Gao, Bao Nguyen, Dhanda, S., Nickell, E., Siemborski,
R., and Micco, J. “Taming Google-Scale Continuous Testing”. In: 2017
IEEE/ACM 39th International Conference on Software Engineering:
Software Engineering in Practice Track (ICSE-SEIP). IEEE, May 2017,
pp. 233–242.

[29] Leong, C., Singh, A., Papadakis, M., Traon, Y. L., and Micco, J. “Assessing
Transition-Based Test Selection Algorithms at Google”. In: Proceedings
of the 41st International Conference on Software Engineering: Software
Engineering in Practice. ICSE-SEIP ’10. Montreal, Quebec, Canada: IEEE
Press, 2019, pp. 101–110.

[30] Busjaeger, B. and Xie, T. “Learning for Test Prioritization: An Industrial
Case Study”. In: Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering. ACM, 2016, pp. 975–
980.

[31] Strandberg, P. E., Sundmark, D., Afzal, W., Ostrand, T. J., and Weyuker,
E. J. “Experience Report: Automated System Level Regression Test
Prioritization Using Multiple Factors”. In: 2016 IEEE 27th International
Symposium on Software Reliability Engineering (ISSRE). IEEE, 2016,
pp. 12–23.

[32] Strandberg, P. E., Afzal, W., Ostrand, T. J., Weyuker, E. J., and Sundmark,
D. “Automated System-Level Regression Test Prioritization in a Nutshell”.
In: IEEE Software vol. 34, no. 4 (2017), pp. 30–37.

[33] Jabbarvand, R., Sadeghi, A., Bagheri, H., and Malek, S. “Energy-Aware
Test-Suite Minimization for Android Apps”. In: Proceedings of the 25th
International Symposium on Software Testing and Analysis - ISSTA 2016
(2016), pp. 425–436.

[34] Wang, R., Lu, Y., and Qu, B. “Empirical Study of the Effects of Different
Profiles on Regression Test Case Reduction”. In: IET Software vol. 9, no. 2
(2015), pp. 29–38.

[35] Felbinger, H. and Wotawa, F. “Test-Suite Reduction Does Not Necessarily
Require Executing The Program Under Test”. In: QRS-C (2016).

[36] Shi, A., Gyori, A., Mahmood, S., Zhao, P., and Marinov, D. “Evaluating
Test-Suite Reduction in Real Software Evolution”. In: Proceedings of the
27th ACM SIGSOFT International Symposium on Software Testing and
Analysis - ISSTA 2018, no. 1 (2018), pp. 84–94.

[37] Blazewicz, J., Lenstra, J. K., and Kan, A. R. “Scheduling Subject to
Resource Constraints: Classification and Complexity”. In: Discrete Applied
Mathematics vol. 5, no. 1 (1983), pp. 11–24.

25

References

[38] Morihara, I., Ibaraki, T., and Hasegawa, T. “Bin Packing and Multiproces-
sor Scheduling Problems with Side Constraint on Job Types”. In: Discrete
Applied Mathematics vol. 6 (1983), pp. 173–191.

[39] Brucker, P. and Schlie, R. “Job-Shop Scheduling with Multi-Purpose
Machines”. In: Computing vol. 45, no. 4 (1990), pp. 369–375.

[40] Hartmann, S. and Briskorn, D. “A Survey of Variants and Extensions
of the Resource-Constrained Project Scheduling Problem”. In: European
Journal of Operational Research vol. 207, no. 1 (2010), pp. 1–14.

[41] Baptiste, P., Le Pape, C., and Nuijten, W. Constraint-Based Scheduling:
Applying Constraint Programming to Scheduling Problems. 1st ed. Interna-
tional Series in Operations Research & Management Science 39. Springer
US, 2001.

[42] Beldiceanu, N. and Carlsson, M. “A New Multi-Resource Cumulatives
Constraint With Negative Heights”. In: Principles and Practice of
Constraint Prog. (CP’02). 2002, pp. 63–79.

[43] Beck, J. C., Feng, T. K., and Watson, J. P. “Combining Constraint
Programming and Local Search for Job-Shop Scheduling”. In: INFORMS
Journal on Computing vol. 23, no. 1 (2011), pp. 1–14.

[44] Hebrard, E., Huguet, M. J., Veysseire, D., Sauvan, L. B., and Cabon, B.
“Constraint Programming for Planning Test Campaigns of Communications
Satellites”. In: Constraints vol. 22, no. 1 (2017), pp. 73–89.

26

Part II

Papers

Paper A

Reinforcement Learning for
Automatic Test Case Prioritization
and Selection in Continuous
Integration

Helge Spieker, Arnaud Gotlieb, Dusica Marijan, Morten
Mossige
Published in Proceedings of the 26th ACM SIGSOFT International Symposium
on Software Testing and Analysis (ISSTA 2017), 2017, ACM, New York, NY, USA,
pp. 12–22. DOI: 10.1145/3092703.3092709. Preprint: arXiv:1811.04122v1.

I

Abstract

Testing in Continuous Integration (CI) involves test case prioritization,
selection, and execution at each cycle. Selecting the most promising test
cases to detect bugs is hard if there are uncertainties on the impact of
committed code changes or, if traceability links between code and tests
are not available. This paper introduces Retecs, a new method for
automatically learning test case selection and prioritization in CI with the
goal to minimize the round-trip time between code commits and developer
feedback on failed test cases. The Retecs method uses reinforcement
learning to select and prioritize test cases according to their duration,
previous last execution and failure history. In a constantly changing
environment, where new test cases are created and obsolete test cases are
deleted, the Retecs method learns to prioritize error-prone test cases
higher under guidance of a reward function and by observing previous
CI cycles. By applying Retecs on data extracted from three industrial
case studies, we show for the first time that reinforcement learning enables
fruitful automatic adaptive test case selection and prioritization in CI and
regression testing.

©ACM Association for Computing Machinery, 2017. The layout has been revised.

29

https://doi.org/10.1145/3092703.3092709
https://arxiv.org/abs/1811.04122v1

A. RL for Test Case Prioritization and Selection in Continuous Integration

1 Introduction

Context. Continuous Integration (CI) is a cost-effective software development
practice commonly used in industry [1, 2] where developers frequently integrate
their work. It involves several tasks, including version control, software
configuration management, automatic build and regression testing of new software
release candidates. Automatic regression testing is a crucial step which aims at
detecting defects as early as possible in the process by selecting and executing
available and relevant test cases. CI is seen as an essential method for improving
software quality while keeping verification costs at a low level [3, 4].

Unlike usual testing methods, testing in CI requires tight control over
the selection and prioritization of the most promising test cases. By most
promising, we mean test cases that are prone to detect failures early in the
process. Admittedly, selecting test cases which execute the most recent code
changes is a good strategy in CI, such as, for example in coverage-based test case
prioritization [5]. However, traceability links between code and test cases are
not always available or easily accessible when test cases correspond to system
tests. In system testing for example, test cases are designed for testing the
overall system instead of simple units of code and instrumenting the system
for code coverage monitoring is not easy. In that case, test case selection and
prioritization has to be handled differently and using historical data about
failures and successes of test cases has been proposed as an alternative [6]. Based
on the hypothesis that test cases having failed in the past are more likely to fail
in the future, history-based test case prioritization schedules these test cases first
in new CI cycles [7]. Testing in CI also means to control the time required to
execute a complete cycle. As the durations of test cases strongly vary, not all
tests can be executed and test case selection is required.

Despite algorithms have been proposed recently [7, 8], we argue that these two
aspects of CI testing, namely test case selection and history-based prioritization,
can hardly be solved by using only non-adaptive methods. First, the time
allocated to test case selection and prioritization in CI is limited as each step
of the process is given a contract of time. So, time-effective methods shall be
privileged over costly and complex prioritization algorithms. Second, history-
based prioritization is not well adapted to changes in the execution environment.
More precisely, it is frequent to see some test cases being removed from one cycle
to another because they test an obsolete feature of the system. At the same
time, new test cases are introduced to test new or changed features. Additionally,
some test cases are more crucial in certain periods of time, because they test
features on which customers focus the most, and then they loose their prevalence
because the testing focus has changed. In brief, non-adaptive methods may not
be able to spot changes in the importance of some test cases over others because
they apply systematic prioritization algorithms.
Reinforcement Learning. In order to tame these problems, we propose a
new lightweight test case selection and prioritization approach in CI based on
reinforcement learning and neural networks. Reinforcement learning is well-
tuned to design an adaptive method capable to learn from its experience of

30

Introduction

the execution environment. By adaptive, it is meant, that our method can
progressively improve its efficiency from observations of the effects its actions
have. By using a neural network which works on both the selected test cases and
the order in which they are executed, the method tends to select and prioritize
test cases which have been successfully used to detect faults in previous CI cycles,
and to order them so that the most promising ones are executed first.

Unlike other prioritization algorithms, our method is able to adapt to
situations where test cases are added to or deleted from a general repository. It
can also adapt to situations where the testing priorities change because of different
focus or execution platforms, indicated by changing failure indications. Finally,
as the method is designed to run in a CI cycle, the time it requires is negligible,
because it does not need to perform computationally intensive operations during
prioritization. It does not mine in detail code-based repositories or change-logs
history to compute a new test case schedule. Instead it facilitates knowledge
about test cases which have been the most capable to detect failures in a small
sequence of previous CI cycles. This knowledge to make decisions is updated
only after tests are executed from feedback provided by a reward function, the
only component in the method initially embedding domain knowledge.
The contributions of this paper are threefold:

1. This paper shows that history-based test case prioritization and selection
can be approached as a reinforcement learning problem. By modeling the
problem with notions such as states, actions, agents, policy, and reward
functions, we demonstrate, as a first contribution, that RL is suitable to
automatically prioritize and select test cases;

2. Implementing an online RL method, without any previous training phase,
into a Continuous Integration process is shown to be effective to learn how
to prioritize test cases. According to our knowledge, this is the first time
that RL is applied to test case prioritization and compared with other
simple deterministic and random approaches. Comparing two distinct
representations (i.e., tableau and neural networks) and three distinct
reward functions, our experimental results show that, without any prior
knowledge and without any model of the environment, the RL approach
is able to learn how to prioritize test cases better than other approaches.
Remarkably, the number of cycles required to improve on other methods
corresponds to less than 2-months of data, if there is only one CI cycle per
day;

3. Our experimental results have been computed on industrial data gathered
over one year of Continuous Integration. By applying our RL method on
this data, we actually show that the method is deployable in industrial
settings. This is the third contribution of this paper.

Paper Outline. The rest of the paper is organized as follows: Section 2
provides notations and definitions. It also includes a formalization of the
problem addressed in our work. Section 3 presents our Retecs approach

31

A. RL for Test Case Prioritization and Selection in Continuous Integration

for test case prioritization and selection based on reinforcement learning. It also
introduces basic concepts such as artificial neural network, agent, policy and
reward functions. Section 4 presents our experimental evaluation of the Retecs
on industrial data sets, while Section 5 discusses related work. Finally, Section 6
summarizes and concludes the paper.

2 Formal Definitions

This section introduces necessary notations used in the rest of the paper and
presents the addressed problem in a formal way.

2.1 Notations and Definitions

Let Ti be a set of test cases {t1, t2, . . . , tN} at a CI cycle i. Note that this set
can evolve from one cycle to another. Some of these test cases are selected and
ordered for execution in a test schedule called T Si (T Si ⊆ Ti). For evaluation
purposes, we define further T Stotali as being the ordered sequence of all test
cases (T Stotali = Ti) as if all test cases are scheduled for execution regardless
of any time limit. Note that Ti is an unordered set, while T Si and T Stotali are
ordered sequences. Following up on this idea, we define a ranking function over
the test cases: rank : T Si → N where rank(t) is the position of t within T Si.

In T Si, each test case t has a verdict t.verdicti and a duration t.durationi.
Note that these values are only available after executing the test case and that
they depend on the cycle in which the test case has been executed. For the sake
of simplicity, the verdict is either 1 if the test case has passed, or 0 if it has failed
or has not been executed in cycle i, i.e. it is not included in T Si. The subset
of all failed test cases in T Si is noted T Sfaili = {t ∈ T Si s.t. t.verdicti = 0}.
The failure of an executed test case can be due to one or several actual faults
in the system under test, and conversely a single fault can be responsible of
multiple failed test cases. For the remainder of this paper, we will focus only on
failed test cases (and not actual faults of the system) as the link between actual
faults and executed test cases is not explicit in the available data of our context.
Whereas t.durationi is the actual duration and only available after executing
the test case, t.duration is a simple over-approximation of previous durations
and can be used for planning purposes.

Finally, we define qi(t) as a performance estimation of a test case in the
given cycle i. By performance, we mean an estimate of its efficiency to detect
failures. The performance Qi of a test suite {t1, . . . , tn} can be estimated with
any cumulative function (e.g., sum, max, average, etc.) over qi(t1), . . . qi(tn),
e.g., Qi(T Si) = 1

|T Si|
∑
t∈T Si

q(t).

2.2 Problem Formulation

The goal of any test case prioritization algorithm is to find an optimal ordered
sequence of test cases that reveal failures as early as possible in the regression
testing process. Formally speaking, following and adapting the notations

32

The RETECS Method

proposed by Rothermel et al. in [9]: Test Case Prioritization Problem (TCP)
Let T Si be a test suite, and PT be the set of all possible permutations of T Si,
let Qi be the performance, then TCP aims at finding T S ′i a permutation of T Si,
such that Qi(T S ′i) is maximized. Said otherwise, TCP aims at finding T S ′i
such that ∀ T Si ∈ PT : Qi(T S ′i) ≥ Qi(T Si) . Although it is fundamental, this
problem formulation does not capture the notion of a time limit for executing
the test suite. Time-limited Test Case Prioritization extends the TCP problem
by limiting the available time for execution. As a consequence, not all the test
cases may be executed when there is a time-contract. Note that other resources
(than time) can constrain the test case selection process, too. However, the
formulation given below can be adapted without any loss of generality.

Time-limited Test Case Prioritization Problem (TTCP)
Let M be the maximum time available for test suite execution, then TTCP aims
at finding a test suite T Si, such thatQi(T Si) is maximized and the total duration
of execution of T Si is less than M . Said otherwise, TTCP aims at finding T Si
such that ∀ T S ′i ∈ PT : Qi(T Si) ≥ Qi(T S ′i) ∧

∑
tk∈T S′

i
tk.duration ≤

M ∧
∑
tk∈T Si

tk.duration ≤M .
Still the problem formulation given above does not take into account the

history of test suite execution. In case the links between code changes and
test cases are not available as discussed in the introduction, history-based test
case prioritization can be used. The final problem formulation given below
corresponds to the problem addressed in this paper and for which a solution
based on reinforcement learning is proposed. In a CI process, TTCP has to
be solved in every cycle, but under the additional availability of historical
information as a basis for test case prioritization. Adaptive Test Case Selection
Problem (ATCS)
Let T S1, . . . , T Si−1 be a sequence of previously executed test suites, then
the Adaptive Test Case Selection Problem aims at finding T Si, so Qi(T Si) is
maximized and

∑
t∈T Si

t.duration ≤M .
We see that ATCS is an optimization problem which gathers the idea of

time-constrained test case prioritization, selection and performance evaluation,
without requesting more information than previous test execution results in CI.

3 The RETECS Method

This section introduces our approach to the ATCS problem using reinforcement
learning (RL), called Reinforced Test Case Selection (Retecs). It starts by
describing how RL is applied to test case prioritization and selection (subsec-
tion 3.1), then discusses test case scheduling in one CI cycle (subsection 3.2).
Finally, integration of the method within a CI process is presented (subsec-
tion 3.3).

3.1 Reinforcement Learning for Test Case Prioritization

In this section, we describe the main elements of reinforcement learning in the
context of test case prioritization and selection. If necessary, a more in-depth

33

A. RL for Test Case Prioritization and Selection in Continuous Integration

Agent

Environment:

CI Cycle

Actions:

Prioritized

Test Cases
TS

i

Ti

reward
ri

ri+1

Ti+1

States:

Test Suite

Figure A.1: Interaction of Agent and Environment (adapted from [10, Fig 3.1])

introduction can be found in [10]. We apply RL as a model-free and online
learning method for the ATCS problem. Each test case is prioritized individually
and after all test cases have been prioritized, a schedule is created from the most
important test cases, and afterwards executed and evaluated.

Model-free means the method has no initial concept of the environment’s
dynamics and how its actions affect it. This is appropriate for test case
prioritization and selection, as there is no strict model behind the existence of
failures within the software system and their detection.

Online learning describes a method constantly learning during its runtime.
This is also appropriate for software testing, where indicators for failing test
cases can change over time according to the focus of development or variations in
the test suite. Therefore it is necessary to continuously adapt the prioritization
method for test cases.

In RL, an agent interacts with its environment by perceiving its state and
selecting an appropriate action, either from a learned policy or by random
exploration of possible actions. As a result, the agent receives feedback in terms
of rewards, which rate the performance of its previous action.

Figure A.1 illustrates the links between RL and test case prioritization.
A state represents a single test case’s metadata, consisting of the test case’s
approximated duration, the time it was last executed and previous test execution
results. As an action the test case’s priority for the current CI cycle is returned.
After all test cases in a test suite are prioritized, the prioritized test suite is
scheduled, including a selection of the most important test cases, and submitted
for execution. With the test execution results, i.e., the test verdicts, a reward is
calculated and fed back to the agent. From this reward, the agent adapts its
experience and policy for future actions. In case of positive rewards previous
behavior is encouraged, i.e. reinforced, while in case of negative rewards it is
discouraged.

Test verdicts of previous executions have shown to be useful to reveal future
failures [6]. This raises the question how long the history of test verdicts should
be for a reliable indication. In general, a long history provides more information
and allows better knowledge of the failure distribution of the system under test,
but it also requires processing more data which might have become irrelevant
with previous upgrades of the system as the previously error-prone feature got

34

The RETECS Method

more stable. To consider this, the agent has to learn how to time-weight previous
test verdicts, which adds further complexity to the learning process. How the
history length affects the performance of our method, is experimentally evaluated
in Section 4.2.2.

Of further importance for RL applications are the agent’s policy, i.e. the way
it decides on actions, the memory representation, i.e. how it stores its experience
and policy, and the reward function to provide feedback for adaptation and
policy improvement.

In the following, we will discuss these components and their relevance for
Retecs.

3.1.1 Reward Functions

Within the ATCS problem, a good test schedule is defined by the goals of test
case selection and prioritization. It contains those test cases which lead to
detection of failures and executes them early to minimize feedback time. The
reward function should reflect these goals and thereby domain knowledge to
steer the agent’s behavior [11]. Referring to the definition of ATCS, the reward
function implements Qi and evaluates the performance of a test schedule.

Ideally, feedback should be based on common metrics used in test case
prioritization and selection, e.g. NAPFD (presented in subsection 4.1). However,
these metrics require knowledge about the total number of faults in the system
under test or full information on test case verdicts, even for non-executed test
cases. In a CI setting, test case verdicts exist only for executed test cases and
information about missed failures is not available. It is impossible to teach the
RL agent about test cases which should have been included, but only to reinforce
actions having shown positive effects. Therefore, in Retecs, rewards are either
zero or positive, because we cannot automatically detect negative behavior.

In order to teach the agent about both the goal of a task and the way to
approach this goal the reward, two types of reward functions can be distinguished.
Either a single reward value is given for the whole test schedule, or, more
specifically, one reward value per individual test case. The former rewards the
decisions on all test cases as a group, but the agent does not receive feedback how
helpful each particular test case was to detect failures. The latter resolves this
issue by providing more specific feedback, but risks to neglect the prioritization
strategy of different priorities for different test cases for the complete schedule
as a whole.

Throughout the presentation and evaluation of this paper, we will consider
three reward functions.

Definition 3.1. Failure Count Reward

reward faili (t) = |T Sfaili | (∀ t ∈ Ti) (A.1)

In the first reward function (A.1) all test cases, both scheduled and
unscheduled, receive the number of failed test cases in the schedule as a reward.
It is a basic, but intuitive reward function directly rewarding the RL agent on

35

A. RL for Test Case Prioritization and Selection in Continuous Integration

the goal of maximizing the number of failed test cases. The reward function
acknowledges the prioritized test suite in total, including positive feedback on
low priorities for test cases regarded as unimportant. This risks encouraging low
priorities for test cases which would have failed if executed, and could encourage
undesired behavior, but at the same time it strengthens the influence all priorities
in the test suite have.

Definition 3.2. Test Case Failure Reward

reward tcfaili (t) =
{

1− t.verdicti if t ∈ T Si
0 otherwise

(A.2)

The second reward function (A.2) returns the test case’s verdict as each test
case’s individual reward. Scheduling failing test cases is intended and therefore
reinforced. If a test case passed, no specific reward is given as including it neither
improved nor reduced the schedule’s quality according to available information.
Still, the order of test cases is not explicitly included in the reward. It is
implicitly included by encouraging the agent to focus on failing test cases and
prioritizing them higher. For the proposed scheduling method (subsection 3.2)
this automatically leads to an earlier execution.

Definition 3.3. Time-ranked Reward

reward timei (t) = |T Sfaili | − t.verdicti ×
∑

tk∈T Sfail
i
∧

rank(t)<rank(tk)

1 (A.3)

The third reward function (A.3) explicitly includes the order of test cases
and rewards each test case based on its rank in the test schedule and whether
it failed. As a good schedule executes failing test cases early, every passed test
case reduces the schedule’s quality if it precedes a failing test case. Each test
cases is rewarded by the total number of failed test cases, for failed test cases it
is the same as reward function (A.1). For passed test cases, the reward is further
decreased by the number of failed test cases ranked after the passed test case to
penalize scheduling passing test cases early.

3.1.2 Action Selection: Prioritizing Test Cases

Action selection describes how the RL agent processes a test case and decides
on a priority for it by using the policy. The policy is a function from the set of
states, i.e., test cases in our context, to the set of actions, i.e., how important
each test case is for the current schedule, and describes how the agent interacts
with its execution environment. The policy function is an approximation of the
optimal policy. In the beginning it is a loose approximation, but over time and
by gathering experience it adapts towards an optimal policy.

The agent selects those actions from the policy which were most rewarding
before. It relies on its learned experience on good actions for the current state.
Because the agent initially has no concept of its actions’ effects, it explores

36

The RETECS Method

the environment by choosing random actions and observing received rewards
on these actions. How often random actions are selected instead of consulting
the policy, is controlled by the exploration rate, a parameter which usually
decreases over time. In the beginning of the process, a high exploration rate
encourages experimenting, whereas at a later time exploration is reduced and
the agent more strongly relies on its learned policy. Still, exploration is not
disabled, because the agent interacts in a dynamic environment, where the effects
of certain actions change and where it is necessary to continuously adapt the
policy. Action selection and the effect of exploration are also influenced by
non-stationary rewards, meaning that the same action for the same test case
does not always yield the same reward. Test cases which are likely to fail, based
on previous experiences, do not fail when the software is bug-free, although
their failure would be expected. The existence of non-stationary rewards has
motivated our selection of an online-learning approach, which enables continuous
adaptation and should tolerate their occurence.

3.1.3 Memory Representation

As noted above, the policy is an approximated function from a state (a test case)
to an action (a priority). There exist a wide variety of function approximators
in literature, but for our context we focus on two main approximators.

The first function approximator is the tableau representation [10]. It consists
of two tables to track seen states and selected actions. In one table it is counted
how often each distinct action was chosen per state. The other table stores
the average received reward for these actions. The policy is then to choose
that action with highest expected reward for the current state, which can be
directly read from the table. When receiving rewards, cells for each rewarded
combination of states and actions are updated by increasing the counter and
calculating the running average of received rewards.

As an exploration method to select random actions, ε-greedy exploration is
used. With probability (1− ε) the most promising action according to the policy
is selected, otherwise a random action is selected for exploration.

Albeit a straightforward representation, the tableau also restricts the agent.
States and actions have to be discrete sets of limited size as each state/action pair
is stored separately. Furthermore, with many possible states and actions, the
policy approximation takes longer to converge towards an optimal policy as more
experiences are necessary for the training. However, for the presented problem
and its number of possible states a tableau is still applicable and considered for
evaluation.

Overcoming the limitations of the tableau, artificial neural networks (ANN)
are commonly used function approximators [12]. ANNs can approximate
functions with continuous states and actions and are easier to scale to larger
state spaces. The downside of using ANNs are more complex configuration and
higher training efforts than for the tableau. In the context of Retecs, an ANN
receives a state as input to the network and outputs a single continuous action,
which directly resembles the test case’s priority.

37

A. RL for Test Case Prioritization and Selection in Continuous Integration

Test Cases Prioritization Prioritized
Test Cases

Selection &
Scheduling

Test
Schedule Test Execution

Developer
Feedback

Evaluation
Reinforcement
Learning Policy

Figure A.2: Testing in CI process: RETECS uses test execution results for
learning test case prioritization (solid boxes: Included in RETECS, dashed
boxes: Interfaces to the CI environment)

Exploration is different when using ANNs, too. Because a continuous action
is used, ε-greedy exploration is not possible. Instead, exploration is achieved
by adding a random value drawn from a Gaussian distribution to the policy’s
suggested action. The variance of the distribution is given by the exploration
rate and a higher rate allows for higher deviations from the policy’s actions. The
lower the exploration rate is, the closer the action is to the learned policy.

Whereas the agent with tableau representation processes each experience
and reward once, an ANN-based agent can be trained differently. Previously
encountered experiences are stored and re-visited during training phase to achieve
repeated learning impulses, which is called experience replay [13]. When rewards
are received, each experience, consisting of a test case, action and reward, is
stored in a separate replay memory with limited capacity. If the replay memory
capacity is reached, oldest experiences get replaced first. During training, a batch
of experiences is randomly sampled from this memory and used for training the
ANN via backpropagation with stochastic gradient descent [14].

3.2 Scheduling

Test cases are scheduled under consideration of their priority, their duration
and a time limit. The scheduling method is a modular aspect within Retecs
and can be selected depending on the environment, e.g. considering execution
constraints or scheduling onto multiple test agents. As an only requirement
it has to maximize the total priority within the schedule. For example, in an
environment with only a single test agent and no further constraints, test cases
can be selected by descending priority (ties broken randomly) until the time
limit is reached.

3.3 Integration within a CI Process

In a typical CI process (as shown in Figure A.2), a set of test cases is first
prioritized and based on the prioritization a subset of test cases is selected and
scheduled onto the testing system(s) for execution.

The Retecs method fits into this scheme by providing the Prioritization
and Selection & Scheduling steps. It extends the CI process by requiring an

38

Experimental Evaluation

additional feedback channel to receive test results after each cycle, which is the
same or part of the information also provided as developer feedback.

4 Experimental Evaluation

In this section we present an experimental evaluation of the Retecs method.
During the first part, an overview of evaluation metrics (subsection 4.1) is given
before the experimental setup is introduced (subsection 4.2). In subsection 4.3
we present and discuss the experimental results. A discussion of possible threats
(subsection 4.4) and extensions (subsection 4.5) to our work close the evaluation.

Within the evaluation of the Retecs method we investigate if it can be
successfully applied towards the ATCS problem. Initially, before evaluating the
method on our research questions, we explore how different parameter choices
affect the performance of our method.

RQ1 Is the Retecs method effective to prioritize and select test cases? We
evaluate combinations of memory representations and reward functions on
three industrial data sets.

RQ2 Can the lightweight and model-free Retecs method prioritize test cases
comparable to deterministic, domain-specific methods? We compare
Retecs against three comparison methods, one random prioritization
strategy and to basic deterministic methods.

4.1 Evaluation Metric

In order to compare the performance of different methods, evaluation metrics
are required as a common performance indicator. Following, we introduce
Normalized Average Percentage of Faults Detected as the applied evaluation
metric.

Definition 4.1. Normalized APFD

NAPFD(T Si) = p−

∑
t∈T Sfail

i

rank(t)

|T Sfaili | × |T Si|
+ p

2× |T Si|

with p = |T Sfaili |
|T Stotal,faili |

Average Percentage of Faults Detected (APFD) was introduced in [15] to
measure the effectiveness of test case prioritization techniques. It measures
the quality via the ranks of failure-detecting test cases in the test execution
order. As it assumes all detectable faults get detected, APFD is designed for

39

A. RL for Test Case Prioritization and Selection in Continuous Integration

test case prioritization tasks without selecting a subset of test cases. Normalized
APFD (NAPFD) [16] is an extension of APFD to include the ratio between
detected and detectable failures within the test suite, and is thereby suited for
test case selection tasks when not all test cases are executed and failures can be
undetected. If all faults are detected (p = 1), NAPFD is equal to the original
APFD formulation.

4.2 Experimental Setup

Two RL agents are evaluated in the experiments. First uses a tableau
representation of discrete states and a fixed number of actions, named Tableau-
based agent. And a second, Network-based agent uses an artificial neural network
as memory representation for continuous states and a continuous action. The
reward function of each agent is not fixed, but varied throughout the experiments.

Test cases are scheduled on a single test agent in descending order of priority
until the time limit is reached.

To evaluate the efficiency of the Retecs method, we compare it to three basic
test case prioritization methods. First is random test case prioritization as a
baseline method, referred to as Random. The other two methods are deterministic.
As a second method, named Sorting, test cases are sorted by their recent verdicts
with recently failed test cases having higher priority. For the third comparison
method, labeled as Weighting, the priority is calculated by a sum of the test
case’s features as they are used as an input to the RL agent. Weighting considers
the same information as Retecs and corresponds to a weighted sum with equal
weights and is thereby a naive version of Retecs without adaptation. Although
the three comparison methods are basic approaches to test case prioritization,
they utilize the same information as provided to our method, and are likely to
be encountered in industrial environments.

Due to the online learning properties and the dependence on previous test suite
results, evaluation is done by comparing the NAPFD metrics for all subsequent
CI cycles of a data set over time. To account for the influence of randomness
within the experimental evaluation, all experiments are repeated 30 times and
reported results show the mean, if not stated otherwise.

Retecs1 is implemented in Python [17] using scikit-learn’s implementation
of artificial neural networks [18].

4.2.1 Industrial Data Sets

To determine real-world applicability, industrial data sets from ABB Robotics
Norway2, Paint Control and IOF/ROL, for testing complex industrial robots,
and Google Shared Dataset of Test Suite Results (GSDTSR) [19] are used.3
These data sets consist of historical information about test executions and their
verdicts and each contain data for over 300 CI cycles.

1Implementation available at https://bitbucket.org/helges/retecs
2Website: http://new.abb.com/products/robotics
3Data Sets available at https://bitbucket.org/helges/atcs-data

40

https://bitbucket.org/helges/retecs
http://new.abb.com/products/robotics
https://bitbucket.org/helges/atcs-data

Experimental Evaluation

Table A.1: Industrial Data Sets Overview: All columns show the total amount
of data in the data set

Data Set Test Cases CI Cycles Verdicts Failed
Paint Control 114 312 25,594 19.36%
IOF/ROL 2,086 320 30,319 28.43%
GSDTSR 5,555 336 1,260,617 0.25%

Table A.2: Parameter Overview

RL Agent Parameter Value
All CI cycle’s time limit M 50%× Ti.duration

History Length 4
Tableau Number of Actions 25

Exploration Rate ε 0.2
Network Hidden Nodes 12

Replay Memory 10000
Replay Batch Size 1000

Table A.1 gives an overview of the data sets’ structure. Both ABB data sets
are split into daily intervals, whereas GSDTSR is split into hourly intervals as
it originally provides log data of 16 days, which is too short for our evaluation.
Still, the average test suite size per CI cycle in GSDTSR exceeds that in the
ABB data sets while having fewer failed test executions. For applying Retecs
constant durations between each CI cycle are not required.

For the CI cycle’s time limit, which is not present in the data sets, a fixed
percentage of 50% of the required time is used. A relative time limit allows
better comparison of results between data sets and keeps the difficulty at each CI
cycle on a comparable level. How this percentage affects the results is evaluated
in subsubsection 4.3.3.

4.2.2 Parameter Selection

A couple of parameters allow adjusting the method towards specific environments.
For the experimental evaluation the same set of parameters is used in all
experiments, if not stated otherwise. These parameters are based on values from
literature and experimental exploration.

Table A.2 gives an overview of the chosen parameters. The number of actions
for the Tableau-based agent is set to 25. Preliminary tests showed a larger
number of actions did not substantially increase the performance. Similar tests
were conducted for the ANN’s size, including variations on the number of layers
and hidden nodes, but a network larger than a single layer with 12 nodes did
not significantly improve performance.

41

A. RL for Test Case Prioritization and Selection in Continuous Integration

2 3 4 5 6 7 8 9 10 15 25 50
History Length

60

70

80

90

100

%
of

be
st

re
su
lt

Network
Tableau

Figure A.3: Relative performance of different history lengths. A longer history
can reduce the performance due to more complex information. (Data set: ABB
Paint Control)

The effect of different history lengths is evaluated experimentally on the Paint
Control data set. As Figure A.3 shows, does a longer history not necessarily
correspond to better performance. From an application perspective we interpret
the most recent results to also be the most relevant results. Many historical
failures indicate a relevant test case better than many passes, but individual
consideration of each of these results on their own is unlikely to lead to better
conclusions of future verdicts. From a technical perspective, this is supported
by the fact, that a longer history increases the state space of possible test case
representations. A larger state space is in both memory representations related
to a higher complexity and requires generally more data to adapt, because the
agent has to learn to handle earlier execution results differently than more recent
ones, for example by weighting or aggregating them.

4.3 Results

4.3.1 RQ1: Learning Process & Effectiveness

Figure A.4 shows the performance of Tableau- and Network-based agents with
different reward functions on three industrial data sets. Each column shows
results for one data set, each row for a particular reward function.

It is visible that the combination of memory representation and reward
function strongly influences the performance. In some cases it does not support
the learning process and the performance stays at the initial level or even declines.
Some combinations enable the agent to learn which test cases to prioritize higher
or lower and to create meaningful test schedules.

Performance on all data sets is best for the Network-based agent with the
Test Case Failure reward function. It benefits from the specific feedback for each
test case and learns which test cases are likely to fail. Because the Network-based
agent prioritizes test cases with continuous actions, it adapts more easily than
the Tableau-based agent, where only specific actions are rewarded and rewards
for one action do not influence close other actions.

42

Experimental Evaluation

0.0

0.2

0.4

0.6

0.8

1.0

N
A
P
FD

ABB Paint Control

Network Tableau

ABB IOF/ROL
(a) Failure Count Reward

GSDTSR

0.0

0.2

0.4

0.6

0.8

1.0

N
A
P
FD

(b) Test Case Failure Reward

60 120 180 240 300
CI Cycle

0.0

0.2

0.4

0.6

0.8

1.0

N
A
P
FD

60 120 180 240 300
CI Cycle

(c) Time-ranked Reward

0 60 120 180 240 300
CI Cycle

Figure A.4: Comparison of reward functions and memory representations: A
Network-based agent with Test Case Failure reward delivers best performance
on all three data sets (Black lines indicate trend over time)

In all results a similar pattern should be visible. Initially, the agent has no
concept of the environment and cannot identify failing test cases, leading to a
poor performance. After a few cycles it received enough feedback by the reward
function to make better choices and successively improves. However, this is
not true for all combinations of memory representation and reward function.
One example is the combination of Network-based agent and Test Case Failure
reward. On Paint Control, the performance at early CI cycles is superior to the
Tableau-based agent, but it steadily declines due to misleading feedback from
the reward function.

One general observation are performance fluctuations over time. These
fluctuations are correlated to noise in the industrial data sets, where failures in
the system occur for different reasons and are hard to predict. For example, in the
Paint Control data set between 200 and 250 cycles a performance drop is visible.
For these cycles a larger number of test cases were repeatedly added to the test
suite manually. A large part of these test cases failed, which put additional
difficulty on the task. However, as the test suite was manually adjusted, from
a practical perspective it is arguable whether a fully automated prioritization
technique is feasible during these cycles.

In GSDTSR only few failed test cases occur in comparison to the high number
of successful executions. This makes it harder for the learning agent to discover
a feasible prioritization strategy. Nevertheless, as the results show, it is possible

43

A. RL for Test Case Prioritization and Selection in Continuous Integration

for the Network-based agent to create effective schedules in a high number of CI
cycles, albeit with occasional performance drops.

Regarding RQ1, we conclude that it is possible to apply Retecs on the
ATCS problem. In particular, the combination of memory representation and
reward function strongly influences the performance of the agent. We found both
Network-based agent and Test Case Failure Reward, as well as Tableau-based
agent with Time-ranked Reward, to be suitable combinations, with the former
delivering an overall better performance. The Failure Count Reward function
does not support the learning processes of the two agents. Providing only a
single reward value without further distinction is not helping the agents towards
an effective prioritization strategy. It is better to reward each test case’s priority
individually according to its contribution to the previous schedule.

4.3.2 RQ2: Comparison to Other Methods

Where the experiments on RQ1 focus on the performances of different component
combinations, is the focus of RQ2 towards comparing the best-performing
Network-based RL agent (with Test Case Failure reward) with other test case
prioritization methods. Figure A.5 shows the results of the comparison against
the three methods on each of the three data sets. A comparison is made for
every 30 CI cycles on the difference of the average NAPFD values of each
cycle. Positive differences show better performance by the comparison method,
a negative difference shows better performance by Retecs.

During early CI cycles, the deterministic comparison methods show mostly
better performance. This corresponds to the initial exploration phase, where
Retecs adapts to its environment. After approximately 60 CI cycles, for Paint
Control, it is able to prioritize with similar or better performance than the
comparison methods. Similar results are visible on the other two data sets, with
a longer adaptation phase but less performance differences on IOF/ROL and an
early comparable performance on GSDTSR.

For IOF/ROL, where the previous evaluation (see Figure A.4) showed lower
performance compared to Paint Control, also the comparison methods are not
able to correctly prioritize failing test cases higher, as the small performance gap
indicates.

For GSDTSR, Retecs is performing overall comparable with an NAPFD
difference up to 0.2. Due to the few failures within the data set, the exploration
phase does not impact the performance in the early cycles as strongly as for the
other two data sets. Also, it appears as if the indicators for failing test cases
are not as correlated to the previous test execution results as they were in the
other data sets, which is visible from the comparatively low performance of the
deterministic methods.

In summary, the results for RQ2 show, that Retecs can, starting from a
model-free memory without initial knowledge about test case prioritization, in
around 60 cycles, which corresponds to two month for daily intervals, learn
to effectively prioritize test cases. Its performance compares to that of basic
deterministic test case prioritization methods. For CI, this means that Retecs

44

Experimental Evaluation

60 120 180 240 300
CI Cycle

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

N
A
P
FD

D
iff
er
en

ce

ABB Paint Control

Sorting
Weighting
Random

60 120 180 240 300
CI Cycle

ABB IOF/ROL

60 120 180 240 300
CI Cycle

Google GSDTSR

Figure A.5: Performance difference between network-based agent and comparison
methods: After an initial exploration phase RETECS adapts to competitive
performance. Each group of bars compares 30 CI cycles.

is a promising method for test case prioritization which adapts to environment
specific indication of system failures.

4.3.3 Internal Evaluation: Schedule Time Influence

In the experimental setup, the time limit for each CI cycle’s reduced test schedule
is set to 50% of the execution time of the overall test suite Ti. To see how this
choice influences the results and how it affects the learning process, an additional
experiment is conducted with varying scheduling time ratios.

Figure A.6 shows the results on the Paint Control data set. The NAPFD
result is averaged over all CI cycles, which explains the overall better performance
by the comparison methods due to an initial learning period. As it is expected,
performance decreases with lower time limits for all methods. However, for RL
agents a decreased scheduling time directly decreases available information for
learning as fewer test cases can be executed and fewer actions can meaningfully
be rewarded, resulting in a slower learning process.

Nevertheless, the decrease in performance is not directly proportional to
the decrease in scheduling time, a sign that Retecs learns at some point how
to prioritize test cases even though the amount of data in previous cycles was
limited.

4.4 Threats to Validity

Internal. The first threat to internal validity is the influence of random decisions
on the results. To mitigate the threat, we repeated our experiments 30 times
and report averaged results.

Another threat is related to the existence of faults within our implementation.
We approached this threat by applying established components, such as scikit-
learn, within our software where appropriate. Furthermore, our implementation
is available online for inspection and reproduction of experiments.

Finally, many machine learning algorithms are sensible to their parameters
and a feasible parameter set for one problem environment might not work for as

45

A. RL for Test Case Prioritization and Selection in Continuous Integration

10 20 30 40 50 60 70 80 90

Scheduling Time Ratio (in % of Ti.duration)

40

60

80

100
%

of
be

st
re
su
lt

Network
Tableau
Sorting

Weighting
Random

Figure A.6: Relative performance under different time limits. Shorter scheduling
times reduce the information for rewards and delay learning. The performance
differences for Network and Tableau also arise from the initial exploration phase,
as shown in Figure A.5 (Data set: ABB Paint Control).

well for different one. During our experiments, the initially selected parameters
were not changed for different problems to allow better comparison. In a real-
world setting, those parameters can be adjusted to tune the approach for the
specific environment.
External. Our evaluation is based on data from three industrial data sets,
which is a limitation regarding the wide variety of CI environments and failure
distributions. One of these data sets is publicly available, but according to our
knowledge it has only been used in one publication and a different setting [20].
From what we have analyzed, there are no further public data sets available
which include the required data, especially test verdicts over time. This threat
has to be addressed by additional experiments in different settings once further
data is accessible. To improve the data availability, we publish the other two
data sets used in our experiments.
Construct. A threats to construct validity is the assumption, that each failed
test cases indicates a different failure in the system under test. This is not always
true. One test case can fail due to multiple failures in the system and one failure
can lead to multiple failing test cases. Based on the abstraction level of our
method, this information is not easily available. Nevertheless, our approach tries
to find all failing test cases and thereby indirectly also all detectable failures.
To address the threat, we propose to include failure causes as input features in
future work.

Further regarding the input features, our proposed method uses only few test
case metadata to prioritize test cases and to reason about their importance for

46

Related Work

the test schedule. In practical environments, more information about test cases
or the system under test is available and should be utilized.

We compared our method to baseline approaches, but we have not considered
additional techniques. Although further methods exist in literature, they do not
report results on comparable data sets or would need adjustment for our CI
setting.

4.5 Extensions

The presented results give perspectives to extensions from two angles. First
perspective is on the technical RL approach. Through a pre-training phase the
agent can internalize test case prioritization knowledge before actually prioritizing
test cases and thereby improve the initial performance. This can be approached
by imitation of other methods [21], e.g. deterministic methods with desirable
behavior, or by using historical data before it is introduced in the CI process
[22]. The second perspective focuses on the domain-specific approach of test case
prioritization and selection. Here, only few metadata of a test case and its history
is facilitated. The number of features of a test case should be extended to allow
better reasoning of expected failures, e.g. links between source code changes
and relevant test cases. By including failure causes, scheduling of redundant test
cases can be avoided and the effectiveness improved.

Furthermore, this work used a linear scheduling model, but in industrial
environments more complex environments are encountered, e.g. multiple systems
for test executions or additional constraints on test execution besides time limits.
Another extension of this work is therefore to integrate different scheduling
methods under consideration of prioritization information and integration into
the learning process [23].

5 Related Work

Test case prioritization and selection for regression testing: Previous
work focuses on optimizing regression testing based on mainly three aspects: cost,
coverage, and fault detection, or their combinations. In [24] authors propose
an approach for test case selection and prioritization using the combination
of Integer Linear Programming (ILP) and greedy methods by optimizing
multiple criteria. Another study investigates coverage-based regression testing
[5], using four common prioritization techniques: a test selection technique,
a test suite minimization technique and a hybrid approach that combines
selection and minimization. Similar approaches have been proposed using
search-based algorithms [25, 26], including swarm optimization [27] and ant
colony optimization [28]. Walcott et al. use genetic algorithms for time-aware
regression test suite prioritization for frequent code rebuilding [29]. Similarly,
Zhang et al. propose time-aware prioritization using ILP [30]. Strandberg et
al. [31] apply a novel prioritization method with multiple factors in a real-
world embedded software and show the improvement over industry practice.

47

A. RL for Test Case Prioritization and Selection in Continuous Integration

Other regression test selection techniques have been proposed based on historical
test data [6, 7, 8, 32], code dependencies [33], or information retrieval [34,
35]. Despite various approaches to test optimization for regression testing, the
challenge of applying most of them in practice lies in their complexity and the
computational overhead typically required to collect and analyze different test
parameters needed for prioritization, such as age, test coverage, etc. By contrast,
our approach based on RL is a lightweight method, which only uses historical
results and its experience from previous CI cycles. Furthermore, Retecs is
adaptive and suited for dynamic environments with frequent changes in code
and testing, and evolving test suites.
Machine learning for software testing: Machine learning algorithms receive
increasing attention in the context of software testing. The work closest to ours
is [36], where Busjaeger and Xie use machine learning and multiple heuristic
techniques to prioritize test cases in an industrial setting. By combining various
data sources and learning to rank in an agnostic way, this work makes a strong
step into the definition of a general framework to automatically learn to rank
test cases. Our approach, only based on RL and ANN, takes another direction
by providing a lightweight learning method using one source of data, namely
test case failure history. Chen et al. [37] uses semi-supervised clustering for
regression test selection. The downside of such an approach may be higher
computational complexity. Other approaches include active learning for test
classification [38], combining machine learning and program slicing for regression
test case prioritization [39], learning agent-based test case prioritization [40], or
clustering approaches [41]. RL has been previously used in combination with
adaptation-based programming (ABP) for automated testing of software APIs,
where the combination of RL and ABP successively selects calls to the API
with the goal to increase test coverage, by Groce, Fern, Pinto, Bauer, Alipour,
Erwig, and Lopez [42]. Furthermore, Reichstaller, Eberhardinger, Knapp, Reif,
and Gehlen [43] apply RL to generate test cases for risk-based interoperability
testing. Based on a model of the system under test, RL agents are trained to
interact in an error-provoking way, i.e. they are encouraged to exploit possible
interactions between components. Veanes et al. use RL for online formal testing
of communication systems [44]. Based on the idea to see testing as a two-player
game, RL is used to strengthen the tester’s behavior when system and test cases
are modeled as Input-Output Labeled Transition Systems. While this approach
is appealing, Retecs applies RL for a completely different purpose, namely test
case prioritization and selection. Our approach aims at CI environments, which
are characterized by strict time and effort constraints.

6 Conclusion

We presented Retecs, a novel lightweight method for test case prioritization and
selection in Continuous Integration, combining reinforcement learning methods
and historical test information. Retecs is adaptive and learns important
indicators for failing test cases during its runtime by observing test cases, test

48

References

results, and its own actions and their effects.
Evaluation results show fast learning and adaptation of Retecs in three

industrial case studies. An effective prioritization strategy is discovered with a
performance comparable to basic deterministic prioritization methods after an
initial learning phase of approximately 60 CI cycles without previous training
on test case prioritization. Necessary domain knowledge is only reflected in
a reward function to evaluate previous schedules. The method is model-free,
language-agnostic and requires no source code or program access. It only requires
test metadata, namely historical results, durations and last execution times.
However, we expect additional metadata to enhance the method’s performance.

In our evaluation we compare different variants of RL agents for the ATCS
problem. Agents based on artificial neural networks have shown to be best
performing, especially when trained with test case-individual reward functions.
While we applied only small networks in this work, with extended available data
amounts, an extension towards larger networks and deep learning techniques can
be a promising path for future research.

Acknowledgements. This work is supported by the Research Council of Norway
(RCN) through the research-based innovation center Certus, under the SFI
program.

References

[1] Fowler, M. and Foemmel, M. Continuous Integration. 2006.
[2] Duvall, P. M., Matyas, S., and Glover, A. Continuous Integration: Improving

Software Quality and Reducing Risk. Pearson Education, 2007.
[3] Orso, A. and Rothermel, G. “Software Testing: A Research Travelogue

(2000–2014)”. In: Proceedings of the on Future of Software Engineering.
ACM, 2014, pp. 117–132.

[4] Stolberg, S. “Enabling Agile Testing through Continuous Integration”. In:
Agile Conference, 2009. AGILE’09. 2009, pp. 369–374.

[5] Di Nardo, D., Alshahwan, N., Briand, L., and Labiche, Y. “Coverage-Based
Regression Test Case Selection, Minimization and Prioritization: A Case
Study on an Industrial System”. In: Software Testing, Verification and
Reliability vol. 25, no. 4 (2015), pp. 371–396.

[6] Kim, J.-M. and Porter, A. “A History-Based Test Prioritization Technique
for Regression Testing in Resource Constrained Environments”. In:
Proceedings of the 24th International Conference on Software Engineering.
2002, pp. 119–129.

[7] Marijan, D., Gotlieb, A., and Sen, S. “Test Case Prioritization for
Continuous Regression Testing: An Industrial Case Study”. In: Proc. of Int.
Conf. on Soft. Maintenance (ICSM’13), Industry Track. 2013, pp. 540–543.

49

A. RL for Test Case Prioritization and Selection in Continuous Integration

[8] Noor, T. B. and Hemmati, H. “A Similarity-Based Approach for Test
Case Prioritization Using Historical Failure Data”. In: 2015 IEEE 26th
International Symposium on Software Reliability Engineering (ISSRE).
Nov. 2015, pp. 58–68.

[9] Rothermel, G., Untch, R. H., Chu, C., and Harrold, M. J. “Prioritizing
Test Cases For Regression Testing”. In: IEEE Transactions on Software
Engineering vol. 27, no. 10 (2001), pp. 929–948.

[10] Sutton, R. S. and Barto, A. G. Reinforcement Learning: An Introduction.
1st. MIT press Cambridge, 1998.

[11] Matarić, M. J. “Reward Functions for Accelerated Learning”. In: Machine
Learning: Proceedings of the Eleventh International Conference. 1994,
pp. 181–189.

[12] Van Hasselt, H. and Wiering, M. A. “Reinforcement Learning in Continuous
Action Spaces”. In: Proceedings of the 2007 IEEE Symposium on
Approximate Dynamic Programming and Reinforcement Learning, ADPRL
2007 (2007), pp. 272–279.

[13] Lin, L.-J. J. “Self-Improving Reactive Agents Based on Reinforcement
Learning, Planning and Teaching”. In: Machine Learning vol. 8, no. 3
(1992), pp. 293–321.

[14] Zhang, T. “Solving Large Scale Linear Prediction Problems Using
Stochastic Gradient Descent Algorithms”. In: Proceedings of the Twenty-
First International Conference on Machine Learning. 2004, pp. 116–116.

[15] Rothermel, G., Untch, R. H., and Harrold, M. J. Test Case Prioritization.
Tech. rep. 1999, pp. 1–32.

[16] Qu, X., Cohen, M. B., and Woolf, K. M. “Combinatorial Interaction
Regression Testing: A Study of Test Case Generation and Prioritization”.
In: IEEE International Conference on Software Maintenance, 2007 (ICSM).
IEEE, 2007, pp. 255–264.

[17] Van Rossum, Guido and Drake Jr, F. L. Python Reference Manual. Tech.
rep. Amsterdam, The Netherlands, The Netherlands: CWI (Centre for
Mathematics and Computer Science), 1995.

[18] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
“Scikit-Learn: Machine Learning in {P}ython”. In: Journal of Machine
Learning Research vol. 12 (2011), pp. 2825–2830.

[19] Elbaum, S., Mclaughlin, A., and Penix, J. “The Google Dataset of Testing
Results”. In: (2014).

[20] Elbaum, S., Rothermel, G., and Penix, J. “Techniques for Improving
Regression Testing in Continuous Integration Development Environments”.
In: Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering - FSE 2014. ACM, 2014, pp. 235–245.

50

References

[21] Abbeel, P. and Ng, A. Y. “Apprenticeship Learning via Inverse Reinforce-
ment Learning”. In: Proceedings of the 21st International Conference on
Machine Learning (ICML). 2004, pp. 1–8.

[22] Riedmiller, M. “Neural Fitted Q Iteration - First Experiences with a Data
Efficient Neural Reinforcement Learning Method”. In: European Conference
on Machine Learning. Vol. 3720 LNAI. Springer, 2005, pp. 317–328.

[23] Qu, B., Nie, C., and Xu, B. “Test Case Prioritization for Multiple Processing
Queues”. In: 2008 International Symposium on Information Science and
Engineering (ISISE). Vol. 2. IEEE, 2008, pp. 646–649.

[24] Mirarab, S., Akhlaghi, S., and Tahvildari, L. “Size-Constrained Regres-
sion Test Case Selection Using Multicriteria Optimization”. In: IEEE
Transactions on Software Engineering vol. 38, no. 4 (2012), pp. 936–956.

[25] Yu, L., Xu, L., and Tsai, W.-T. “Time-Constrained Test Selection for
Regression Testing”. In: International Conference on Advanced Data
Mining and Applications. Springer Berlin Heidelberg, 2010, pp. 221–232.

[26] de Souza, L. S., Prudêncio, R. B. C., de A. Barros, F., and da S. Aranha,
E. H. “Search Based Constrained Test Case Selection Using Execution
Effort”. In: Expert Systems with Applications vol. 40, no. 12 (2013),
pp. 4887–4896.

[27] de Souza, L. S., de Miranda, P. B., Prudencio, R. B., and Barros, F. d. A. “A
Multi-Objective Particle Swarm Optimization for Test Case Selection Based
on Functional Requirements Coverage and Execution Effort”. In: 2011
IEEE 23rd International Conference on Tools with Artificial Intelligence.
IEEE, Nov. 2011, pp. 245–252.

[28] Noguchi, T., Washizaki, H., Fukazawa, Y., Sato, A., and Ota, K. “History-
Based Test Case Prioritization for Black Box Testing Using Ant Colony
Optimization”. In: 2015 IEEE 8th International Conference on Software
Testing, Verification and Validation (ICST). Apr. 2015, pp. 1–2.

[29] Walcott, K. R., Soffa, M. L., Kapfhammer, G. M., and Roos, R. S. “Time-
Aware Test Suite Prioritization”. In: Proceedings of the 2006 International
Symposium on Software Testing and Analysis (ISSTA). Portland, Maine,
USA: ACM, 2006, pp. 1–12.

[30] Zhang, L., Hou, S.-S., Guo, C., Xie, T., and Mei, H. “Time-Aware Test-
Case Prioritization Using Integer Linear Programming”. In: Proceedings of
the Eighteenth International Symposium on Software Testing and Analysis
(ISSTA). ACM, 2009, pp. 213–224.

[31] Strandberg, P. E., Sundmark, D., Afzal, W., Ostrand, T. J., and Weyuker,
E. J. “Experience Report: Automated System Level Regression Test
Prioritization Using Multiple Factors”. In: 2016 IEEE 27th International
Symposium on Software Reliability Engineering (ISSRE). IEEE, 2016,
pp. 12–23.

51

A. RL for Test Case Prioritization and Selection in Continuous Integration

[32] Park, H., Ryu, H., and Baik, J. “Historical Value-Based Approach for
Cost-Cognizant Test Case Prioritization to Improve the Effectiveness of
Regression Testing”. In: 2008 Second International Conference on Secure
System Integration and Reliability Improvement. IEEE, July 2008, pp. 39–
46.

[33] Gligoric, M., Eloussi, L., and Marinov, D. “Ekstazi: Lightweight Test
Selection”. In: Proceedings of the 37th International Conference on Software
Engineering. Vol. 2. May 2015, pp. 713–716.

[34] Kwon, J.-H. H., Ko, I.-Y. Y., Rothermel, G., and Staats, M. “Test Case
Prioritization Based on Information Retrieval Concepts”. In: Proceedings
- Asia-Pacific Software Engineering Conference, APSEC vol. 1 (2014),
pp. 19–26.

[35] Saha, R. K., Zhang, L., Khurshid, S., and Perry, D. E. “An Information
Retrieval Approach for Regression Test Prioritization Based on Program
Changes”. In: Software Engineering (ICSE), 2015 IEEE/ACM 37th IEEE
International Conference On. Vol. 1. May 2015, pp. 268–279.

[36] Busjaeger, B. and Xie, T. “Learning for Test Prioritization: An Industrial
Case Study”. In: Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering. ACM, 2016, pp. 975–
980.

[37] Chen, S., Chen, Z., Zhao, Z., Xu, B., and Feng, Y. “Using Semi-Supervised
Clustering to Improve Regression Test Selection Techniques”. In: 2011
Fourth IEEE International Conference on Software Testing, Verification
and Validation. IEEE, Mar. 2011, pp. 1–10.

[38] Bowring, J. F., Rehg, J. M., and Harrold, M. J. “Active Learning for
Automatic Classification of Software Behavior”. In: Proceedings of the
2004 ACM SIGSOFT International Symposium on Software Testing and
Analysis. ISSTA ’04. ACM, 2004, pp. 195–205.

[39] Wang, F., Yang, S.-C., and Yang, Y.-L. “Regression Testing Based
on Neural Networks and Program Slicing Techniques”. In: Practical
Applications of Intelligent Systems. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, pp. 409–418.

[40] Abele, S. and Göhner, P. “Improving Proceeding Test Case Prioritization
with Learning Software Agents”. In: Proceedings of the 6th International
Conference on Agents and Artificial Intelligence - Volume 2 (ICAART).
2014, pp. 293–298.

[41] Chaurasia, G., Agarwal, S., and Gautam, S. S. “Clustering Based Novel
Test Case Prioritization Technique”. In: 2015 IEEE Students Conference
on Engineering and Systems (SCES). IEEE, Nov. 2015, pp. 1–5.

[42] Groce, A., Fern, A., Pinto, J., Bauer, T., Alipour, A., Erwig, M.,
and Lopez, C. “Lightweight Automated Testing with Adaptation-Based
Programming”. In: Proceedings - International Symposium on Software
Reliability Engineering, ISSRE. 2012, pp. 161–170.

52

References

[43] Reichstaller, A. A., Eberhardinger, B., Knapp, A., Reif, W., and Gehlen, M.
“Risk-Based Interoperability Testing Using Reinforcement Learning”. In:
28th IFIP WG 6.1 International Conference, ICTSS 2016, Graz, Austria,
October 17-19, 2016, Proceedings. Ed. by Petrenko, A., Simão, A., and
Maldonado, J. C. Vol. 6435. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2016, pp. 52–69.

[44] Veanes, M., Roy, P., and Campbell, C. “Online Testing with Reinforcement
Learning”. In: Formal Approaches to Software Testing and Runtime
Verification. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 240–
253.

Authors’ addresses

Helge Spieker Simula Research Laboratory, Martin Linges vei 25, 1364 Fornebu,
Norway, helge@simula.no

Arnaud Gotlieb Simula Research Laboratory, Martin Linges vei 25, 1364
Fornebu, Norway, arnaud@simula.no

Dusica Marijan Simula Research Laboratory, Martin Linges vei 25, 1364
Fornebu, Norway, dusica@simula.no

Morten Mossige University of Stavanger, Postboks 8600, 4036 Stavanger,
Norway, ABB Robotics, Nordlysvegen 7, 4340 Bryne, Norway
morten.mossige@uis.no

53

mailto:helge@simula.no
mailto:arnaud@simula.no
mailto:dusica@simula.no
mailto:morten.mossige@uis.no

Paper B

Time-aware Test Case Execution
Scheduling for Cyber-Physical
Systems

Morten Mossige, Arnaud Gotlieb, Helge Spieker, Hein Meling,
Mats Carlsson
Published in Proceedings of the 23rd International Conference on Principles
and Practice of Constraint Programming. CP 2017, Lecture Notes in Computer
Science, volume 10416, Springer, Cham, DOI: 10.1007/978-3-319-66158-2_25.
Preprint: arXiv:1902.04627v1.

II

Abstract

Testing cyber-physical systems involves the execution of test cases on
target-machines equipped with the latest release of a software control
system. When testing industrial robots, it is common that the target
machines need to share some common resources, e.g., costly hardware
devices, and so there is a need to schedule test case execution on the target
machines, accounting for these shared resources. With a large number of
such tests executed on a regular basis, this scheduling becomes difficult
to manage manually. In fact, with manual test execution planning and
scheduling, some robots may remain unoccupied for long periods of time
and some test cases may not be executed.

This paper introduces TC-Sched, a time-aware method for automated
test case execution scheduling. TC-Sched uses Constraint Programming to
schedule tests to run on multiple machines constrained by the tests’ access
to shared resources, such as measurement or networking devices. The
CP model is written in SICStus Prolog and uses the Cumulatives global
constraint. Given a set of test cases, a set of machines, and a set of shared
resources, TC-Sched produces an execution schedule where each test is
executed once with minimal time between when a source code change is
committed and the test results are reported to the developer. Experiments
reveal that TC-Sched can schedule 500 test cases over 100 machines in less
than 4 minutes for 99.5% of the instances. In addition, TC-Sched largely
outperforms simpler methods based on a greedy algorithm and is suitable
for deployment on industrial robot testing.

Reprinted by permission from Springer Nature 2017. The layout has been revised.

55

https://doi.org/10.1007/978-3-319-66158-2_25
https://arxiv.org/abs/1902.04627v1

B. Time-aware Test Case Execution Scheduling for Cyber-Physical Systems

1 Introduction

Continuous integration (CI) aims to uncover defects in early stages of software
development by frequently building, integrating, and testing software systems.
When applied to the development of cyber-physical systems (CPS)1, the process
may include running integration test cases involving real hardware components
on different machines or machines equipped with specific devices. In the last
decade, CI has been recognized as an effective process to improve software quality
at reasonable costs [1, 2, 3, 4].

Different from traditional testing methods, running a test case in CI requires
tight control over the round-trip time, that is, the time from when a source code
change is committed until the success or failure of the build and test processes is
reported back to the developer [5]. Admittedly, the easiest way to minimize the
round-trip time is simply to execute as many tests as possible in the shortest
amount of time. But the achievable parallelism is limited by the availability of
scarce global resources, such as a costly measurement instrument or network
device, and the compatible machines per test case, targeting different machine
architecture and operating systems. These global resources are required in
addition to the machine executing the test case and thereby require parallel
adjustments of the schedule for multiple machines.

Thus, computing an optimal test schedule with minimal round-trip time is
a challenging optimization problem. Since different test cases have different
execution times and may use different global resources that are locked
during execution, finding an optimal schedule manually is mostly impossible.
Nevertheless, manual scheduling still is state-of-the-practice in many industrial
applications, besides simple heuristics. In general, successful approaches to
scheduling use techniques from Constraint Programming (CP) and Operations
Research (OR), additionally metaheuristics are able to provide good solutions to
certain scheduling problems. We discuss these approaches further in Section 2.

Informally, the optimal test scheduling problem (OTS) is to find an execution
order and assignment of all test cases to machines. Each test case has to be
executed once and no global resource can be used by two test cases at the same
time. The objective is to minimize the overall test scheduling and test execution
time. The assignment is constrained by the compatibility between test cases and
machines, that is, each test case can only be executed on a subset of machines.

This paper introduces TC-Sched, a time-aware method to solve OTS. Using
the Cumulatives [6, 7] global constraint, we propose a cost-effective constraint
optimization search technique. This method allows us to 1) automatically filter
invalid test execution schedules, and 2) find among possible valid schedules,
those that minimize the global test execution time (i.e., makespan). To the best
of our knowledge, this is the first time the problem of optimal scheduling test
suite execution is formalized and a fully automated solution is developed using
constraint optimization techniques. TC-Sched has been developed and deployed
together with ABB Robotics, Norway.

1CPS can simply be seen as communicating embedded software systems.

56

Existing Solutions and Related Work

An extensive experimental evaluation is conducted over test suites from
industrial software systems, namely an integrated control system for industrial
robots and a product line of video-conferencing systems. The primary goal in this
paper is to demonstrate the scalability of the proposed approach for CI processes
involving hundreds of test cases and tens of machines, which corresponds to
a realistic development environment. Furthermore, we demonstrate the cost-
effectiveness of integrating our approach within an actual CI process.

2 Existing Solutions and Related Work

Automated solutions to address the OTS problem are not yet common practice.
In industrial settings, test engineers manually design the scheduling of test
case execution by allocating executions to certain machines at a given time or
following a given order. In practice, they manage the constraints as an aggregate
and try to find the best compromise in terms of the time needed to execute the
test cases. Keeping this process manual in CI is paradoxical, since every activity
should, in principle, be automated.

Regression testing [8], i.e. the repeated testing of systems after changes were
made, in CI covers a broad area of research works, including automatic test
case generation [9], test suite prioritization and test suite reduction [4]. There,
the idea of controlling the time taken by optimization processes in test suite
prioritization is not new [10]. In test suite prioritization, [11] proposed to use
time-aware genetic algorithms to optimize the order in which to execute the
test cases. Zhang et al. further refined this approach in [12] by using integer
linear programming. On-demand test suite reduction [13] also exploits integer
linear programming for preserving the fault-detection capability of a test suite
while performing test suite reduction. Cost-aware methods are also available for
selecting minimal subsets of test cases covering a number of requirements [14,
15]. All these approaches participate in a general effort to better control the time
allocated to the optimization algorithms when they are used in CI processes.
Note however that test suite execution scheduling is different to prioritization or
reduction as it deals with the notion of scheduling in time the execution of all
test cases, without paying attention to any prioritization or reduction.

Scheduling problems have been studied in other contexts for decades and
an extensive body of research exists on resource-constrained approaches. The
scheduling domain is divided into distinct areas such as process execution
scheduling in operating systems and scheduling of workforces in a construction
project. The scheduling problem of this paper belongs to a scheduling category
named resource-constrained project scheduling problem (RCPSP; see [16, 17,
18] for an extensive overview). RCPSP is concerned with finding schedules for
resource-consuming tasks with precedence constraints in a fixed time horizon,
such that the makespan is minimized [18]. From the angle of RCPSP, global
resources can be expressed as renewable resources which are available with exactly
one unit per timestep and can therefore only be consumed by a single job per
timestep.

57

B. Time-aware Test Case Execution Scheduling for Cyber-Physical Systems

RCPSP has been addressed by both exact methods [19, 20, 21, 22], as
well as heuristic methods [23, 24]. Due to the vast amount of literature, we
will focus on CP/OR-methods most closely related to the work of this paper.
The clear trend in both CP and OR is to solve such problems with hybrid
approaches, like, for instance, the work by Schutt et al. [25] or Beck et al. [26].
Furthermore, disjunctive scheduling problems, a subfamily of RCPSP addressing
unary resources (in our terms global resources), have been effectively solved, e.g.
by lazy clause generation [27].

RCPSP is considered to be a generalization of machine scheduling problems
where job shop scheduling (JSS) is one of the best known [28]. JSS is the
special case of RCPSP where each operation uses exactly one resource, and
FJSS (flexible job shop scheduling) further extends JSS such that each operation
can be processed on any machine from a given set. The FJSS is known to be
NP-hard [29].

While OTS is closely related to FJSS, and efficient approaches to FJSS are
known [22, 30], there are some differences. First, in OTS, execution times are
machine-independent. Second, each job in OTS consists of only one operation,
while in FJSS one job can contain several operations, where there are precedences
between the operations. Finally, some operations additionally require exclusive
access to a global resource, preventing overlap with other operations.

3 Problem Modeling

This section contains a formal definition of the OTS problem for test suite
execution on multiple machines with resource constraints. Based on this
definition, we propose a constraint optimization model using Cumulatives
global constraint.

3.1 Optimal Test Case Execution Scheduling

Optimal test case scheduling2 (OTS) is an optimization problem (T ,G,M, d, g, f),
where T is a set of n test cases along with a function d : T −→ N giving each test
case a duration di; a set of global resources G along with a function g : T −→ 2G
that describes which resources are used by each test case; and a set of machinesM
and a function f : T −→ 2M that assigns to each test case a subset of machines
on which the test case can be executed. The function d is usually obtained by
measuring the execution time of each test case in previous test campaigns and
by over-approximating each duration to account for small variations between
the different execution machines. OTS is the optimization problem of finding an
execution ordering and assignment of all test cases to machines, such that each
test case is executed once, no global resource is used by two test cases at the
same time, and the overall test execution time, Tt, is minimized. We define Tt as
the time needed to compute the schedule (Ts) plus the time needed to execute
the schedule (C∗), Tt = Ts + C∗. Machine assignment and test case execution

2OTS was part of the Industrial Modelling Competition at CP 2015.

58

Problem Modeling

ordering can be described either by a time-discretized table containing a line
per machine or a starting time for each test case and its assignment to a given
machine.

The problem addressed in this paper aims to execute each test case once
while minimizing the total duration of the execution of the test cases. That is,
to find an assignment a : T −→M and an execution order for each machine to
run its test cases.

In its basic version, the OTS problem includes the following constraints:
Disjunctive scheduling: Two test cases cannot be executed at the same time
on a single machine.
Non-preemptive scheduling: The execution of a test case cannot be
temporarily interrupted to execute another test case on the same machine.
Non-shared resources: When a test case uses a global resource, no other test
case needing this resource can be executed at the same time.
Machine-independent execution time: The execution time of a test case is
assumed to be independent of the executing machine. This is reasonable for test
cases in which the time is dominated by external physical factors such as a robot’s
motion, the opening of a valve, or sending an Ethernet frame. Such test cases
typically have execution times that are uncorrelated with machine performance.
In any case, a sufficient over-approximation will satisfy the assumption.
There are cases where OTS can be trivially solved, e.g. with only one machine
executing all test cases in sequence. Indeed, the global execution time remains
unchanged, whatever the execution order. Similarly, when there are no global
resources and when test cases can be executed on any available machine, then
simply allocating the longest test cases first to the available execution machine
easily calculates a best-effort solution.
Example Considering the test suite in Table B.1, we present a small example.
Let T be the test cases {1, . . . , 10}, G be the global resources {1, 2}, andM be
the machines {1, 2, 3}. The machines on which each test case in T can run is
given in Table B.1. This table can be extracted by analyzing the test scripts
or querying the test management. By sharing the same resource 1, test cases
2, 3, 4 cannot be executed at the same time, even if their execution is scheduled
on different machines. Since test case 7 can only be executed on machine 1, test
case 8 on machine 2, test case 9 on machine 3, and test case 10 on machines 1 or
3, we have to solve a complex scheduling problem. One possible optimal schedule
is given in Figure B.1, where the time needed to execute the test campaign is
C∗ = 11. For this small problem the solving time, Ts, can be assumed to be
very short, so the total execution time will be Tt ≈ C∗.

3.2 The CUMULATIVES Global Constraint

The Cumulatives global constraint [7] is a powerful tool for modeling cumulative
scheduling of multiple operations on multiple machines, where each operation
can be set up to consume a given amount of a resources, and each machine can
be set up to provide a given amount of resources.

59

B. Time-aware Test Case Execution Scheduling for Cyber-Physical Systems

Table B.1: Test suite for example.

Test Duration Executable on Use of global resource

1 2 1, 2, 3 -
2 4 1, 2, 3 1
3 3 1, 2, 3 1
4 4 1, 2, 3 1
5 3 1, 2, 3 -
6 2 1, 2, 3 -
7 1 1 -
8 2 2 -
9 3 3 -
10 5 1, 3 2

t

1 2 3 4 5 6 7 8 9 10 11 12

m. 1
m. 2
m. 3

test 1 test 7 test 2(res. 1) test 3(res. 1)
test 4(res. 1) test 5 test 6 test 8
test 9 test 10(res. 2)

C∗

Figure B.1: An optimal solution to the scheduling problem given in Table B.1.
Test cases in light gray require exclusive access to a global resource.

Cumulatives([O1, . . . , On], [c1, . . . , cp])3 constrains n operations on p ma-
chines such that the total resource consumption on each machine j does not
exceed the given threshold cj at any time [31]. An operation Oi is typically
represented by a tuple (Si, di, Ei, ri,Mi)4 where Si (resp. Ei) is a variable that
denotes the starting (resp. ending) instant of the operation, di is a constant
representing the total duration of the operation, ri is a constant representing
the amount of resource used by the operation. Si, Ei and Mi are bounded
integer variables. Si and Ei have the domains esti . . . leti, where esti denotes
the operation’s earliest starting time and leti denotes its latest ending time and
leti ≥ esti + di. Mi is bounded by the number of machines available, that is
1, . . . , p. By reducing the domain of Mi it is possible to force a specific operation
to be assigned to only a subset of the available machines, or even to one specific
machine. It is worth noting that this formalization implicitly uses discrete time
instants. Indeed, since esti and leti are integers, a function associating each time
instant to the current executed operations can automatically be constructed.
Formally, if h represents an instant in time, we have:

rhi =
{
ri if Si ≤ h < Si + di
0 otherwise

3In [7] an additional third argument to Cumulatives, Op ∈ {≤,≥} is defined. We omit it
throughout our work and always set Op =≤.

4Throughout the paper, lower-case characters are used to represent constants and upper-
case characters are used to represent variables.

60

Problem Modeling

Cumulatives holds if and only if, for every operation Oi, Si + di = Ei, and, for
all machines k and instants h,

∑
i|Mi=k r

h
i ≤ ck. In fact, Cumulatives captures

a disjunctive relation between different scenarios and applies deductive reasoning
to the possible values in the domains of its variables. This constraint provides a
cost-effective process for pruning the search space of some impossible schedules.

3.3 Modeling Test Case Execution Scheduling

This section shows how the Cumulatives constraint can be used to model a
schedule. In this small example, we disregard the use of global resources, and
the constraints that some operations can only be executed on a subset of the
available machines, since that will be covered in Section 3.4. By the schedule
in Figure B.1, we have ten operations O = {O1, . . . , O10} and three available
machines. By encoding the data from Table B.1, we get O1 = (S1, 2, E1, 1,M1),
O2 = (S2, 4, E2, 1,M2) . . ., O10 = (S10, 5, E10, 1,M10), c1 = 1, c2 = 1, c3 = 1.
Note that each operation has a resource consumption of one and all three
machines have a resource capacity of one. This implies that one machine can
only execute one operation at a time. Here, a resource refers to an execution
machine and not to a global resource.

3.4 Introducing Global Resources

As mentioned above, global resources corresponding to physical equipment such
as valves, air sensors, measurement instruments, or network devices, have limited
and exclusive access. To avoid concurrent access from two test cases, additional
constraints are introduced. Note that global resources must not be confused
with the resource consumption or resource bounds of operations and machines.

The Cumulatives constraint does not support native modelling of these
global resources without additional, user-defined constraints. However, there
are ways to model exclusive access to such global resources by means of further
constraints. The naive approach to prevent two operations from overlapping
is to consider constraints over the start and stop time of the operations. For
instance, if O1 and O2 both require exclusive access to a global resource, then
the constraint E1 ≤ S2 ∨ E2 ≤ S1 can be added. A less naive approach is to
use a Disjunctive(Ok) constraint per global resource k, where Ok is the set of
tasks that require that global resource, and Disjunctive prevents any pair of
tasks from overlapping.

Referring to the example in Figure B.1, there are ten operations to be
scheduled on three machines, and two global resources, 1 and 2. The basic
scheduling constraint is set up as explained in Section 3.3. Yet another way to
model the global resources is to treat each resource as a new quasi-machine 1′
corresponding to c1′ = 1 and 2′ corresponding to c2′ = 1. For each operation
requiring a global resource, we create a “mirrored” operation of the corresponding
quasi-machine: O′1 = {O′2, O′3, O′4} and O′2 = {O′10}. Finally, we can express the
schedule with a single constraint: Cumulatives(O∪O′1∪O′2, [c1, c2, c3, c1′ , c2′]).
For each operation in O′1 and O′2 we also reuse the same domain variables for

61

B. Time-aware Test Case Execution Scheduling for Cyber-Physical Systems

t

1 2 3 4 5 6 7 8 9 10 11 12

m. 1
m. 2
m. 3

m. 1′
m. 2′

test 1 test 7 test 2(res. 1) test 3(res. 1)
test 4(res. 1) test 5 test 6 test 8
test 9 test 10(res. 2)

test 2′(res. 1) test 3′(res. 1)test 4′(res. 1)
test 10′(res. 2)

Figure B.2: Modeling global resources by creating quasi-machines and
Cumulatives

start-time, duration and end-time. The operation O4 will be forced to have the
same start-/end-time as O′4, while they are scheduled on two different machines
2 and 1′.

4 The TC-Sched Method

This section describes our method, TC-Sched, to solve the OTS problem. It
is a time-constrained cumulative scheduling technique, as 1) it allows to keep
fine-grained control over the time allocated to the constraint solving process
(i.e., time-constrained), 2) it encodes exclusive resource use with constraints
(i.e., constraint-based), and 3) it solves the problem by using the Cumulatives
constraint. The TC-Sched method is composed of three elements, namely,
the constraint model described in Section 4.1, the search procedure described
in Section 4.2, and the time-constrained minimization process described in
Section 4.3.

4.1 Constraint Model

We encode the OTS problem with one Cumulatives(O, C) constraint, one
Disjunctive(Ok) constraint per global resource k, using the second scheme
from Section 3.4, and a search procedure able to find an optimal schedule
among many feasible schedules. Each test case i is encoded as an operation
(Si, di, Ei, 1,Mi) as explained in Section 3.2. O is simply the array of all such
operations and C is an array of 1s of length equal to the number of machines.
Suppose that there are three execution machines numbered 1, 2, and 3; then,
to say that test i can be executed on any machine, we just add the domain
constraint Mi ∈ {1, 2, 3}, whereas to say that test i can only be executed on
machine 1, we replace Mi by 1. Finally, to complete the model, we introduce
the variable MakeSpan representing the completion time of the entire schedule
and seek to minimize it. MakeSpan is lower bounded by the ending time of each

62

The TC-Sched Method

individual test case. The generic model is captured by:

Cumulatives(O, C)∧
∀ global resource k : Disjunctive(Ok)∧
∀ 1 ≤ i ≤ n : Mi ∈ f(i)∧
∀ 1 ≤ i ≤ n : Ei ≤ MakeSpan ∧
Label(Minimize(MakeSpan), [S1,M1, . . . , Sn,Mn])

(B.1)

Note that the ending times depend functionally on the starting times. Thus, a
solution to the OTS problem can be obtained by searching among the starting
times and the assignment of test cases to execution machines.

4.2 Search Procedure

Our search procedure is called test case duration splitting, and is a branch-and-
bound search that seeks to minimize the Makespan. The procedure makes two
passes over the set of test cases. A key idea is to allocate the most demanding
test cases first. To this end, the test cases are initially sorted by decreasing ri
where ri is the number of global resources used by test case i, breaking ties by
choosing the test case with the longest duration di.

In Phase 1, two actions are performed on each test case. First, in order to
avoid a large branching factor in the choice of start time and to effectively fix
the relative order among the tasks on the same machine or resource, we split
the domain of the start variable, forcing an obligatory part of the corresponding
task, as described in [32, Section 3.6]. Next, in order to balance the load on the
machines, we choose machines in round-robin fashion. These two choices are of
course backtrackable, to ensure completeness of the search procedure.

Note that at the end of Phase 1, the constraint system effectively forms a
directed acyclic graph where every node is a task and every arc is a precedence
constraint induced by the relative order. It is well known that such constraint
systems can be solved without search by topologically sorting the start variables
and assigning each of them to its minimal value. This is Phase 2 of the search.

In this procedure, the load-balancing component has shown to be particularly
effective in a CI context and makes the first solution found a good compromise
between solving and execution time of the schedule, which is one of the key
factors in CI. Our preliminary experiments concluded, that the presented strategy
provided the best compromise between cost and solution quality. Furthermore,
we tried a more precise but costlier load-balancing scheme, but it did not
significantly improve the quality. We also tried to sort the tests by decreasing
di · (ri + 1), which did not significantly improve the quality, either.

4.3 Time-constrained Minimization

The third necessary ingredient of the TC-Sched method is to perform branch-
and-bound search under a time contract. That is, to settle on the schedule with
the shortest MakeSpan found when the time contract ends. When the number
of test cases grows to be several hundred, finding a globally optimal schedule

63

B. Time-aware Test Case Execution Scheduling for Cyber-Physical Systems

TC-Sched Test case
execution

Repository

m1

mm

Figure B.3: Integration of TC-Sched into a CI process. The test case schedule
solved by TC-Sched is transmitted for execution to the machines in the machine
pool, M. The results including actual test case durations are then feed back
into the repository.

may become an intractable problem5, but in practical applications it is often
sufficient to find a “best-effort” solution. This leads to the important question
to select the most appropriate contract of time for the minimization process, as
the time used to optimize the schedule is not available to actually execute the
schedule. We address this question in the experimental evaluation.

5 Implementation and Exploitation

This section details our implementation of the TC-Sched method and its insertion
into CI. We implemented the TC-Sched method in SICStus Prolog [34]. The
Cumulatives constraint is available as part of the clpfd library [31]. The
clpfd library also provides an implementation of the time-constrained branch-
and-bound with the option to express individual search strategy (see Section 4.2).
Using clpfd, a generic constraint model for the TC-Sched method is designed,
which takes an OTS problem as input and returns an (quasi-)optimal schedule.

Since TC-Sched is designed to run as part of a CI process, we describe
how it can be integrated within the CI environment. Because CI environments
change and test cases and agents are constantly added or removed, TC-Sched
has to be provided with a list of test cases and available machines at runtime.
Furthermore, an estimation of the test case durations on the available agents
has to be provided. This can either be gathered from historical execution data
and then (over-)estimated to account for differences in execution machines, or,
for some kinds to test suites, they are fixed and can be precisely given [35], e.g.
for robotic applications where the duration is determined by the movement of
the robot.

A test campaign in a CI cycle is typically initiated upon a successful build
of the software being tested. As a first step, all machines available for test
execution are identified and updated with the newly built software. Then, TC-
Sched takes as input the test cases of the test campaign and the previous test
case execution times from the storage repository. After TC-Sched calculated an

5The general cumulative scheduling problem is known to be NP-hard [33].

64

Experimental Evaluation

optimal schedule, that schedule is handed over to a dedicated dispatch server
which is responsible for distributing the test cases to the physical machines and
the actual execution. Finally, after the test execution finished, the overall result
of the test campaign is reported back to the users and the storage repository
is updated with the latest test case execution times. Of course, minimizing
the round-trip time leads to earlier notifications of the developers in case the
software system fails and helps to improve the development cycle in CI.

6 Experimental Evaluation

This section presents our findings from the experimental evaluation of TC-Sched.
To this end, we address the following three research questions:
RQ1: How does the first solution provided by TC-Sched compare with simpler
scheduling methods in terms of schedule execution time? This research question
states the crucial question of whether using complex constraint optimization is
useful despite simpler approaches being available at almost no cost to implement.
RQ2: For TC-Sched, will an increased investment in the solving time in TC-
Sched reduce the overall time of a CI cycle? This question is about finding the
most appropriate trade-off between the solving time and the execution time of
the test campaign in the proposed approach.
RQ3: In addition to random OTS problem instances, can TC-Sched efficiently
and effectively handle industrial case studies? These cases can lead to structured
problems which exhibit very different properties than random instances.

All experiments were performed on a 2.7 GHz Intel Core i7 processor with
16 GB RAM, running SICStus Prolog 4.3.5 on a Linux operating system.

6.1 Experimental Artifacts

To answer RQ1, we implemented two scheduling methods, referred to as the
random method and the greedy method.

The random method works as follows: It first picks a test case at random
and then picks a machine at random such that no resource constraint is violated.
Finally, the test case is assigned the lowest possible starting time on the selected
machine. The greedy method is more advanced. At first, it assigns test cases
by decreasing resource demands. Afterwards, test cases without any resource
demands are assigned to the remaining machines. For each assignment, the
machine that can provide the earliest starting time is selected. Note that none
of the two methods can backtrack to improve upon the initial solution.

The reason we have chosen to compare with these two methods is threefold:
1) As explained in Section 2, we are not aware of any previously published work
related to test case execution scheduling, which means that there is no baseline
to compare against; 2) From cooperation with our industrial partners, we know
that this is, in the best case, the industrial state of the art (i.e., non-optimal
schedules computed manually); 3) We manually checked the results on simple
schedules and found them to be satisfactory, so they are a suitable comparison.

65

B. Time-aware Test Case Execution Scheduling for Cyber-Physical Systems

Table B.2: Randomly generated test suites.

of tests 20 30 40 50 100 500

#
m
ac
hi
ne

s 100 - - - - - TS11
50 - - - - TS8 TS12
20 - TS2 TS4 TS6 TS9 TS13
10 TS1 TS3 TS5 TS7 TS10 TS14

To answer our research questions, we have considered randomly generated
benchmarks and industrial case studies. Although there are benchmark test suites
for both JSS and FJSS, e.g., [36] or [29], they cannot be used as a comparison
baseline. Furthermore, as our method approaches testing applications, a thorough
evaluation on data from the target domain is justifiable.

We generated a benchmark library containing 840 OTS instances6. The
library is structured by data collected from three different real-world test suites,
provided by our industrial partners: a test suite for video conferencing systems
(VCS) [38], a test suite for integrated painting systems (IPS) [35], and a test
suite for a mobile application called TV-everywhere.

VCS is a test suite for testing commercial video conferencing systems,
developed by CISCO Systems, Norway. It contains 132 test cases and 74
machines. The duration of test cases varies from 13 seconds to 4 hours, where
the vast majority has a duration between 100 s and 800 s. The IPS test suite
aims at testing a distributed paint control system for complex industrial robots,
developed at ABB Robotics, Norway. It contains 33 test cases, with duration
ranging from 1 s to 780 s, and 16 distinct machines. There are two global
resources for this test suite, an airflow meter and a simulator for an optical
encoder. TV-everywhere is a mobile application that allows users to watch TV
on tablets, smart phones, and laptops. Its test suite only contains manual test
cases, but, in our benchmark, it serves as a useful example of a test suite with a
large number of constraints limiting the number of possible machines for each
test case.

Based on data from the three industrial test suites, we composed 14 groups
of test suites, denoted TS1-TS14, with randomized assignments of test cases to
machines and exclusive usages of global resources. Let |T | be the number of test
cases, and |M | be the number of machines, and |R| = {3, 5, 10} be the number of
resources. Table B.2 gives an overview of the groups of test suites. For test suite
TSx, we write TSxR3, TSxR5, or TSxR10 to indicate the number of resources.

For each of the 14 · 3 variants, we generated 20 random test suites. The
duration of each test case was chosen randomly between 1 s and 800 s, and
each test case had a 30% chance of using a global resource. The number of
resources was chosen randomly between 1 and |R|. A total of 80% of the tests
were considered to be executable on all machines, while the remaining 20%
were executable on a smaller subset of machines. For these tests, the number

6All generated instances are available in CSPLib, a library of test problems for constraint
solvers [37]

66

Experimental Evaluation

TS1
R3 5 10

TS2
R3 5 10

TS3
R3 5 10

TS4
R3 5 10

TS5
R3 5 10

TS6
R3 5 10

TS7
R3 5 10

TS8
R3 5 10

TS9
R3 5 10

TS10
R3 5 10

TS11
R3 5 10

TS12
R3 5 10

TS13
R3 5 10

TS14
R3 5 10

80

100

120

D
iff
er
en

ce
fr
om

gr
ee

dy
[%

]

Figure B.4: The differences in schedule execution times produced by the different
methods for test suites TS1–TS14, with greedy as the baseline of 100%. The
blue is the difference between the first solution C∗f and greedy and the red shows
the difference between the final solution C∗l and greedy.

of machines on which each test case could be executed was selected randomly
between 1% and 40% of the number of available machines. This means that a
test case was executable either on all machines (part of the 80% group) or only
on at most 40% of the machines. In total, we generated 14 · 3 · 20 = 840 different
test suites.

6.2 RQ1: How does TC-Sched compare with simpler scheduling?

To compare our TC-Sched method with the greedy and random methods, we
recorded the first solution, C∗f , found by TC-Sched. We also recorded the last
solution, C∗l . This is either a proved optimal solution, or the best solution found
after 5 minutes of solving time. For each of the 840 test suites, we computed
the differences between the random and greedy, C∗f and greedy, and C∗l and
greedy, where greedy is the baseline of 100%. The results show that random is
30%-60% worse than greedy, which means that random can clearly be discarded
from further analysis. Our findings are summarized in Figure B.4, showing the
difference between TC-Sched and greedy. For all test suites but the hardest
subset of TS1 and some instances of TS2, C∗f is better than greedy. We also
observe that for larger test suites, i.e., TS11-TS14, there is only a marginal
difference between C∗f and C∗l . Hence, running the solver for a longer time has
only little benefit.

Furthermore, to evaluate the effectiveness of the test case duration splitting
search strategy, we compared it to standard strategies available in SICStus
Prolog’s clpfd with the same constraint model on the test suites TS1 and
TS14. The search first enumerates on the machine assignments increasingly, i.e.
without load-balancing, and afterwards assigns end times via domain splitting by
bisecting the domain, starting from the earliest end times. As variable selection
strategies, we tested both the default setting, selecting the leftmost variable, and
a first-fail strategy, selecting the variable with the smallest domain. Additionally,
we tried sorting the variables by decreasing resource usage.

67

B. Time-aware Test Case Execution Scheduling for Cyber-Physical Systems

All variants of the standard searches performed substantially worse than
test case duration splitting, with first-fail search on sorted variables being the
best. After finding an initial solution, further improvements are rare and the
makespan of the final solution is in average 4 times larger compared to using
test case duration splitting with the same time contract of 5 minutes.

6.3 RQ2: Will longer solving time reduce the total execution
time?

RQ2 aims at finding an appropriate trade-off between the time spent in solving
the constraint model, Ts, and the time spent in executing the schedule, C∗. As
mentioned in Section 1, the round-trip time is critical in CI and has to be kept
low. It is therefore crucial to determine the most appropriate timeout for the
constraint optimizer. The ultimate goal being to generate a schedule which is
quasi-optimal w.r.t. total execution time, Tt = Ts + C∗.

As mentioned above, TC-Sched can be given a time-contract for finding
a quasi-optimal solution when minimizing the execution time of the schedule.
More precisely, with this time-constrained process four outcomes are possible.
No solution with proof : TC-Sched proves that the OTS problem has no
solution due to unsatisfiable constraints.
No solution without proof : TC-Sched was not able to find a solution within
the given time. Thus, there could be a solution, but it has not been found.
Quasi-optimal solution: At the end of the time-contract, a solution is returned,
but TC-Sched was interrupted while trying to prove its optimality. Such a best-
effort solution is usually sufficient in the examined industrial settings.
Optimal solution: Before the end of the time-contract, TC-Sched returns an
optimal solution along with its proof. This is obviously the most desired result.

Each solution i generated by TC-Sched can be represented by a tuple (C∗i , Ts,i)
where C∗i is the makespan of solution i and Ts,i is the time the solver spent
finding solution i. The goal of RQ2 is to find the value of Ts,i that minimizes
(C∗i + Ts,i),∀ i and use this value as the time-contract.

To answer RQ2, we executed TC-Sched on all 840 test suites, with a time-
contract of 5 minutes. During this process, we recorded all intermediate search
results to calculate the optimal value of Ts for each test suite.

Figure B.5 shows the distribution in solving time for the first solution found
by TC-Sched, the last solution and also how the optimal value of Ts is distributed.
For the group of 600 test suites containing up to 100 test cases (TS1-TS10), the
results show that a solution that minimizes the total execution time, noted Tt,
is found in Ts < 5 s for 96.8 % of the test suites. If we extend the search time to
Ts < 10 s, the number grows to 98 % of the test suites. For this group, the worst
case optimal solving time was Ts = 122.3 s. We see that a solution is always
found in less than 0.1 s. For the group of 240 test suites containing 500 test
cases (TS11-TS14), the results show that a solution that minimizes Tt is found
in Ts < 120 s for 97.5 % of the test suites. A solution minimizing Tt is found in
less than 240 s for all test suites, except one instance with Tt = 264 s.

68

Conclusion

TS1
R3 R5 R10

TS2
R3 R5 R10

TS3
R3 R5 R10

TS4
R3 R5 R10

TS5
R3 R5 R10

TS6
R3 R5 R10

TS7
R3 R5 R10

0.1

1

So
lv
in
g
tim

e
T
s
[s]

TS8
R3 R5 R10

TS9
R3 R5 R10

TS10
R3 R5 R10

TS11
R3 R5 R10

TS12
R3 R5 R10

TS13
R3 R5 R10

TS14
R3 R5 R10

1

10
60

500

So
lv
in
g
tim

e
T
s
[s]

Figure B.5: The black boxes show the distribution in solving time, Ts, for the
first solution found by TC-Sched. The blue boxes show the distribution in Ts
where the total execution time, Tt, is optimal. Finally, the red boxes show the
distribution in Ts for the last solution found by TC-Sched, which can be the
optimal value or the last value found before timeout. The timeout was set to
5min.

An increased investment in the solving part does not seem to necessarily
pay off if one considers the total execution time. The reported experiments give
hints to evaluate and select the optimal test contract for the solving part.

6.4 RQ3: Can TC-Sched efficiently solve industrial OTS
problems?

To answer RQ3, we consider two of the three industrial case studies, namely,
IPS and VCS. These case studies are composed of automated test scripts, which
makes the application of the TC-Sched method especially pertinent.

In both case studies, the guaranteed optimal solution is already found as
the first solution in less than 200 ms. This avoids the necessity to compromise
between C∗ and Ts for these industrial applications.

When applying TC-Sched to the IPS test suite, we find the optimal solution,
C∗ = 780 s, at Ts = 10 ms. For the VCS test suite, the optimal solution,
C∗ = 14637 s is found at Ts = 160 ms.

In summary, TC-Sched can easily be applied to both VCS and IPS, and in
both cases, the best result is achieved when C∗ is minimized and Ts is neglected.

7 Conclusion

This paper introduced TC-Sched, a time-aware method for solving the optimal
test suite scheduling (OTS) problem, where test cases can be executed on
multiple execution machines with non-shareable global resources. TC-Sched

69

B. Time-aware Test Case Execution Scheduling for Cyber-Physical Systems

exploits the Cumulatives global constraint and a time-aware minimization
process, and a dedicated search strategy, called test case duration splitting. To
our knowledge, the OTS problem is rigorously formalized for the first time and
a method is proposed to solve it in CI applications. An experimental evaluation
performed over 840 generated test suites revealed that TC-Sched outperforms
simple scheduling methods w.r.t. total execution time. More specifically, we
showed that automatic optimal scheduling of 500 test cases over 100 machines
is reachable in less than 4 minutes for 99.5% instances of the problem. By
considering trade-offs between the solving time and the total execution time, the
evaluation allowed us to find the best compromise to allocate time-contracts to
the solving process. Finally, by using TC-Sched with two industrial test suites,
we demonstrated that finding the guaranteed optimal test execution time is
possible and that TC-Sched can effectively solve the OTS problem in practice.

Further work includes consideration of test case priorities, non-unitary
shareable global resources, as well as explicit symmetry breaking in the model.
Additional evaluation and comparison against heuristic methods, such as
evolutionary algorithms, or Mixed-Integer Linear Programming could extend
the presented work and support the integration of TC-Sched in practical CI
processes.

References

[1] Duvall, P. M., Matyas, S., and Glover, A. Continuous Integration: Improving
Software Quality and Reducing Risk. Pearson Education, 2007.

[2] Orso, A. and Rothermel, G. “Software Testing: A Research Travelogue
(2000–2014)”. In: Proceedings of the on Future of Software Engineering.
ACM, 2014, pp. 117–132.

[3] Stolberg, S. “Enabling Agile Testing through Continuous Integration”. In:
Agile Conference, 2009. AGILE’09. 2009, pp. 369–374.

[4] Elbaum, S., Rothermel, G., and Penix, J. “Techniques for Improving
Regression Testing in Continuous Integration Development Environments”.
In: Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering - FSE 2014. ACM, 2014, pp. 235–245.

[5] Fowler, M. and Foemmel, M. Continuous Integration. 2006.
[6] Aggoun, A. and Beldiceanu, N. “Extending {CHIP} in Order to Solve

Complex Scheduling and Placement Problems”. In: Mathematical and
Computer Modelling vol. 17, no. 7 (1993), pp. 57–73.

[7] Beldiceanu, N. and Carlsson, M. “A New Multi-Resource Cumulatives
Constraint With Negative Heights”. In: Principles and Practice of
Constraint Prog. (CP’02). 2002, pp. 63–79.

[8] Orso, A., Shi, N., and Harrold, M. J. “Scaling Regression Testing to Large
Software Systems”. In: Proc. of the Symp. on Foundations of Software Eng.
(FSE’04). ACM Press, 2004, pp. 241–251.

70

References

[9] de Campos, J., Arcuri, A., Fraser, G., and de Abreu, R. “Continuous
Test Generation: Enhancing Continuous Integration with Automated Test
Generation”. In: Proc. of Int. Conf. on Automated Soft. Eng. (ASE’14).
2014, pp. 55–66.

[10] Do, H., Mirarab, S., Tahvildari, L., and Rothermel, G. “The Effects of
Time Constraints on Test Case Prioritization: A Series of Controlled
Experiments”. In: IEEE Trans. on Soft. Eng. vol. 36, no. 5 (2010), pp. 593–
617.

[11] Walcott, K. R., Soffa, M. L., Kapfhammer, G. M., and Roos, R. S. “Time-
Aware Test Suite Prioritization”. In: Proceedings of the 2006 International
Symposium on Software Testing and Analysis (ISSTA). Portland, Maine,
USA: ACM, 2006, pp. 1–12.

[12] Zhang, L., Hou, S.-S., Guo, C., Xie, T., and Mei, H. “Time-Aware Test-
Case Prioritization Using Integer Linear Programming”. In: Proceedings of
the Eighteenth International Symposium on Software Testing and Analysis
(ISSTA). ACM, 2009, pp. 213–224.

[13] Hao, D., Zhang, L., Wu, X., Mei, H., and Rothermel, G. “On-Demand
Test Suite Reduction”. In: Proc. of the Int. Conf. on Soft. Eng. 2012,
pp. 738–748.

[14] Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D.,
Dollár, P., and Zitnick, C. L. “Microsoft COCO: Common Objects in
Context”. In: European Conference on Computer Vision. Vol. 8693. LNCS.
2014, pp. 740–755.

[15] Gotlieb, A. and Marijan, D. “FLOWER: Optimal Test Suite Reduction as
a Network Maximum Flow”. In: Proc. of Int. Symp. on Soft. Testing and
Analysis (ISSTA’14). 2014, pp. 171–180.

[16] Brucker, P., Drexl, A., Möhring, R., Neumann, K., and Pesch, E. “Resource-
Constrained Project Scheduling: Notation, Classification, Models, and
Methods”. In: European Journal of Operational Research vol. 112, no. 1
(1999), pp. 3–41.

[17] Brucker, P. and Knust, S. Complex Scheduling (GOR-Publications).
Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2006.

[18] Hartmann, S. and Briskorn, D. “A Survey of Variants and Extensions
of the Resource-Constrained Project Scheduling Problem”. In: European
Journal of Operational Research vol. 207, no. 1 (2010), pp. 1–14.

[19] Szeredi, R. and Schutt, A. “Modelling and Solving Multi-Mode Resource-
Constrained Project Scheduling”. In: Principles and Practice of Constraint
Programming. CP 2016. Vol. 9892. 2016, pp. 877–878.

[20] Kreter, S., Schutt, A., and Stuckey, P. J. “Modeling and Solving Project
Scheduling with Calendars”. In: International Conference on Principles
and Practice of Constraint Programming. 2015, pp. 262–278.

71

B. Time-aware Test Case Execution Scheduling for Cyber-Physical Systems

[21] Schutt, A., Chu, G., Stuckey, P. J., and Wallace, M. G. “Maximising
the Net Present Value for Resource-Constrained Project Scheduling”. In:
CPAIOR 2012. Vol. 7514. LNCS. 2012, pp. 362–378.

[22] Schutt, A., Feydy, T., and Stuckey, P. J. “Scheduling Optional Tasks with
Explanation”. In: International Conference on Principles and Practice of
Constraint Programming. 2013, pp. 628–644.

[23] Hartmann, S. and Kolisch, R. “Experimental Evaluation of State-of-the-Art
Heuristics for the Resource-Constrained Project Scheduling Problem”. In:
European Journal of Operational Research vol. 127, no. 2 (2000), pp. 394–
407.

[24] Kolisch, R. and Hartmann, S. “Experimental Investigation of Heuristics
for Resource-Constrained Project Scheduling: An Update”. In: European
Journal of Operational Research vol. 174, no. 1 (2006), pp. 23–37.

[25] Schutt, A., Feydy, T., Stuckey, P. J., and Wallace, M. G. “Why Cumulative
Decomposition Is Not As Bad As It Sounds”. In: Principles and Practice
of Constraint Programming (CP’09). Springer, 2009, pp. 746–761.

[26] Beck, J. C., Feng, T. K., and Watson, J. P. “Combining Constraint
Programming and Local Search for Job-Shop Scheduling”. In: INFORMS
Journal on Computing vol. 23, no. 1 (2011), pp. 1–14.

[27] Siala, M., Artigues, C., and Hebrard, E. “Two Clause Learning Approaches
for Disjunctive Scheduling”. In: Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics) vol. 9255 (2015), pp. 393–402.

[28] Herroelen, W., De Reyck, B., and Demeulemeester, E. “Resource-
Constrained Project Scheduling: A Survey of Recent Developments”. In:
Computers & Operations Research vol. 25, no. 4 (1998), pp. 279–302.

[29] Behnke, D. and Geiger, M. J. Test Instances for the Flexible Job Shop
Scheduling Problem with Work Centers. Tech. rep. Hamburg, Germany,
2012.

[30] Brandimarte, P. “Routing and Scheduling in a Flexible Job Shop by Tabu
Search”. In: Annals of Operations research vol. 41, no. 3 (1993), pp. 157–
183.

[31] Carlsson, M., Ottosson, G., and Carlson, B. “An Open-Ended Finite
Domain Constraint Solver”. In: Proc. of the 9th Int. Symp. on Prog.
Languages, Implementations, Logics, and Programs (PLILP ’97). 1997,
pp. 191–206.

[32] Simonis, H. and O’Sullivan, B. “Search Strategies for Rectangle Packing”.
In: Proc. of Principles and Practice of Constraint Prog. (CP’08). 2008,
pp. 52–66.

[33] Baptiste, P., Le Pape, C., and Nuijten, W. Constraint-Based Scheduling:
Applying Constraint Programming to Scheduling Problems. 1st ed. Interna-
tional Series in Operations Research & Management Science 39. Springer
US, 2001.

72

References

[34] Carlsson, M. et al. {SICStus} {Prolog} User’s Manual, Release 4. Tech. rep.
2007.

[35] Mossige, M., Gotlieb, A., and Meling, H. “Using CP in Automatic Test
Generation for ABB Robotics’ Paint Control System”. In: Principles and
Practice of Constraint Programming. Ed. by O’Sullivan, B. Vol. 8656.
LNCS. Cham: Springer International Publishing, 2014, pp. 25–41.

[36] Taillard, E. “Benchmarks for Basic Scheduling Problems”. In: European
Journal of Operational Research vol. 64, no. 2 (1993), pp. 278–285.

[37] Mossige, M. “CSPLib Problem 073: Test Scheduling Problem”. In: ().
Ed. by Jefferson, C., Miguel, I., Hnich, B., Walsh, T., and Gent, I. P.

[38] Marijan, D., Gotlieb, A., and Sen, S. “Test Case Prioritization for
Continuous Regression Testing: An Industrial Case Study”. In: Proc. of Int.
Conf. on Soft. Maintenance (ICSM’13), Industry Track. 2013, pp. 540–543.

Authors’ addresses

Morten Mossige University of Stavanger, Postboks 8600, 4036 Stavanger,
Norway,
ABB Robotics, Nordlysvegen 7, 4340 Bryne, Norway morten.mossige@uis.no

Arnaud Gotlieb Simula Research Laboratory, Martin Linges vei 25, 1364
Fornebu, Norway, arnaud@simula.no

Helge Spieker Simula Research Laboratory, Martin Linges vei 25, 1364 Fornebu,
Norway, helge@simula.no

Hein Meling University of Stavanger, Postboks 8600, 4036 Stavanger, Norway,
hein.meling@uis.no

Mats Carlsson RISE Research Institutes of Sweden AB, ICT SICS, Box 1263,
SE-164 29 Kista, Sweden, mats.carlsson@ri.se

73

mailto:morten.mossige@uis.no
mailto:arnaud@simula.no
mailto:helge@simula.no
mailto:hein.meling@uis.no
mailto:mats.carlsson@ri.se

Paper C

Multi-Cycle Assignment Problems
with Rotational Diversity

Helge Spieker, Arnaud Gotlieb, Morten Mossige
Initial conference paper published as “Rotational Diversity in Multi-Cycle
Assignment Problems” in: Proceedings of the Thirty-Third AAAI Confer-
ence on Artificial Intelligence Vol. 33 (2019), pp. 7724–7731. DOI:
10.1609/aaai.v33i01.33017724. Preprint: arXiv:1811.03496v1.
The thesis contains an extended version that has been submitted to: Journal of
Artificial Intelligence Research (May 2019). Preprint: arXiv:1811.03496v2.

III

Abstract

Multi-cycle assignment problems address scenarios where a series of general
assignment problems has to be solved sequentially. Subsequent cycles
can differ from previous ones due to changing availability or creation
of tasks and agents, which makes an upfront static schedule infeasible
and introduces uncertainty in the task-agent assignment process. We
consider the setting where, besides profit maximization, it is also desired
to maintain diverse assignments for tasks and agents, such that all tasks
have been assigned to all agents over subsequent cycles. This problem
of multi-cycle assignment with rotational diversity is approached in two
sub-problems: The outer problem which augments the original profit
maximization objective with additional information about the state of
rotational diversity while the inner problem solves the adjusted general
assignment problem in a single execution of the model. We discuss
strategies to augment the profit values and evaluate them experimentally.
The method’s efficacy is shown in three case studies: multi-cycle variants
of the multiple knapsack and the multiple subset sum problems, and a
real-world case study on the test case selection and assignment problem
from the software engineering domain.

75

https://doi.org/10.1609/aaai.v33i01.33017724
https://arxiv.org/abs/1811.03496v1
https://arxiv.org/abs/1811.03496v2

C. Multi-Cycle Assignment Problems with Rotational Diversity

1 Introduction

General assignment problems are well-studied in artificial intelligence and can
be solved efficiently. Their goal is to assign a set of weighted tasks to a set
of agents, such that capacity constraints are satisfied and a profit function is
maximized. These problems are relevant in a broad context, of which many
consider some form of rotation. In aircraft rotation [1] or machine scheduling [2],
rotation mechanisms allow to keep maintenance schedules or optimize usage
patterns of machinery. In nurse rostering [3, 4] and workforce scheduling [5, 6],
rotation is relevant to avoid boredom, fatigue and prolonged high workloads
or to cover a constrained shift system. It is not always possible to address
such scheduling requirements upfront, albeit for personnel availability due to
vacations and sickness leaves, changing demand patterns, or short-term planning
horizons for other reasons. Conclusively, it can be necessary to include rotation
mechanisms in scenarios of iterative and recurring planning due to problem
constraints and requirements.

This paper addresses multi-cycle assignment problems, where there is
uncertainty regarding the availability of tasks and agents, under the additional
goal to rotate assignments from tasks to agents over successive cycles. Tasks
and agents can be unavailable for one or several cycles without previous notice
or information about their next availability. We refer to the subsequent diverse
assignments as rotational diversity. A full example of the problem and our
solution is given in Section 4.1.

It should be noted, that this work defines rotational diversity in a temporal
manner. That is, the solution to multiple subsequent instances of a problem has
to differ in the assignments made. This is different from the notion of solution
diversity, where it is desirable to find multiple distinctly diverse solutions to one
instance of a problem [7, 8, 9, 10].

We develop an method, that combines profits and affinities, a metric to
describe the state of rotation, into a single optimization criterion. Solving this
model incrementally, that is, at each cycle, allows to control rotational diversity.
A central component for this control is the strategy, that defines how profits and
affinities are combined. Processwise, the method is split into two sub-problems:
The outer problem which augments the original profit maximization objective
with additional information about the state of rotational diversity, while the inner
problem solves the adjusted general assignment problem in a single execution of
the solver for the assignment problem.

Part of the technical contribution is the presentation of five strategies for
this combination of values. All of these strategies can be further combined with
a Limited Assignment extension, that restricts the possible assignments between
tasks and agents with the goal to more rigorously enforce the solver to produce
diverse solutions. Using Limited Assignment increases the ability to maintain
rotational diversity, but with a trade-off in profit.

As part of the experimental evaluation, three case studies are considered.
The first case study is a multi-cycle extension of the multiple knapsack problem,
and in the second, the multiple subset sum problem is considered in a multi-cycle

76

Related Work

environment (MCMSSP). The third case study is a real-world case study of test
case selection and assignment problem (TCSA), originating from the software
engineering domain. Our results show that in all case studies rotational diversity
can be effectively maintained by the introduced method, while sacrificing only a
small percentage of the original goal of profit maximization, e.g. less than 4%
in TCSA.

In previous work [11], we introduced the problem of rotational diversity
in multi-cycle assignment problems and presented initial strategies to address
the problem for the first time. This paper builds upon the existing results
with additional insights and explanations, as well as an extended experimental
evaluation. We furthermore introduce the Limited Assignment, which enforces
diversity through manipulating the compatibility between tasks and agents.
This extended strategy can be combined with any of the previous approaches
and shows to be effective to further improve the rotational diversity in our
experiments.

The remainder of this paper is structured as follows: Section 2 gives an
overview on the related work in the area of general assignment problems,
assignments under uncertainty and alternative approaches to our method, then
Section 3 introduces and formalizes the problem of multi-cycle assignment with
rotational diversity. Our method to approach rotational diversity is presented in
Section 4 along with the six evaluated strategies. In Section 5, we perform an
experimental evaluation on two case studies before concluding the paper with a
final discussion in Section 6.

2 Related Work

The general multi-cycle assignment problem is a variant of the General
Assignment Problem (GAP) [12, 13, 14]. A set of tasks, each associated with a
profit and a weight, has to be assigned to a set of agents with limited capacity.
The goal is to maximize (or minimize) the summed profits of the assigned
tasks, while the weights do not exceed the agent capacities. Not all tasks are
mandatory to be assigned. Profits and weights can vary between agents. The
classical assignment problem formulates a cost minimization objective, although
maximization, which we use throughout this work, is also commonly found in
problem variants.

In this paper, we formulate rotational diversity in terms of the broad class of
general assignment problems, as our contribution is steered towards the general
rotation mechanism. The closest problem variant is the group of knapsack
problems. One or multiple agents have to be filled in to maximize the value of the
selected tasks [15]. A multi-cycle knapsack variant is presented in [16], although
only the unassigned items from previous cycles are available in subsequent cycles.

Assignment rotation is found in job rotation scheduling [6]. Here, a common
goal is to find schedules and work assignments for humans to avoid fatigue,
boredom [17] or accidents [18], or to evenly distribute shifts to personnel [19, 20].
This is often solved by a fixed schedule, where the assignment between workers and

77

C. Multi-Cycle Assignment Problems with Rotational Diversity

their tasks frequently changes. While there is existing work on repairing schedules
in case of disruptions or stochastic elements [21], for example in the application
of university timetabling [22] or repair scheduling [23], these approaches require
a defined planning horizon with one, possibly large, optimization problem in
the beginning and a number of follow-up problems in case of disruptions. A
specific application is further scheduling and assignment under the awareness of
uncertainties within the given data [24], especially for varying task durations
or weights, which can be addressed by robust local search [25] or stochastic
optimization models [26]. In our approach, we solve subsequent assignment
problem without a fixed planning horizon. That is, we do not fix one assignment
over multiple cycles, but have to repeatedly create individual assignments
at each cycle due to changing availability of agents and tasks. In relation
to the terminology introduced in [21], our presented method is a progressive
technique, where each part of the overall schedule is created sequentially at each
cycle. However, their framework and terminology addresses the ability to repair
schedules under uncertainty and does not include the desire to actively introduce
diversity in the assignments between each time-step or cycle.

Opposite to diverse rotations is the concept of persistence in robust
optimization [27, 28]. Persistence [27, 29] considers finding stable assignments
during optimization, such that improvements in the solution objective only cause
small changes in the variable assignment of the solution. By maximizing the
affinity between tasks and agents, we can adjust the presented method to support
persistent instead of diverse assignments in subsequent iterations of a problem
using similar techniques. We note that the concept of affinity, which we introduce
in Section 3.1, can be transferred to multi-cycle problems with persistence.

Fair allocations, which maximize a social welfare function, are considered
in game theory research. Mechanisms for the resource distribution include
combinatorial auctions and exchanges [30, 31]. Both have shown to result in a
balanced and fair distribution of resources, although it is complex to determine
which resources to offer in an auction or exchange and who is the resulting
winner [32]. Recent works further discuss aspects of repeated matching between
tasks and agents, under consideration of dynamic preferences and fairness [33],
or repeated matching of previously unmatched tasks [34]. Because combinatorial
auctions and exchanges can be decentralized, these techniques are commonly
used for resource allocation in multi-agent systems [35, 36].

In this work, we do not directly solve the GAP, but instrument a general
solver to maintain a fair distribution of tasks to agents. An alternative is a
system where agents exchange tasks among them to achieve rotation. However,
preliminary experiments showed this approach to be inferior to the one presented.
The evaluated exchange model first focused on profits only, and afterwards aimed
for a fair rotation by allowing one-task exchanges between agents. It showed that
a high-quality GAP solution limits the number of choices for one-task exchanges
and only minimal improvements in rotational diversity occur.

78

Problem Description

Cycle 1: GAP(T1,A1)

Balance
Profit vs. Rotation

Cycle 2: GAP(T2,A2)

Balance
Profit vs. Rotation

. . .

Cycle k: GAP(Tk,Ak)

Balance
Profit vs. Rotation

. . .

T1

T2

...

Tn1

A1

A2

...

Am1

T1

T2

...

Tn2

A1

A2

...

Am2

T1

T2

...

Tnk

A1

A2

...

Amk

Inner Problem

Outer Problem

Figure C.1: Multi-Cycle Assignment Problem: At each cycle an independent
GAP has to be solved, which includes an optimization objective, e.g. maximizing
the sum of profits of all assigned tasks. The sets of available tasks and agents
can vary between cycle due to different availability.

3 Problem Description

We first introduce the multi-cycle assignment problem as a combination of
two sub-problems, which we further define afterwards. Then, we discuss the
characteristics of the class of general assignment problems at the core of our
approach. Finally, we formulate and discuss the requirements for maintaining
rotational diversity over multiple cycles.

In a multi-cycle assignment problem, every cycle is a distinct planning unit,
because, due to the availability of tasks and agents, planning ahead is not
possible. Therefore, rotational diversity has to be considered at every cycle.
This separates the overall problem into two partial sub-problems (as visualized
in Figure C.1): First, the inner problem is to solve an independent GAP in each
cycle k. The GAP selects a subset of the available tasks while maximizing the
sum of their values.

Second, the outer problem aims to maintain a diverse assignment between
tasks to agents, meaning that the tasks are frequently assigned to all compatible
agents over subsequent cycles. As a mechanism for this balance, we utilize the
affinity between a single task and each agent, and the affinity pressure as a
metric to evaluate the whole set of tasks and agents. The balancing mechanism
between profit optimization and rotation of tasks, is called a strategy.

The inner problem, as well as both the affinity and the affinity pressure will
be further defined and introduced in the following section. As part of our method,
we introduce six strategies for achieving rotational diversity in Section 4.2.

79

C. Multi-Cycle Assignment Problems with Rotational Diversity

3.1 Multi-Cycle General Assignment Problem

The general assignment problem, GAP(T k,Ak), receives as inputs the tasks and
agents available at cycle k. The set of agents, Ak, consists of m integers i, each
with a fixed capacity, bi, and the set of tasks, T k, consists of n integers j. Both
sets are given at each cycle and can unpredictably change from cycle k to k + 1.

The relation between a task and an agent has three fixed attributes: both
the profit pij and the weight wij are externally fixed and describe the benefit
respectively the resource demand of task j when assigned to agent i. Each task
further has a set of compatible agents, Ckj , that it can be assigned to.

The affinity aij is not fixed, but changes between cycles. The affinity
numerically describes the preferred assignments from tasks to agents, with higher
values giving a higher preference for a task to be assigned to that agent. It is not
given as a problem input parameter, unlike the profit, weight and compatibility,
but it is determined as part of method to maintain rotational diversity.

Additionally, we refer to values in the context of the optimization objective
of the GAP. Here, the value vij is a combination of profits and affinities, a way
to balance profit- and rotation-oriented assignments. For a standard assignment
problem without affinities, the values equal the profits.

The affinity between a task and an agent, aij , is the number of cycles since
the last assignment of task j to agent i. The affinity quantifies the preference
of a task to be assigned to certain agents during the next cycles. The affinity
pressure is the maximum of all affinities in the set of tasks. Both the affinity
and the affinity pressure will be further discussed after a definition of the inner
assignment problem.

Definition 3.1. Multi-Cycle General Assignment Problem

Maximize
∑
i∈Ak

∑
j∈T k

xijvij (C.1)

subject to
∑
j∈T k

xijwij ≤ bi, ∀ i ∈ Ak (C.2)

∑
i∈Ak

xij ≤ 1, ∀ j ∈ T k (C.3)

with

k : Index of the current cycle
Ak : A set of integers i labeling m agents
T k : A set of integers j labeling n tasks
bi : Capacity of agent i
vij : Value of task j when assigned to agent i (C.4)
wij : Weight of task j on agent i

xij :
{

1 Task j is assigned to agent i ∧ i ∈ Ckj
0 otherwise

(C.5)

80

Maintaining Rotational Diversity

The problem’s objective is to maximize the total sum values of the
assigned tasks (Equation C.1). Each agent can hold multiple tasks up to
its resource limit (Equation C.2) and each task is assigned to at most one
agent (Equation C.3). The assignment of tasks to agents is constrained by
compatibility constraints (Equation C.5), such that each task can only be placed
on a subset of agents.

We state a very general GAP formulation, although our proposed approach is
able to handle different GAP variants. The most important and required proper-
ties of the formulation are: a) the possibility to have different values per task and
agent (Equation C.4), and b) the value maximization objective (Equation C.1).

GAP is NP-hard as it reduces to the NP-hard one-dimensional knapsack
optimization problem [37].

3.2 Rotational Diversity

To maintain rotational diversity, it is necessary to control the affinities between
tasks and agents. As an indicator, the affinity pressure must not grow too high,
which can be avoided by a diverse rotation between tasks and agents.

As part of solving the outer problem, it is necessary to balance profit
maximization and reducing affinities by rotating the assignments from tasks to
agents. Additional complexity stems from the fact, that at each cycle different
sets of agents and tasks are available and the assignment can only take the
current cycle into account.

The optimization in the outer problem could be solved by an exhaustive
search of possible combinations between profits and affinities, such that an
optimal solution can be found. In practice, this is infeasible, as it requires to
solve the computationally expensive inner GAP problem multiple times before
deciding for the final solution.

4 Maintaining Rotational Diversity

The central idea for maintaining rotational diversity is the manipulation of
the values contributing to the objective of the inner assignment problem
(see Figure C.2). This adjustment steers the optimization process towards
an assignment which is balancing profit maximization and making diverse
assignments. The adjustment is made according to a strategy and the state of
the available resources, that is tasks and agents available in the current cycle,
and their affinities.

Before introducing different adjustment strategies, we describe the mechanism
to calculate the affinities and the affinity pressure, and the relevance of their
values.

4.1 Assignment Diversity

To achieve rotation of tasks over agents in subsequent cycles, the cycle-specific
assignment problem needs an incentive to assign a task to a different agent than

81

C. Multi-Cycle Assignment Problems with Rotational Diversity

Profits Affinities Values[p1,1 ··· p1,n

...
. . .

...
pm,1 ··· pm,n

]
©

[a1,1 ··· a1,n

...
. . .

...
am,1 ··· am,n

]
=
[v1,1 ··· v1,n

...
. . .

...
vm,1 ··· vm,n

]

Figure C.2: In the outer problem, profits p and affinities a are combined by a
strategy © into single values v. These values are used to optimize the GAP in
the inner problem.

in previous assignments.
This incentive is described by the notion of affinities between tasks and agents,

describing how important an assignment of a task to an agent is to achieve high
rotational diversity. A low affinity value corresponds to a recent assignment from
the task to the agent, whereas a high affinity indicates the necessity to make
this assignment again soon.

The affinities are determined by Affinity Counting.

Definition 4.1. Affinity Counting

akij =

0 if i /∈ Ckj (C.6a)
1 if k = 1 ∨ xk−1

ij = 1 (C.6b)

ak−1
ij + 1 if i ∈ Ak ∧ j ∈ T k (C.6c)

ak−1
ij otherwise (C.6d)

Affinity Counting counts the number of cycles since the last assignment from
task j to agent i, starting from 1 at the first cycle or the last assignment (C.6b).
If a task and agent are incompatible, the affinity is always 0 (C.6a). At cycle k,
the affinity increases for non-selected, but possible assignments in the previous
cycle k − 1 (C.6c)(C.6d).

Naturally, the affinity values increase over time as each task can only be
assigned to one of the compatible agents in each cycle. This growth is anticipated
and acceptable to a certain degree, while at the same time, growing affinities
show the need to make the corresponding assignment soon.

To monitor the overall state of rotational diversity, we define the Affinity
Pressure metric.

Definition 4.2. Affinity Pressure (AP)
The Affinity Pressure is defined per cycle k and task j:

APkj =
∑
i∈Ak akij
|Ckj |

−
|Ckj |+ 1

2

It is the scaled difference between the actual and ideal affinities, as described
below. For the AP calculation, only the task and agents available in that cycle

82

Maintaining Rotational Diversity

are considered. Hence, tasks and agents can be added or completely removed
without affecting the AP values of the remaining tasks.

In an ideal rotation setting, the affinities of a task j form the set { i | 1 ≤
i ≤ |Ckj | }, with its sum being the triangular number 1

2 · |C
k
j | · (|Ckj |+ 1). As the

task is (ideally) assigned in every cycle, the last assignment has affinity 1, the
previous assignment has affinity 2, and so on. With |Ckj | compatible agents, the
longest unassigned task then has affinity |Ckj |.

However, in a practical rotation setting, this perfect rotation is hindered by
non-availability and limited capacities of the agents. To evaluate the state of
rotational diversity, it is, therefore, crucial to consider how long a task has not
been assigned to each agent, but also, from an agent’s perspective, the time it
has not executed certain tasks.

The AP metric is derived from the difference between the sum of current
affinities and the ideal values. For comparability and normalization, it is scaled
by the number of possible agents: 1

|Ck
j
| ·
[∑

i∈Ak akij − 1
2 · |C

k
j | · (|Ckj |+ 1)

]
In this formula, the minuend describes the current affinities relative to the

number of possible agents, the subtrahend the ideal case with fully regular
rotation. A positive excess indicates missed assignments to achieve ideal rotation.
Note that the bottom value of 0 is an ideal value, which in practice is usually
not achievable, due to selection and limited availability of tasks and agents, and
the necessary selection in the GAP assignment problem. During the first |Ckj |
cycles, the AP for a task is negative, as initially all affinities equal 1. After |Ckj |
cycles, the AP is always ≥ 0.

Example. Figure C.3 presents an example of affinities and their development
over four cycles. In the initial cycle 1, all affinities equal 1 (or 0 for incompatible
assignments) and there is no preferred assignment among all possible assignments.

Over the next cycles, tasks T1 and T2 rotate over all compatible agents,
resulting in the AP value 0 for T1 and T3. Task T3 does not rotate, but is
assigned to agent C in two subsequent cycles, which increases the affinity for the
assignment to agent B and raises the AP to 0.5, an indicator for the imbalance of
T3. Note that, in cycle 3, T3 is unavailable, but this does not affect its affinities
in cycle 4.

Theorem 4.3. For any set of tasks T k and agents Ak with constant availability,
if a task j is always assigned to one of the agents for which it has the highest
affinity, a perfect rotation is achieved and the Affinity Pressure is 0.

Proof. With N possible agents, it takes N cycles to assign a task once to every
agent. The affinity is set to 1 after the assignment was made and is increased
by 1 at every cycle. After each assignment was made once, the affinity to the
first assigned agent is N again, the affinity of the second assigned agent is
N − 1, and the affinity of the last assigned agent is 1. The sum of affinities
is
∑
i∈Ak akij =

∑N
i=1 i = 1

2N(N + 1). Using Definition 4.2, and because the
number of available agents is constantly |Ckj | = N , it follows AP = 0.

83

C. Multi-Cycle Assignment Problems with Rotational Diversity

A B C AP
T1 1 1 0 -0.5
T2 1 1 1 -1.0
T3 0 1 1 -0.5

(a) Cycle 1

A B C AP
1 2 0 0
2 1 2 -0.3
0 2 1 0

(b) Cycle 2

A B C AP
T1 2 1 0 0
T2 1 2 3 0
T3 0 3 1 0.5

(c) Cycle 3

A B C AP
1 2 0 0
2 3 1 0
0 3 1 0.5

(d) Cycle 4

Figure C.3: Affinities and Affinity Pressure of three tasks T1, T2, T3 and
agents A, B, C over four cycles (Bold: Ideal; Highlighted: Assignment in cycle k;
Strikethrough: Task unavailable)

Algorithm 1 Solving a single cycle of the multi-cycle assignment problem under
consideration of rotational diversity.
1: function ExecuteCycle(T k,Ak)
2: AP k ← Calculate Affinity Pressure AP(T k, Ak)
3: T kV alues ← Strategy(T k, Ak)
4: Assignment← Solve GAP(T kV alues, Ak)
5: T k, Ak ← UpdateAffinity(T k, Ak, Assignment)
6: return T k, Ak, Assignment
7: end function

4.2 Strategies

A central strategy balances profit maximization and diverse assignments, by
controlling the combination of profits and affinities into values. This combination
then steers the focus of the single-objective GAP solver.

The general optimization scheme for a single cycle is shown in Algorithm 1.
First, the state of the system, given by available tasks and agents, and the affinity
pressure are gathered. Second, the task values are derived, and the cycle’s GAP
is solved. Finally, based on the actual assignments, the affinities of the available
tasks are updated. This procedure adds little overhead to a process where no
rotation is considered, as the main computational effort remains in the central
GAP.

The selected strategy remains constant for the whole process, i.e. every cycle
uses the same strategy. It is nevertheless possible for the strategy to be adaptive
and adjust its behaviour according to current state of tasks, agents, and affinities.
At the beginning of every cycle, the strategy calculates the profit values, based
on profits, affinities, and (if required) other information about the current state.

84

Maintaining Rotational Diversity

These values are then taken as parameters in the current cycle’s GAP instance.
In the following, we present six strategies to control rotational diversity:

Strategy 1: Objective Switch (OS/γ)
The Objective Switch strategy maintains rotational diversity by monitoring the
affinity pressure, and, if it reaches a threshold γ, switches from profit to affinity
values:

vij ,

{
pij if γ > maxj∈T k APkj
aij otherwise

, ∀ i ∈ Ak, j ∈ T k

The threshold γ is a fixed, user-defined configuration parameter, and selected
according to the desired trade-off between maximized profits and high rotational
diversity.

The objective switch strategy exchanges the focus of the optimization
procedure to specifically address a single optimization goal. It has the intuition,
that it is most effective to focus on the rotation goal as soon as the need,
quantified by the affinity pressure and γ, arises.

Strategy 2: Product Combination (PC)
In the Product Combination strategy, profit and affinities are multiplied to form
the task values:

vij , pαij · a
β
ij , ∀ i ∈ Ak, j ∈ T k

The exponents α and β allow configuration of the strategy to emphasize
one aspect or to account for different scales of profits and affinities in specific
applications. In our experiments, we found a standard configuration of α = β = 1
to be intuitive and well-performing. Therefore, this strategy does not require
additional configuration, but allows for adjustments if necessary.

In the PC strategy, there is not active reaction on the overall state of rotational
diversity, as in the OS/γ strategy, but higher affinities values implicitly influence
the profits and put an emphasis on tasks with missing rotation.

Strategy 3: Weighted Partial Profits (WPP)
The WPP strategy calculates task values with a weighted sum:

vij , λkj ·
pij

max
i∈Ak

max
j∈T k

pij
+ (1− λkj) · aij

max
i∈Ak

max
j∈T k

aij
, ∀ i ∈ Ak, j ∈ T k

The task- and cycle-specific weight parameter λkj balances the influence of each
objective on the final value vij . λkj is self-adaptive and depends on the ratio
between ideal and actual affinities, similar to the affinity pressure. When the
rotational diversity is high, the influence of the profits is high, too, otherwise
the affinities have higher influence:

λkj =
1
2 · |C

k
j | · (|Ckj |+ 1)∑
i∈Ak aij

, ∀ j ∈ T k

To account for different value ranges, both profits and affinities are scaled to
[0, 1] by their respective maxima.

85

C. Multi-Cycle Assignment Problems with Rotational Diversity

Strategy 4: Fixed Objective: Profit (FOP)
Each task value equals the static profit value:

vij , pij , ∀ i ∈ Ak, j ∈ T k

Strategy 5: Fixed Objective: Affinity (FOA)
Each task value equals the affinity value:

vij , aij , ∀ i ∈ Ak, j ∈ T k

FOP and FOA represent special cases of the PC strategy, with β = 0
respectively α = 0. These strategies are the two most extreme approaches,
because each of them ignores the other goal, albeit profits or affinities. They
serve as comparison baselines to evaluate the trade-offs by the other strategies.

In contrast to the discussed strategies, which manipulate the task values,
we consider an additional approach to maintain rotational diversity. This
approach does not only manipulate the task values, but also restricts the possible
assignments between tasks and agents.

4.3 Limited Assignment

The Limited Assignment approach explicitly constrains a task i to be assigned
to compatible and available agents with a high affinity value. This is achieved by
artificially limiting the possible assignments through temporarily manipulating
the compatibility between tasks and agents. Limited Assignment does not further
manipulate the profit values, but only works on the level of possible assignments,
i.e. the task value equals the static profit value: vij , pij Therefore, this
approach can be combined with any of the strategies as an additional control
mechanism.

Specifically, the compatibility between a task and an agent is removed if
the affinity aij is below a threshold value. The threshold value th can either
be a static, user-defined parameter, or dynamically adapted. As a heuristic for
the threshold value, we propose using the mean affinity between a task and all
available and compatible agents, rounded to the next smallest integer:

Thresholdj =

 1
|Ckj |

∑
i∈Ck

j

aij

, ∀ j ∈ T k (C.7)

As this approach reduces the search space of possible solutions for the instance,
it can lead to the removal of optimal solutions from the solution space. However,
in many settings it is neither necessary nor possible to find the optimal solution,
and finding a near-optimal solution in a reduced solution space is sufficient.

To further understand the Limited Assignment approach, we revisit the
example for affinity calculation (Figure C.3) from Section 4.1.

86

Experimental Evaluation

A B C Th
T1 1 1 0 1
T2 1 1 1 1
T3 0 1 1 1

(a) Cycle 1

A B C Th
1 2 0 1
2 X 2 2
0 2 1 1

(b) Cycle 2

A B C Th
T1 2 1 0 1
T2 X 2 3 2
T3 0 3 1 2

(c) Cycle 3

A B C Th
1 2 0 1
2 3 X 2
0 3 X 2

(d) Cycle 4

Figure C.4: Effect of Limited Assignment on three tasks T1, T2, T3 and agents
A, B, C over four cycles (Th: Threshold value; X: Compatibility temporarily
removed through Limited Assignment; Bold: Ideal next assignment; Highlighted:
Assignment in cycle k; Strikethrough: Task unavailable)

Example. Figure C.4 presents an example of affinities and their development
over four cycles. In the initial cycle 1, all affinities equal 1 (or – for incompatible
assignments) and there is no preferred assignment among all possible assignments.

Over the next cycles, tasks T1 and T2 rotate over all compatible agents,
resulting in the AP value 0 for T1 and T3. Task T3 does not rotate, but is
assigned to agent C in two subsequent cycles, which increases the affinity for the
assignment to agent B and raises the AP to 0.5, an indicator for the imbalance of
T3. Note that, in cycle 3, T3 is unavailable, but this does not affect its affinities
in cycle 4.

5 Experimental Evaluation

We consider three problems for evaluation: a) a multi-cycle variant (MCMKP)
of the known multiple knapsack problem (MKP) to evaluate trade-offs between
the strategies; b) a multi-cycle variant (MCMSSP) of the multiple subset sum
problem (MSSP) to evaluate the behaviour with a smaller number of agents
and low task availability; c) test case selection and assignment (TCSA) as a
real-world case study from the software testing domain to evaluate the practical
interest of our approach.

5.1 Implementation and Setup

Our strategies and the experimental setup are implemented in Python. The
assignment problem is modeled with MiniZinc 2.0 [38], following the presented
GAP formulation, and is solved with IBM CPLEX 12.8.0. Our implementation

87

C. Multi-Cycle Assignment Problems with Rotational Diversity

and all test data is available online at https://github.com/HelgeS/mcap_
rotational_diversity.

We note that there are further domain-specific heuristics and exact algorithms
to solve knapsack problems, e.g. [39], but as the GAP model and its solver are
a black-box to our strategies, their optimization is not in the scope of our work,
and we employ a generic model formulation and solver. To ensure the solution
quality with a reasonable time-contract for the solver, we compared it on a set
of sample instances with mulknap1, an exact MKP solver [40]. With a 60 second
timeout, CPLEX achieves on average 99.5 % of the optimal solution calculated
by mulknap.

All strategies are run on each scenario with a 60 second timeout for the GAP
solver. The thresholds γ for the Objective Switch strategy are 10, 20, 30, and
40, except for the MCMSSP problem, where we use smaller γ of 1, 2, 4, and 10.

We evaluate the full rotation of tasks over agents, both looking at all tasks,
and at each individual task. One full rotation over all tasks is achieved, when
each task was assigned once to all compatible agents. The rotation over one
task describes how often a task is assigned to its compatible agents on average.
These numbers can be different. If few tasks are not rotated, those forestall full
rotations, but allow other tasks to be frequently rotated.

Furthermore, we compare the achieved profit of the assignments with the
profit of the FOP strategy, which does not consider rotation and only maximizes
profit. As the other experimental parameters are the same and also the same
assignment model is used, FOP simulates the baseline setting without rotation-
awareness.

We have considered an additional baseline, where the full multi-cycle
assignment problem is optimized as one single optimization model. This differs
from our method, as each task’s and agent’s availability is known already in the
beginning. However, due to the exceeding model size, solving the extended GAP
model is computationally expensive and did not yield a comparable solution
within 24 CPU hours, which is substantially more than the total computational
cost of successively optimizing individual cycles. Therefore, we do not further
consider this baseline.

5.2 Multi-Cycle Multiple Knapsack Problem

MKP is a variant of the 0-1 knapsack problem, and thereby of GAP, with multiple
agents, i.e. knapsacks [13, 41].

We extend MKP to a multi-cycle variant (MCMKP) with limited availability
of tasks and agents. In every cycle, the same MKP instance has to be solved
under consideration of the assignments made in previous cycles and changing
availability of tasks and agents.

1http://www.diku.dk/~pisinger/codes.html

88

https://github.com/HelgeS/mcap_rotational_diversity
https://github.com/HelgeS/mcap_rotational_diversity
http://www.diku.dk/~pisinger/codes.html

Experimental Evaluation

5.2.1 Setup

To generate problem instances, we employ the procedure by Pisinger (1999) [40],
as described in Fukunaga (2011) [42], and extend it to the notion of compatibility
and availability. An instance is generated by first creating random tasks
with weights from a uniform distribution (wj ∼ U [10, 1000]). The profits
of the tasks are either uncorrelated, i.e. profits are drawn from the same
uniform distribution, or weakly correlated, i.e. the profits are calculated by
pj = wj + U [−99,+99] ,∀ j ∈ T k.

After generating the tasks, the agents a1, a2, ai, . . . , am−1 are generated and
set to 40–60% of the tasks’ weight. An exception is the last agent am, whose
capacity is set such that the total capacity of all agents equals half of the tasks’
demand. The instance sizes are 30/75, 15/45, and 12/48 agents, respectively
tasks. For this generation scheme, a ratio |T k|/|Ak| slightly larger than 2 leads
to hard instances, while instances of higher ratios become easier to solve [42].
The number of cycles is three times the number of tasks, to allow multiple
assignments between tasks and agents, even if an agent has only capacity for
one task.

A notion of compatibility is implicit in the generation procedure. Tasks that
do not fit into an agent’s capacity are automatically incompatible. However, this
skews the number of compatible tasks to those agents with high capacities, and
puts more emphasis onto their assignments.

From all combinations of the four parameters, we generate 24 instances with
in total 4032 assignment problems for evaluation. Every instance is run with
each strategy alone and in combination with Limited Assignment.

5.2.2 Pure Strategies

We first discuss the rotational diversity results grouped by agent and task
availability, that is in four different groups, as this is the main differentiating
attribute of the MCMKP scenarios. The results for the pure strategies without
limited assignment are shown in the upper half of Table C.1 and the results for
the combination with limited assignment in the lower half. The profit values of
all MCMKP results have been scaled in relation to the best achieved profit, which
corresponds to the profit-only optimization without limited assignment. That
means, also the results for the strategies with limited assignment in Table C.1
are scaled in relation to the results without limited assignment. All strategies
rank between the extreme baselines, FOA and FOP, that only focus on one
aspect of the problem formulation, either rotation or profit optimization.

In the MCMKP, specifically the OS/γ strategies are effective to achieve either
good rotation or good profit optimization while still having better results in the
other optimization goal in comparison to the baselines. However, as the γ value
is a fixed parameter of these strategies, the strategies cannot effectively balance
the two goals for a better result. With a low γ = 10, OS/10 shows similar
performance than FOA, but with a small improvement on profit optimization in
cycles where the overall affinity pressure is low. With the higher γ = 40, OS/40

89

C. Multi-Cycle Assignment Problems with Rotational Diversity

Available Agents 75% 75% 100% 100%
Available Tasks 75% 100% 75% 100% Average

(a
)
P
ur
e
St
ra
te
gi
es

R
ot
at
io
na

lD
iv
er
si
ty OS/10 2.0 (4.3) 2.0 (4.6) 3.0 (5.3) 3.3 (5.9) 2.0 (5.0)

OS/20 1.6 (3.8) 2.0 (4.4) 1.6 (3.9) 3.0 (5.2) 2.0 (4.3)
OS/30 1.0 (3.1) 1.3 (3.8) 1.3 (3.3) 2.3 (4.4) 1.0 (3.7)
OS/40 0.6 (2.7) 1.3 (3.3) 0.6 (3.0) 1.6 (3.8) 1.0 (3.2)
PC 0.0 (4.2) 0.0 (4.4) 0.0 (5.4) 0.0 (5.9) 0.0 (5.0)
WPP 1.3 (4.0) 1.6 (4.2) 1.6 (4.9) 1.6 (5.3) 1.0 (4.6)

FOA 2.3 (4.5) 2.0 (4.8) 3.0 (5.7) 3.3 (6.1) 2.0 (5.3)
FOP 0.0 (1.6) 0.0 (1.5) 0.0 (1.9) 0.0 (2.0) 0.0 (1.7)

P
ro
fit

(%
of

FO
P
) OS/10 87.8 83.7 88.5 84.9 86.2

OS/20 90.0 84.6 92.0 86.8 88.4
OS/30 92.9 87.1 94.2 89.7 91.0
OS/40 94.9 89.2 95.7 92.1 93.0
PC 92.3 90.5 90.5 90.5 91.0
WPP 88.6 83.1 93.3 88.1 88.3

FOA 87.0 82.8 86.8 84.1 85.1
FOP 100.0 100.0 100.0 100.0 100.0

(b
)
Li
m
it
ed

A
ss
ig
nm

en
t

R
ot
at
io
na

lD
iv
er
si
ty OS/10 2.0 (4.4) 2.0 (4.7) 2.6 (5.3) 3.3 (6.1) 2.0 (5.1)

OS/20 1.6 (4.1) 2.0 (4.6) 1.6 (4.7) 3.0 (5.7) 2.0 (4.8)
OS/30 1.3 (3.7) 1.6 (4.3) 1.3 (4.5) 2.3 (5.2) 1.0 (4.4)
OS/40 1.0 (3.4) 1.3 (4.0) 0.6 (4.2) 1.6 (4.6) 1.0 (4.1)
PC 0.0 (4.2) 0.0 (4.5) 0.0 (5.4) 0.0 (5.9) 0.0 (5.0)
WPP 2.3 (4.4) 2.3 (4.6) 3.3 (5.8) 4.0 (6.0) 3.0 (5.2)

FOA 2.0 (4.5) 2.0 (4.8) 3.0 (5.8) 3.3 (6.2) 2.0 (5.3)
FOP 0.0 (2.9) 0.0 (3.0) 0.0 (3.5) 0.0 (3.6) 0.0 (3.3)

P
ro
fit

(%
of

FO
P
) OS/10 87.6 83.5 88.2 84.8 86.0

OS/20 89.1 84.3 90.8 86.4 87.6
OS/30 91.8 86.3 91.6 88.7 89.6
OS/40 93.0 88.3 92.3 90.4 91.0
PC 92.0 90.2 90.4 90.4 90.8
WPP 85.5 81.2 86.3 83.2 84.1

FOA 87.0 82.8 86.7 84.1 85.1
FOP 95.9 95.6 91.3 94.5 94.3

Table C.1: Results for MCMKP. The best results for each (a) pure strategies and
(b) Limited Assignment are marked in bold without considering the FOA/FOP
baselines.

has the highest profit among the strategies, except FOP, and still better rotation
results than FOP and, in terms of full rotations, also than PC.

The PC strategy multiplies profits and affinities into one value and achieves
competitive results for the MCMKP scenario in terms of profit maximization
and average rotations, but it does not yield a schedule with full rotations of task.
This is an indication of one or a few tasks that are blocked from achieving full
rotations, e.g. because they have low profit values or limited availability either in
themselves or the compatible agents, and are therefore not sufficiently scheduled.
As noted before, the MCMKP generation procedure shifts the compatibility of

90

Experimental Evaluation

tasks to the last agent, to which most tasks are compatible. Still, its capacity
is limited and only a few tasks, especially those with a height weight, can be
assigned per cycle. MCKMP thereby creates a bottleneck for diverse assignments,
which PC does not efficiently overcome. Strategies which focus more directly on
achieving rotational diversity have an advantage in that case. However, we see
this result specifically in the MCMKP scenario, but not for the other case study,
which we will discuss below.

WPP shows a similar performance as OS/20 while following a more flexible
value combination strategy than switching the objective. This results in very
similar average results over all scenarios, but larger differences, for example in
the case of 100% availability for both agents and tasks. Here, OS/20 achieves 3
full rotations, but WPP only 1.6, even though the average rotations are similar
with 5.2 respectively 5.3. We can attribute the potential miss of full rotations in
WPP to the same causes as PC as both strategies follow a similar approach of
combining the profit and the affinities into a single value, whereas OS/γ uses
either the one or the other.

Furthermore, we analyze the influence of varying availability on the achievable
rotations. As the setting is such that a selection of tasks has to occur (the resource
demand is higher than the resource supply), the availability of a large number of
agents has a stronger influence than a high task availability. However, for making
diverse assignments, a high task availability is beneficial. This can be seen when
comparing the results with 75%/100% and 100%/75% agent respectively task
availability. The more profit-oriented variants of OS/γ achieve better rotation
in the former than in the latter case, as OS/γ switches focus, and potentially
the optimization objective of a cycle does not match the availability of the tasks.
Then, one task might only be present at profit maximization, but not for rotation
optimization.

5.2.3 Limited Assignment

When considering the strategies in combination with Limited Assignment, where
the compatibility between tasks and agents is limited to those pairings with high
affinity values, we observe two main effects in the MCMKP case study. First,
reducing the search space for assignments is effective for increasing rotational
diversity. For all strategies, an increase in average rotations can be observed and
for all strategies, except PC, also an increase in full rotations. Even FOA, which
already in its pure version optimizes rotations can benefit from the limitations
on possible assignments, albeit only to a small degree. This is an indication that
the pure version might make assignments with little benefit, either to optimize
the cycle’s objective by choosing two low-affinity tasks with small weights over a
high-affinity task with higher weight or due to limited time to solve the inner
problem. The biggest performance difference in rotational diversity is observed
for WPP, which maintains the highest level of rotational diversity, and actually
surpasses even the FOA baseline in terms of full rotations, but not average
rotations.

91

C. Multi-Cycle Assignment Problems with Rotational Diversity

84 86 88 90 92 94 96 98 100
Relative Profit (% of FOP)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
R
ot
at
io
ns OS/10 OS/20

OS/30
OS/40

PC

WPP

FOA

FOP

OS/10 OS/20

OS/30 OS/40

PC

WPP

FOA

FOP

Pure Strategy
With Limited Assignment

Figure C.5: MCMKP: Distribution of the average results for each strategy
without (marked with red circle) and with (marked with black X) limited
assignment. Rotations are calculated as Full Rotations+Average Rotations/10.

Second, while increasing the maintainability of rotational diversity through
limited the search space, solutions with a high profit value are potentially removed
and the total profit is expected to be reduced when using limited assignment.
This effect is reflected in the results, but only to a small degree for most strategies.
The largest difference occurs in the scenario with 100% available agents and
75% available tasks. Here, the profit of WPP is reduced by 7 and FOP by 8.7
percentage points.

5.2.4 Distribution of Results

In Figure C.5, the distribution of the average profit and rotational diversity
over all problem instances is visualized. Each point corresponds to the average
result of the strategy, including those with the additional limited assignment
strategy. The full and average rotations shown in Table C.1 are aggregated
into a single value as Full Rotations+Avg. Rotations/10. It shows the trade-off
between profit maximization and achieving high rotational diversity, as seen by
the extreme points FOP and WPP with limited assignment.

The figure visually confirms the previous discussion on the spread of the
strategies’ performance with WPP on the one end, achieving high rotational
diversity, but comparatively low profit-optimization, and FOP on the other end.
In between these extreme points, the other strategies are spread. In terms of
solution dominance, OS/20 and OS/40 without Limited Assignment show a
balanced performance that surpasses the other strategies in either one of the
objectives, while not being worse in the other.

However, in general, the role of the trade-off between rotations and profit has
to evaluated in the context of the specific use case. While it can be acceptable to
observe a moderate to high decrease in profit in some applications and therefore

92

Experimental Evaluation

maintain rotational diversity in a balanced manner, in other use cases profit
optimization is the main driver and rotations only of secondary importance.
Depending on how these two goals are valued, or if both are equally important,
a more informed decision on the applicable strategy can be made.

5.3 Multi-Cycle Multiple Subset Sum

The second experiment evaluates the proposed method on an extension of another
assignment problem variant, the multiple subset sum problem (MSSP) [13, 43].
In MSSP tasks are assigned to a number of identical bins with limited capacity,
such that the total sum of weights of packed items is maximized. For our GAP
formulation MSSP is implemented as an assignment problem with a number
of agents with equal capacity and tasks with same weight and profit. The
multi-cycle variant of MSSP (MCMSSP) requires, as in the previous experiments,
to repeatedly solve variations of a MSSP instance under the additional goal to
produce diverse assignments over subsequent cycles.

One practical example of this problem is described in [43]. In a production
planning setting where a given number of fixed size raw material is available
at each day, e.g. steel slabs, it is necessary to distribute the products, which
have to be produced, onto the slabs such that only little material is wasted. The
aspect of rotational diversity can be introduced if the raw material is of fixed
size, but with different attributes, e.g. color, and all products should be more
or less equally often produced in each material type. If the product demand is
further irregular, it is difficult to plan ahead and the product respectively task
availability can each between production cycles.

5.3.1 Setup

For problem instances, we base our generation procedure again on [42]. In this
scenario task weights are uniformly drawn from the low precision distribution
[10, 100] and a task’s profit equals its weight, pj = wj with the same weight
for all agents. All agents have the same capacity, bi = c,∀i ∈ Ak, where c is
chosen to be 50% of the weight of all tasks, c = 0.5

∑
j∈T k wj . Our focus in this

experiment is on the influence of task availability on the rotation mechanism.
Therefore, we do not limit the agents’ availability or the compatibility between
tasks and agents. All agents are available in every cycle and every task can be
assigned to every agent. However, the total capacity of the agents is limited,
such that a selection of tasks has to be made, and the availability of tasks is
limited. We generate instances of 100 cycles with 20 tasks and either 1 or 5
agents and a task availability of either 50 or 75% per cycle. Due to the smaller
number of agents in this experiment, we reduce the values for γ in the OS/γ
strategy to 1, 2, 4 and 10.

93

C. Multi-Cycle Assignment Problems with Rotational Diversity

Number of Agents 1 1 5 5
Num. of Tasks/Available 20 / 50% 20 / 75% 20 / 50% 20 / 75%

(a
)
P
ur
e
St
ra
te
gi
es

R
ot
at
io
na

lD
iv
er
si
ty OS/1 32 (44.9) 29 (55.5) 5 (7.6) 6 (9.5)

OS/2 28 (44.0) 36 (51.9) 4 (7.0) 5 (9.4)
OS/4 27 (43.7) 31 (49.0) 3 (5.7) 5 (9.1)
OS/10 27 (43.7) 28 (47.8) 1 (4.6) 2 (7.6)
PC 30 (44.1) 41 (49.8) 5 (7.6) 5 (9.0)
WPP 30 (43.7) 38 (48.4) 5 (7.4) 6 (9.0)

FOA 29 (45.4) 28 (55.5) 4 (7.8) 5 (9.5)
FOP 27 (43.7) 27 (47.8) 1 (4.4) 0 (6.6)

P
ro
fit

(%
of

FO
P
) OS/1 97.8 95.2 96.0 93.0

OS/2 99.5 97.1 96.5 93.2
OS/4 100.0 99.1 98.2 93.9
OS/10 100.0 100.0 99.8 97.7
PC 99.9 99.9 97.6 95.0
WPP 99.9 99.9 99.3 94.8

FOA 96.4 95.0 95.5 92.9
FOP 100.0 100.0 100.0 100.0

(b
)
Li
m
it
ed

A
ss
ig
nm

en
t

R
ot
at
io
na

lD
iv
er
si
ty OS/1 32 (44.9) 29 (55.5) 4 (7.5) 5 (9.4)

OS/2 28 (44.0) 36 (51.9) 4 (7.2) 5 (9.5)
OS/4 27 (43.7) 31 (49.0) 4 (7.0) 5 (9.3)
OS/10 27 (43.7) 28 (47.8) 2 (6.7) 3 (8.8)
PC 30 (44.1) 41 (49.8) 6 (7.7) 5 (9.1)
WPP 30 (43.7) 38 (48.4) 5 (7.6) 6 (9.1)

FOA 29 (45.4) 28 (55.5) 5 (7.7) 5 (9.5)
FOP 27 (43.7) 27 (47.8) 2 (6.7) 0 (8.6)

P
ro
fit

(%
of

FO
P
) OS/1 97.8 95.2 95.3 92.7

OS/2 99.5 97.1 96.7 92.9
OS/4 100.0 99.1 98.8 93.8
OS/10 100.0 100.0 99.5 97.9
PC 99.9 99.9 97.3 94.5
WPP 99.9 99.9 96.0 92.9

FOA 96.4 95.0 95.0 92.6
FOP 100.0 100.0 99.5 99.8

Table C.2: Results for multi-cycle MSSP. The best results for each (a) pure
strategies and (b) Limited Assignment are marked in bold without considering
the FOA/FOP baselines.

5.3.2 Single Agent Scenarios

The results for the MCMSSP experiments are shown in Table C.2. In the scenario
with only a single agent, the Limited Assignment approach has no effect, because
no compatibility between tasks and the single agent can be removed and it is
not part of this approach to completely remove tasks from the optimization
problem. Therefore, the results for the scenarios with a single agent are identical
to the previously discussed Pure Strategies. Due to the single agent scenario,
the number of full rotations is high and expresses how often each tasks has been
assigned, as there is no actual rotation over different but just being assigned or

94

Experimental Evaluation

not being assigned. Still, there is a difference visible between the strategies in
the diversity of the assignments and task selection. For example, in the scenario
with one agent and a task availability of 75%, the PC strategy with 41 full
rotations achieves 40% more rotations compared to OS/10 with 28 full rotations,
while maintaining a similar level of profit (99.9% vs. 100%).

In general, in the single agent scenarios, rotational diversity can be maintained
with only 0.1% reduction in profits by using the PC or WPP strategy. Selecting
the tasks to be assigned carefully is still important, as it is not possible to assign
all available tasks per cycle. The utilization of the agent and the percentage of
assigned tasks shows no major differences between the strategies. In the scenario
with 50% available tasks, on average 90% of these tasks are assigned, with an
agent utilization of 90%, including for the profit strategy. With 75% available
tasks, the utilization increases to 99% and 65–67% of the available tasks are
assigned on average.

5.3.3 Multiple Agent Scenarios

When comparing the results for five agents and 20 tasks, the difference is in
the task availability within each cycle, which is either 50 or 75%. Between the
results of the pure strategies and Limited Assignment, we see a similar effect as
before, such that Limited Assignment is effective to increase full rotations for
most strategies with a profit trade-off.

The difference between scenarios with five agents but different task availability,
i.e. 50% respectively 75%, shows as a higher task availability increases the
possible assignments and thereby the profit gap between rotation-oriented
strategies and the profit-only baseline FOP. A low task availability restricts the
possible assignments of all strategies and thereby leads to a smaller gap in profits.
Still, employing a rotational diversity strategy allows to control this trade-off.

5.4 Test Case Selection and Assignment

As a third and final case study, we employ the real-world application of Test
Case Selection and Assignment (TCSA) for cyber-physical systems [44], such as
industrial robots. TCSA usually occurs in Continuous Integration (CI) processes,
where new releases of the robot control software are regularly integrated and
released [45]. Typically, CI involves assigning test cases to test agents several
times a day. Comprehensive test suites exist, but available time and hardware
for their execution are limited. Then it is necessary to distribute a selection of
the most relevant test cases over the available agents. The test case relevance is
given by an upstream test case prioritization process [46, 47]. This priority can
be different at each cycle, due to discovered failures or changes in the system-
under-test. The assignment of tests to agents is constrained by the available
time and compatibility between test and agent. In the GAP terminology, the
test case priority resembles the profit, the test’s duration the task weight, and
an agent’s available time its capacity.

95

C. Multi-Cycle Assignment Problems with Rotational Diversity

Additionally, the availability of agents is influenced by maintenance, technical
faults, or short-term usage in other projects, and the set of test cases changes due
to the ongoing development. If TCSA were to be solved by a static assignment,
this changing availability would create a need for frequent updates and schedule
repairs. Therefore, a static schedule is not practically applicable without
additional effort. Instead, to capture the dynamic setting, an individual selection
and assignment has to be made at each cycle. Enforcing diverse assignments
increases the coverage of tasks and agents, and thereby the confidence into the
system-under-test.

5.4.1 Setup

We evaluate the strategies on TCSA, based on actual test data from our industrial
partner. A set of test cases is to be divided among a number of test agents. The
test case selection has to select those tests with the highest priorities, which
is assigned externally, and to ensure a rotation of tests between agents, such
that a test is frequently executed on all compatible agents. All test agents have
the same capacity, that is the time available for a test cycle, which is 10 hours.
Due to unique hardware specifications and different functionality, a test case is
compatible with approximately 60% of the test agents. The runtime of a test
case varies from 1 to 21 minutes, but is identical for each test agent. In practice,
test agents are not exclusively available for testing or might be defect and test
cases are temporarily removed from the test suite. Therefore, an average of 40%
of the agents and 10% of the test cases are unavailable for 3–7 cycles. In total,
we consider four scenarios, 20 agents with 750, 1500, and 3000 test cases, and 30
agents with 3000 test cases.

5.4.2 Pure Strategies

For the pure strategies, without additional Limited Assignment, the results are
shown in the upper half of Table C.3. In the smallest scenario, a full rotation of
all tests over all possible agents is achieved 14–15 times over 365 cycles, i.e. every
24–26 days. Here, each task is compatible to circa 12 agents (60%), and 60%
of the agents are unavailable for multiple cycles. For the larger scenarios with
the same number of agents, the number of full rotations reduces approximately
linear, but not the number of average rotations per task. This shows, that some
tests are not evenly rotated and hinder the completion of full rotations. With
a larger number of agents, the average number of rotations per tasks drops,
as there are more compatible agents and more cycles are necessary for a full
rotation.

The profits earned from the assignments (see lower half of Table C.3) are
close to the FOP baseline for all strategies in the smallest scenario, but decrease
with a higher number of tests, except for PC, which is able to balance profit
maximization and rotation better than the other strategies and even outperforms
FOA for complete rotations. For PC, the profit trade-off is always less than
10 %, and on average less than 4 % in comparison to the profit-oriented FOP.

96

Experimental Evaluation

Number of Agents 20 20 20 30
Number of Tasks 750 1500 3000 3000 Average

(a
)
P
ur
e
St
ra
te
gi
es

R
ot
at
io
na

lD
iv
er
si
ty OS/10 13 (22.0) 6 (15.5) 3 (9.3) 3 (8.4) 6 (13.8)

OS/20 8 (18.5) 6 (15.2) 3 (9.2) 3 (8.3) 5 (12.8)
OS/30 6 (17.0) 5 (14.2) 3 (9.0) 3 (8.1) 4 (12.1)
OS/40 6 (16.4) 4 (13.1) 3 (8.9) 3 (7.9) 4 (11.6)
PC 15 (24.0) 7 (14.3) 3 (8.2) 3 (7.5) 7 (13.5)
WPP 14 (24.0) 7 (14.1) 3 (7.3) 3 (7.0) 6 (13.1)

FOA 15 (24.3) 6 (15.6) 3 (9.5) 3 (8.5) 6 (14.5)
FOP 5 (15.9) 0 (10.8) 0 (7.0) 0 (4.6) 1 (9.6)

P
ro
fit

(%
of

FO
P
) OS/10 96.4 79.5 67.8 74.9 79.6

OS/20 98.1 80.0 68.3 75.3 80.5
OS/30 99.0 84.7 69.0 75.9 82.2
OS/40 99.4 90.8 69.6 76.5 84.1
PC 99.7 97.7 91.1 96.6 96.3
WPP 98.1 77.3 54.7 66.6 74.2

FOA 96.1 79.0 67.4 74.4 79.2
FOP 100.0 100.0 100.0 100.0 100.0

(b
)
Li
m
it
ed

A
ss
ig
nm

en
t

R
ot
at
io
na

lD
iv
er
si
ty OS/10 14 (22.5) 6 (15.5) 3 (9.4) 3 (8.4) 6 (13.9)

OS/20 10 (20.4) 6 (15.4) 3 (9.3) 3 (8.3) 5 (13.4)
OS/30 11 (20.2) 5 (14.8) 3 (9.2) 3 (8.2) 5 (13.1)
OS/40 11 (20.3) 4 (14.2) 3 (9.1) 3 (8.1) 5 (12.9)
PC 14 (23.9) 7 (14.4) 3 (8.2) 3 (7.5) 6 (13.5)
WPP 16 (24.1) 8 (14.1) 4 (7.5) 4 (7.2) 8 (13.2)

FOA 15 (24.3) 6 (15.6) 3 (9.5) 3 (8.5) 6 (14.5)
FOP 9 (20.2) 2 (14.0) 0 (9.3) 0 (7.0) 2 (12.6)

P
ro
fit

(%
of

FO
P
) OS/10 96.7 79.6 67.8 74.9 79.8

OS/20 99.8 80.1 68.4 75.4 80.9
OS/30 100.0 87.2 68.9 76.0 83.0
OS/40 100.0 94.9 69.6 76.5 85.3
PC 99.6 97.7 91.1 96.6 96.3
WPP 95.7 72.7 54.8 65.4 72.2

FOA 96.1 79.1 67.3 74.4 79.2
FOP 100.0 100.0 100.0 100.0 100.0

Table C.3: Results for TCSA. The best results for each (a) pure strategies and
(b) Limited Assignment are marked in bold without considering the FOA/FOP
baselines.

WPP, who showed compelling results in the previous experiment, achieves similar
rotational diversity to PC, but is less effective in profit optimization.

5.4.3 Limited Assignment

The results for the strategies in combination with Limited Assignment are
shown in the lower half of Table C.3. As we observed in the experiments on
MCMKP, adding Limited Assignment and thereby reducing the space of possible
assignments between tasks and agents, increases the rotational diversity. This is

97

C. Multi-Cycle Assignment Problems with Rotational Diversity

75 80 85 90 95 100
Relative Profit (% of FOP)

1

2

3

4

5

6

7

8
R
ot
at
io
ns

OS/10
OS/20

OS/30
OS/40

PC

WPP FOA

FOP

OS/10

OS/20
OS/30 OS/40

PC

WPP

FOA

FOP
Pure Strategy
With Limited Assignment

Figure C.6: TCSA: Distribution of the average results for each strategy without
(marked with red ◦) and with (marked with black x) limited assignment.
Rotations are calculated as Full Rotations + Average Rotations/100.

also true for TCSA. For most strategies, the number of full and average rotations
is increased, with the exception of PC in the smallest scenario, where the number
of rotations is decreased by a small amount. Interestingly, we do not observe a
substantial reduction in assigned profits, but all strategies can maintain similar
levels of profits with and without Limited Assignment.

5.4.4 Distribution of Results

As for the MCMKP case study, we visualize the average results of each strategy
in terms of rotations and relative profit in Figure C.6. For TCSA, the rotations
are calculated as Full Rotations+Average Rotations/100 to account for the high
number of average rotations in these scenarios.

The extreme points being WPP and FOP, as in the MCMKP case study,
the different OS/γ are located closely to each other. The strong performance
of product combination (PC) is also visible in the figure, with pure PC even
outperforming the combination of PC and Limited Assignment due to the higher
number of full rotations.

6 Conclusion

Rotational diversity is the frequent assignment of a task to all its compatible
agents over subsequent cycles. We present a two-part model for its optimization
in multi-cycle assignment problems with variable availability of tasks and agents:
1) an inner assignment problem, to optimize the assignment from tasks to agents,
and 2) an outer problem, to adjust the task values for the maximization objective
of the inner problem.

98

References

Five strategies, each having a different approach and trade-offs, and
approaches, one using only the strategies to introduce rotational diversity, the
other also controlling the compatibility between tasks agents, are evaluated on
three case studies. Achieving rotational diversity is possible with a profit trade-
off of only 4% in the test case selection and assignment case study. Both the
product combination of profits and affinities, and the objective switch strategy,
that focuses on either profit maximization or diverse assignments, efficiently
achieve rotational diversity.

For applications of this method, we encourage the reader to start from the
product combination strategy. It is straightforward to implement and does not
require initial configuration, but it can still be adjusted if necessary.

The combination of profits and affinities into a single task value is efficient for
balancing profits and rotation. This is especially the case in settings where an
extended multi-objective optimization model is not an alternative. Splitting the
problem and its responsibilities allows to use problem-specific, single-objective
solvers for the inner problem, or to use problems with additional requirements,
e.g. precedence constraints or task-dependencies.

In future work, we aim to apply our approach to other settings, which
are derived from the general assignment problem. These settings can include
scheduling problems with precedence constraints and task-dependencies. Again,
rotation of tasks should be achieved without adding substantial computational
costs for rotational diversity.

The affinity metric is also not restricted to assignment problems with
rotational diversity, but can be transferred to other domains. One related
concept is the idea of persistence, although in an opposite sense to rotational
diversity. There, a solution should remain stable, even under uncertainties.

Acknowledgements. This work is supported by the Research Council of Norway
(RCN) through the research-based innovation center Certus, under the SFI
program. The experiments were performed on the Abel Cluster, owned by the
University of Oslo and Uninett/Sigma2, and operated by the Department for
Research Computing at USIT, the University of Oslo IT-department.

References

[1] Clarke, L., Johnson, E., Nemhauser, G., and Zhu, Z. “The Aircraft Rotation
Problem”. In: Transportation Research Part A: Policy and Practice vol. 30,
no. 1 (1996), p. 51.

[2] Ma, Y., Chu, C., and Zuo, C. “A Survey of Scheduling with Deterministic
Machine Availability Constraints”. In: Computers and Industrial Engineer-
ing vol. 58, no. 2 (2010), pp. 199–211.

[3] Chiaramonte, M. V. “Competitive Nurse Rostering and Rerostering”. PhD
thesis. Arizona State University, 2008.

99

C. Multi-Cycle Assignment Problems with Rotational Diversity

[4] Azizi, N., Zolfaghari, S., and Liang, M. “Modeling Job Rotation in
Manufacturing Systems: The Study of Employee’s Boredom and Skill
Variations”. In: International Journal of Production Economics vol. 123,
no. 1 (2010), pp. 69–85.

[5] Ernst, A. T., Jiang, H., Krishnamoorthy, M., and Sier, D. “Staff Scheduling
and Rostering: A Review of Applications, Methods and Models”. In:
European Journal of Operational Research vol. 153, no. 1 (2004), pp. 3–27.

[6] Musliu, N., Schutt, A., and Stuckey, P. J. “Solver Independent Rotating
Workforce Scheduling”. In: Integration of Constraint Programming, Artifi-
cial Intelligence, and Operations Research (CPAIOR). Vol. 10848. LNCS.
2018, pp. 429–445.

[7] Glover, F., Løkketangen, A., and Woodruff, D. “Scatter Search to Gen-
erate Diverse MIP Solutions”. In: OR Computing Tools for Modeling,
Optimization and Simulation: Interfaces in Computer Science and Opera-
tions Research vol. 12 (2000), pp. 299–317.

[8] Hebrard, E., Hnich, B., O’Sullivan, B., and Walsh, T. “Finding Diverse
and Similar Solutions in Constraint Programming”. In: Proceedings of the
Twentieth National Conference on Artificial Intelligence. 2005, pp. 372–377.

[9] Trapp, A. C. and Konrad, R. A. “Finding Diverse Optima and Near-Optima
to Binary Integer Programs”. In: IIE Transactions vol. 47, no. 11 (2015),
pp. 1300–1312.

[10] Petit, T. and Trapp, A. C. “Finding Diverse Solutions of High Quality to
Constraint Optimization Problems”. In: Proceedings of the Twenty-Fourth
International Joint Conference on Artificial Intelligence (IJCAI). 2015,
pp. 260–266.

[11] Spieker, H., Gotlieb, A., and Mossige, M. “Rotational Diversity in Multi-
Cycle Assignment Problems”. In: Thirty-Third AAAI Conference on
Artificial Intelligence. 2019, pp. 7724–7731.

[12] Ross, G. T. and Soland, R. M. “A Branch and Bound Algorithm for the
Generalized Assignment Problem”. en. In: Mathematical Programming
vol. 8, no. 1 (Dec. 1975), pp. 91–103.

[13] Martello, S. and Toth, P. Knapsack Problems: Algorithms and Computer
Implementations. en. Wiley-Interscience Series in Discrete Mathematics
and Optimization. Chichester ; New York: J. Wiley & Sons, 1990.

[14] Pentico, D. W. “Assignment Problems: A Golden Anniversary Survey”. In:
European Journal of Operational Research vol. 176, no. 2 (2007), pp. 774–
793.

[15] Martello, S. and Toth, P. “Algorithms for Knapsack Problems”. In: North-
Holland Mathematics Studies vol. 132, no. C (1987), pp. 213–257. arXiv:
1011.1669v3.

[16] Faaland, B. H. “Technical Note–The Multiperiod Knapsack Problem”. In:
Operations Research vol. 29, no. 3 (1981), pp. 612–616.

100

https://arxiv.org/abs/1011.1669v3

References

[17] Bhadury, J. and Radovilsky, Z. “Job Rotation Using the Multi-Period
Assignment Model”. In: International Journal of Production Research
vol. 44, no. 20 (2006), pp. 4431–4444.

[18] Carnahan, B. J., Redfern, M. S., and Norman, B. “Designing Safe
Job Rotation Schedules Using Optimization and Heuristic Search.” In:
Ergonomics vol. 43, no. 4 (2000), pp. 543–560.

[19] Bard, J. F. and Purnomo, H. W. “Preference Scheduling for Nurses
Using Column Generation”. In: European Journal of Operational Research
vol. 164, no. 2 (2005), pp. 510–534.

[20] Ayough, A., Zandieh, M., and Farsijani, H. “GA and ICA Approaches
to Job Rotation Scheduling Problem: Considering Employee’s Boredom”.
In: International Journal of Advanced Manufacturing Technology vol. 60,
no. 5-8 (2012), pp. 651–666.

[21] Bidot, J., Vidal, T., Laborie, P., and Beck, J. C. “A Theoretic and Practical
Framework for Scheduling in a Stochastic Environment”. en. In: Journal
of Scheduling vol. 12, no. 3 (June 2009), pp. 315–344.

[22] Lindahl, M., Stidsen, T., and Sørensen, M. “Quality Recovering of
University Timetables”. In: European Journal of Operational Research
vol. 276, no. 2 (July 2019), pp. 422–435.

[23] Bajestani, M. A. and Beck, J. C. “Scheduling a Dynamic Aircraft
Repair Shop with Limited Repair Resources”. en. In: Journal of Artificial
Intelligence Research vol. 47 (May 2013), pp. 35–70.

[24] Herroelen, W. and Leus, R. “Project Scheduling under Uncertainty: Survey
and Research Potentials”. In: European Journal of Operational Research.
Project Management and Scheduling vol. 165, no. 2 (Sept. 2005), pp. 289–
306.

[25] Fu, N., Lau, H. C., Varakantham, P., and Xiao, F. “Robust Local Search
for Solving RCPSP/Max with Durational Uncertainty”. en. In: Journal of
Artificial Intelligence Research vol. 43 (Jan. 2012), pp. 43–86.

[26] Song, W., Kang, D., Zhang, J., Cao, Z., and Xi, H. “A Sampling Approach
for Proactive Project Scheduling under Generalized Time-Dependent
Workability Uncertainty”. en. In: Journal of Artificial Intelligence Research
vol. 64 (Feb. 2019), pp. 385–427.

[27] Bertsimas, D., Natarajan, K., and Teo, C.-P. “Persistence in Discrete
Optimization under Data Uncertainty”. In: Mathematical Programming
vol. 108, no. 2-3 (2006), pp. 251–274.

[28] Morrison, T. “A New Paradigm for Robust Combinatorial Optimization:
Using Persistence As a Theory of Evidence”. In: PhD thesis (2010).

[29] Brown, G. G., Dell, R. F., and Wood, R. K. “Optimization and Persistence”.
In: INFORMS Journal on Applied Analytics vol. 27, no. 5 (1997).

[30] De Vries, S. and Vohra, R. V. “Combinatorial Auctions: A Survey”. In:
INFORMS Journal on Computing vol. 15, no. 3 (2003), pp. 284–309.

101

C. Multi-Cycle Assignment Problems with Rotational Diversity

[31] Endriss, U., Maudet, N., Sadri, F., and Toni, F. “Negotiating Socially
Optimal Allocations of Resources”. In: Journal of Artificial Intelligence
Research vol. 25 (2006), pp. 315–348. arXiv: 1109.6340v1.

[32] Sandholm, T. and Suri, S. “BOB: Improved Winner Determination in
Combinatorial Auctions and Generalizations”. In: Artificial Intelligence
vol. 145, no. 1-2 (2003), pp. 33–58.

[33] Hosseini, H., Larson, K., and Cohen, R. “Matching with Dynamic Ordinal
Preferences”. In: Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence. 2015, pp. 936–943.

[34] Anshelevich, E., Chhabra, M., Das, S., and Gerrior, M. “On the Social
Welfare of Mechanisms for Repeated Batch Matching”. In: Proceedings
of the Twenty-Seventh AAAI Conference on Artificial Intelligence. 2013,
pp. 60–66.

[35] Liu, Y. and Mohamed, Y. “Multi-Agent Resource Allocation (MARA)
for Modeling Construction Processes”. In: Winter Simulation Conference
(WSC). 2008, pp. 2361–2369.

[36] Nongaillard, A., Mathieu, P., and Jaumard, B. “A Multi-Agent Resource
Negotiation for the Utilitarian Welfare”. In: Engineering Societies in the
Agents World IX (ESAW). Vol. 5485. LNCS. 2008, pp. 208–226.

[37] Karp, R. M. “Reducibility among Combinatorial Problems”. In: Complexity
of Computer Computations. Springer, 1972, pp. 85–103.

[38] Nethercote, N., Stuckey, P. J., Becket, R., Brand, S., Duck, G. J., and
Tack, G. “MiniZinc: Towards a Standard CP Modelling Language”. en. In:
Principles and Practice of Constraint Programming – CP 2007. Ed. by
Bessière, C. Vol. 4741. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007,
pp. 529–543.

[39] Fukunaga, A. S. and Korf, R. E. “Bin Completion Algorithms for
Multicontainer Packing, Knapsack, and Covering Problems”. en. In:
Journal of Artificial Intelligence Research vol. 28 (Mar. 2007), pp. 393–429.

[40] Pisinger, D. “An Exact Algorithm for Large Multiple Knapsack Problems”.
In: European Journal of Operational Research vol. 114, no. 3 (1999),
pp. 528–541.

[41] Pisinger, D. “Algorithms for Knapsack Problems”. PhD thesis. University
of Copenhagen, 1995. arXiv: 1011.1669v3.

[42] Fukunaga, A. S. “A Branch-and-Bound Algorithm for Hard Multiple
Knapsack Problems”. In: Annals of Operations Research vol. 184, no. 1
(2011), pp. 97–119.

[43] Caprara, A., Kellerer, H., and Pferschy, U. “The Multiple Subset Sum
Problem”. en. In: SIAM Journal on Optimization vol. 11, no. 2 (Jan. 2000),
pp. 308–319.

102

https://arxiv.org/abs/1109.6340v1
https://arxiv.org/abs/1011.1669v3

References

[44] Yoo, S. and Harman, M. “Regression Testing Minimization, Selection and
Prioritization: A Survey”. In: Software Testing, Verification and Reliability
vol. 22, no. 2 (2012), pp. 67–120.

[45] Mossige, M., Gotlieb, A., Spieker, H., Meling, H., and Carlsson, M. “Time-
Aware Test Case Execution Scheduling for Cyber-Physical Systems”. In:
Proceedings of the 23rd International Conference on Principles and Practice
of Constraint Programming. Vol. 10416. LNCS. 2017, pp. 387–404.

[46] Rothermel, G., Untch, R. H., Chu, C., and Harrold, M. J. “Prioritizing
Test Cases For Regression Testing”. In: IEEE Transactions on Software
Engineering vol. 27, no. 10 (2001), pp. 929–948.

[47] Spieker, H., Gotlieb, A., Marijan, D., and Mossige, M. “Reinforcement
Learning for Automatic Test Case Prioritization and Selection in Contin-
uous Integration”. In: Proceedings of 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA 2017). 2017, pp. 12–
22.

Authors’ addresses

Helge Spieker Simula Research Laboratory, Martin Linges vei 25, 1364 Fornebu,
Norway, helge@simula.no

Arnaud Gotlieb Simula Research Laboratory, Martin Linges vei 25, 1364
Fornebu, Norway, arnaud@simula.no

Morten Mossige University of Stavanger, Postboks 8600, 4036 Stavanger,
Norway, ABB Robotics, Nordlysvegen 7, 4340 Bryne, Norway
morten.mossige@uis.no

103

mailto:helge@simula.no
mailto:arnaud@simula.no
mailto:morten.mossige@uis.no

Paper D

Adaptive Metamorphic Testing
with Contextual Bandits

Helge Spieker, Arnaud Gotlieb
Revision submitted to Journal of Systems and Software, March 2019. Preprint:
arXiv:1910.00262v2.

IV

Abstract

Metamorphic Testing is a software testing paradigm which aims at using
necessary properties of a system-under-test, called metamorphic relations,
to either check its expected outputs, or to generate new test cases.
Metamorphic Testing has been successful to test programs for which a full
oracle is not available or to test programs for which there are uncertainties
on expected outputs such as learning systems. In this article, we propose
Adaptive Metamorphic Testing as a generalization of a simple yet powerful
reinforcement learning technique, namely contextual bandits, to select
one of the multiple metamorphic relations available for a program. By
using contextual bandits, Adaptive Metamorphic Testing learns which
metamorphic relations are likely to transform a source test case, such
that it has higher chance to discover faults. We present experimental
results over two major case studies in machine learning, namely image
classification and object detection, and identify weaknesses and robustness
boundaries. Adaptive Metamorphic Testing efficiently identifies weaknesses
of the tested systems in context of the source test case.

105

https://arxiv.org/abs/1910.00262v2

D. Adaptive Metamorphic Testing with Contextual Bandits

1 Introduction

Metamorphic Testing (MT) is a software testing paradigm that aims at using
necessary properties of a software under test to either check its expected outputs
or to generate new test cases [1, 2]. More precisely, MT tackles the so-called
oracle problem which occurs whenever predicting the expected outputs of a
system is just too difficult or even impossible. Typical examples include machine
learning models used for classification tasks, for which only stochastic behaviors
can be specified [3]. Indeed, these models are often initially trained with existing
datasets and then exploited to classify new data samples. However, the expected
class of any new data sample is unknown and thus, these samples cannot be
used for testing the trained models. Fortunately, transformations over the data
samples which do not change their (unknown) class, are usually available. By
applying these transformations, called Metamorphic Relations (MRs) in MT, it
becomes possible to effectively test trained machine learning models [4, 5, 6].

MT has been very successful to address testing issues in various application
domains, e.g., driverless cars [7], search engines [8], or bioinformatics [9] just to
name a few (see Section 2.3 for more references). However, generally speaking,
applying MT in practice requires to address two issues: the MR identification
and the MR selection problems [2]. The former occurs when trying to identify
MRs for a specific system, i.e., to formalize input transformation properties
which lead to a known transformation of the outputs. Finding such relations
may be difficult when there is no obvious symmetries in the input data, or
obvious system invariant, or else when the functional behavior of the system
is unknown. The second occurs when several MRs have been identified, but
determining which ones are best suited to discover faults in the system under
test is hard. It is important to select appropriate MRs for testing the system to
avoid redundancies in test cases and thus to avoid slack in the test execution
process. This problem is especially critical when testing is part of a continuous
integration process where there is usually a limit on the time allocated for testing
in an integration cycle.

This paper addresses exclusively the latter problem, i.e., MRs selection, by
formulating the effective selection of MRs as a reinforcement learning problem,
based on contextual bandits. Our method, called Adaptive Metamorphic Testing
(AMT), defines a test transformation bandit which sequentially selects a MR that
is expected to provide the highest payoff, i.e., that is most likely to reveal faults.
Which MRs are likely to reveal faults is learned from successive exploration
trials. The bandit explores the different available MRs and evaluates the fault
landscape of the system under test, thereby providing valuable information to
the tester.

Learning the selection of MRs can be useful when testing under resource-
constraints, for example in cases where the system under test changes are
frequently integrated and tested, but also for infrequent testing when the number
of MRs is large or their checking is costly. We also discuss a second application
which is to identify robust boundaries of the MR parameters. Robust boundaries
describe related scenarios but focus on a single MR that can be controlled via

106

Background

parameters. The interest is to find parameters that produce fault-revealing test
cases with minimal changes only.

In this paper, we evaluate Adaptive Metamorphic Testing on two case study
applications for image analysis, namely, image classification and object detection.
As implementations of these case studies, we test freely available and pre-trained
deep learning systems that can be used as black-box components in other software
systems. For each system, we explore both the general fault-revealing capabilities
of metamorphic relations and the discovery of robustness boundaries.

The main contributions of this paper are three-fold. First, we introduce
Adaptive Metamorphic Testing as a general adaptive selection method for
metamorphic relations and test transformations. The method is based on
reinforcement learning with contextual bandits and learns to identify those
relations which are likely to reveal faults in the system under test. This method
is useful in a context where a source test case can be modified by several different
metamorphic relations and the system is to be repeatedly tested. To the best of
our knowledge, it is the first time that reinforcement learning is applied to select
MRs and embedded into a general methodology for MT.

Second, we provide an implementation of Adaptive Metamorphic Testing in
a tool called Tetraband, dedicated to testing machine learning models for image
analysis. Our tool facilitates metamorphic relations based on image augmentation
functions and provides dedicated environments for adaptive metamorphic testing
that can be integrated with other implementations.

Third, we explore the benefits of Tetraband on two case studies coming from
image analysis, namely image classification and object recognition. Both of these
case studies are relevant subsystems in a wide number of applications, such
as autonomous cars, robot navigation, or industrial automation [10, 11]. For
these applications, high-quality standards are essential and rigorous testing is
a requirement. Our experiments show that Tetraband is highly beneficial to
optimize the testing process towards fault-revealing MRs.

The remainder of the paper is structured as follows. We review the background
on metamorphic testing and contextual bandits and related work in the area
in Section 2. Section 3 introduces Adaptive Metamorphic Testing and its
components. We discuss general application scenarios in Section 4 before
introducing the experimental setup, consisting of our implementation of AMT,
Tetraband, and the two case studies in Section 5. The results are presented in
Section 6 and Section 7 finally concludes the paper.

2 Background

2.1 Metamorphic Testing

Metamorphic Testing (MT) aims at using necessary properties of a software
under test to either check its expected outputs or to generate new test cases [1,
2]. Central to MT is the concept of Metamorphic Relations (MRs) which are
high-level observable properties that must hold over inputs and outputs of the
system under test.

107

D. Adaptive Metamorphic Testing with Contextual Bandits

In the following, we formalize the definition of a metamorphic relation, the
transformation from source test cases to follow-up test cases, and metamorphic
testing. Our definitions follow the formalization by Chen et al.[2], except for
the transformation from a source to a follow-up test case. We interpret the
transformation function to apply to the whole test case, which includes the test
input, and formalize it accordingly in this more general, but compatible, way:

Definition 2.1 (Metamorphic Relation (MR)). Let f be a target function or
algorithm. A metamorphic relation (MR) is a necessary property over a sequence
of multiple inputs 〈x1, x2, . . . , xn〉 (n ≥ 2) and their corresponding outputs
〈f(x1), f(x2), . . . , f(xn)〉. It can be expressed as a relation R ⊆ Xn × Y n, with
⊆ being the subset relation, and Xn and Y n being the Cartesian products of n
input and output spaces.

Definition 2.2 (Transformation from Source Test Cases to Follow-up Test Cases).
Consider a MR R(x1, x2, . . . , xn, f(x1), f(x2), f(x3)). The sequence of inputs
and their corresponding outputs defines the set of source test cases. For each
source test case S(x) ∈ R, a follow-up test case F is derived by applying a
possibly non-deterministic transformation function T to the input of the source
test case x: F(x) = f(T (x)). The transformation function T is constructed such
that the follow-up test case F fulfills the necessary property of R.

Definition 2.3 (Metamorphic Testing (MT)). Let P be an implementa-
tion of a target algorithm f . For an MR R, suppose that we have
R(x1, x2, . . . , xn, f(x1), f(x2), f(x3)). Metamorphic testing (MT) based on this
MR for P involves the following steps:

1. Define R′ by replacing f by P in R.

2. Given a sequence of source test cases 〈x1, x2, . . . , xk〉, execute them to
obtain their respective outputs 〈P (x1), P (x2), . . . , P (xk)〉. Construct and
execute a sequence of follow-up test cases 〈xk+1, xk+2, . . . , xn〉 according
to R′ and obtain their respective outputs 〈P (xk+1), P (xk+2), . . . , P (xn)〉.

3. Examine the results with reference to R′. If R′ is not satisfied, then this
MR has revealed that P is faulty.

For the remainder of this paper, we refer in general to a metamorphic relation
R as the tuple of 〈R, T 〉, the combination of necessary properties over the outputs
for a specific MR and the transformation function T to generate follow-up test
cases from source test cases. Therefore, a source test case S produces output
P (x) for the system P with test input x. Using a metamorphic relation R, the
follow-up test case F with test input T (x), where T is a transformation over the
input x, can be generated. Due to the metamorphic relation over R (including
T), S, and F , the result P (T (x)) can be verified. Note that MRs are only partial
properties, which means that only test cases that violate them indicate the
presence of faults in the system under test. Showing that the system satisfies a
MR on any input or a test suite does not guarantee the absence of faults but

108

Background

increases our confidence in the system correctness. However, this issue concerns
any software testing method, not only MT.

The transformation function T of a metamorphic relation R does not have
to be a deterministic function, but is usually parameterized and can result in
several different follow-up test cases from one source test case, depending on a
parameter φ which specifies the exact transformation to be applied. In many
cases and the simplest implementation of metamorphic testing, φ is chosen from
a random distribution and T produces a random follow-up test case. We use Rφ
to denote a metamorphic relation configured by φ, which makes it deterministic,
and R for the general metamorphic relation, which might be non-stochastic if
no additional configuration is possible.

2.2 Contextual Bandits

The selection of a test transformation to apply on a source test case is formalized
as a multi-armed bandit problem with context information, also known as a
contextual bandit [12, 13]. A contextual bandit acts in discrete iterations, where
each iteration corresponds to the generation and execution of one follow-up test
case. A bandit B has k arms, where every arm corresponds to the selection of
one possible MR to generate the follow-up test case. In every iteration i, the
bandit receives the context vector ci which in our case describes the source test
case.

The bandit then acts according to one or multiple policies π which formalize
the action selection, i.e. the decision making strategy. These policies are trained
from external feedback about the success of previously made decisions. A policy
is often realized by function approximation techniques, for example, multiple
linear regression or neural networks. Additionally, an exploration strategy is used
to try previously unexplored actions instead of following the policy only. The
bandit chooses an arm (ai = π(ci)) and receives a reward, also called payoff, ri
which is the external feedback for this decision. As only one arm can be selected,
there is also only feedback for the effect of this single arm ai. Afterwards, the
bandit updates its policy from the observation (ci, ai, ri). Updating the bandit
works by adjusting a set of weights, such that the new set of weights better fits
the previously made experiences and minimizes regret for historical decisions.
The actual implementation of the weight update is dependent on the specific
contextual bandits algorithm [14] and the learner used to approximate the policy,
e.g. whether it is a form of linear regression or a non-linear neural network.

Our goal for the contextual bandit is to maximize the total payoff, i.e., the
cumulative undiscounted reward over all iterations

∑T
i=1 ri. To achieve this

goal and to identify highly rewarded actions, contextual bandit algorithms are
designed to also minimize the regret. The regret of a bandit is the gap between
the expected reward over a number of iterations when following one policy and
the cumulative reward the agent actually receives over the same number of
iterations [15]. As a smaller regret means to choose actions more closely to
the highest possible payoff, minimizing the regret implies the maximization of

109

D. Adaptive Metamorphic Testing with Contextual Bandits

the total payoff, but by maintaining the concept of regret also badly rewarded
actions contribute to the improvement of the policy.

A challenge in the design of contextual bandits is to find a balance between
exploration, i.e., evaluating the effect of rarely used actions, and exploitation,
i.e., repeating those actions that showed to be effective before. This process is
called the exploration-exploitation trade-off. To this extent, several exploration
techniques have been developed as part of bandit algorithms. We introduce here
two techniques that are useful in Adaptive Metamorphic Testing. Epsilon-greedy
[16] decides to explore a random action with probability ε and with probability
1 − ε the current learned policy is used to select an action. The parameter
ε ∈ [0, 1) is chosen by the user. A more advanced exploration strategy is online
cover [14]. Instead of training a single policy, m different polices are trained to
produce diverse behaviors. The exploration algorithm then chooses from those
actions which have not been learned to perform bad, i.e., having high regret, in
the current context. Again, m is a parameter to be chosen by the user.

Contextual bandits are related to Reinforcement Learning (RL) [16]. The
main distinction between bandits and RL agents is that bandits perceive each
iteration as independent of the previous one [15], i.e., the selected action does
not affect the next context that is observed. In our scenario, the next test case
is independent of the test transformation chosen for the previous test case. RL
agents, however, are designed to operate over multiple subsequent iterations,
where a chosen action influences the context in the next iteration. General RL
agents could be applied by reducing the length of each scenario to one step, but
our early experiments found contextual bandits to be more efficient.

Bandit algorithms have been successfully applied in a variety of domains, such
as news article recommendation [17], advertisement selection [18, 19], statistical
software testing [20], constraint optimization [21, 22], or real-time strategy games
[23]. In this work, we apply contextual bandits to the selection and configuration
of metamorphic relations in software testing.

2.3 Related Work

Metamorphic Testing (MT) has been applied to a variety of domains and
applications, see [2, 24] for an in-depth overview. Successful application domains
include testing of driverless cars [7], search engines [8], machine translation
systems [25], performance testing [26, 27], constraint solvers [28] or bioinformatics
[9]. Previous works already focused on its automation, for example by exploring
algorithms to specifically identify fault-revealing inputs [29] or performing an
empirical study on selecting good Metamorphic Relations (MRs) [30]. Other
works predict the applicability of a MR for a system [31, 32]. Based on source
code traces, a classification model predicts which MRs of a given set can be
applied.

Due to the emergent success and usage of machine learning in different
application areas, the verification and validation of these systems has received
increasing attention. Several works approach testing machine learning systems

110

Adaptive Metamorphic Testing

based on software testing techniques, such as differential, multi-implementation
[33] or mutation testing [34].

Because testing machine learning systems, due to their stochastic nature, is
affected by the oracle problem [3], there has been work to especially apply MT
for this purpose. Murphy et al.identify a set of general MRs, that hold for a
variety of machine learning algorithms [4], and are shown to be effective [35].
Chan et al.further use MT to identify violations of MRs from passed test cases
of classification models [36]. It has also been shown that MT can be used for
deep learning-based applications, e.g., to test the classification of biological cells
[5]. Dwarakanath et al.identify implementation faults in image classifiers [6].
They introduce MRs that affect the training and test data used during model
training and demonstrate how these MRs can be applied to find implementation
errors in training procedures and model architecture. Yang et al.propose to test
unsupervised clustering methods [37] and Mekala et al.explore the application
of MRs to detect adversarial examples for deep learning models [38]. However,
Saha and Kanewala [39] recently evaluated the effectiveness of MRs for testing
supervised classifiers based on mutations of the system under test. They found
that the detection rates for the used MRs of previous studies are limited when
generating a large set of mutants.

Previous work also considered the adaptive control of software testing through
feedback while testing [40, 41]. Similar to our method, these works exploit the
behavior of the system during the test execution and adjust the testing strategy
when the understanding of the software changes. In these works, the adjustment
of the testing strategy focuses on test case prioritization and selection, whereas
our method focuses on the generation of follow-up test cases using metamorphic
testing and under consideration of many repeated testing cycles.

3 Adaptive Metamorphic Testing

3.1 Overview

In this section, we introduce Adaptive Metamorphic Testing (AMT) with
contextual bandits. Our method is based on a test transformation bandit
that learns to select follow-up test cases from a set of applicable metamorphic
test cases. Algorithm 2 shows an overview of the main steps of AMT. At the
core of AMT, a contextual bandit receives a description of the source test case.
Based on this context vector, the bandit selects an action, which resembles a
MR, and the configuration of this transformation. Both are applied to generate
a follow-up test case. After generating the follow-up test case, the system under
test is executed and the test result evaluated according to the MR acceptance
criterion. The method can be directly deployed without any pre-training step.
However, during the first iterations, MR selection is partly random to gather
initial experiences about the different MRs effectiveness and their potential
payoffs, when applied to the available source test cases. After several iterations
have been performed, the bandit learns to focus on MRs which are most likely
to reveal faults. Nevertheless, the bandit continues to explore among the MRs,

111

D. Adaptive Metamorphic Testing with Contextual Bandits

Algorithm 2 Adaptive Metamorphic Testing with Contextual Bandits
Input: M : set of MRs; SUT : system under test P ; TS: set of test cases;
Iter: Number of iterations
Output: B: trained bandit

1: i← 0
2: B ← Load existing or initialize new Bandit
3: while i < Iter do
4: Select S ∈ TS . Draw source test case from test suite
5: c← B.ExtractContextFeatures(S) . Generate feature vector for source

test case S
6: Rφ ← B.SelectBanditArm(c,M) . Select one MR Rφ using the bandit
7: v ← Apply(SUT , Rφ(F)) . Execute SUT with transformed test F , get a

verdict v
8: B ← B.UpdateBandit(Rφ, c, v) . Train the bandit with the feedback
9: i← i+ 1
10: end while
11: return B . Return updated bandit for future test cycle

i.e., it sometimes chooses MRs which do not promise the highest payoff. This
is important to adjust to changes in the system under test as well as to gather
additional information about the effect of MRs in different contexts.

Definition 3.1 (Adaptive Metamorphic Testing). Let P be an implementation
of a target algorithm f with TS being its test suite; let M be a set of
metamorphic relations applicable on TS and let B be a contextual bandit.
Adaptive Metamorphic Testing (AMT) is an iterative variant of metamorphic
testing and involves the following steps at each iteration:

1. A test case S is (randomly) selected from the test suite TS and executed
to obtain its output P (S).

2. The bandit B selects a MR R based on the context features of S.

3. Construct one or more follow-up test cases 〈F1,F2, . . . ,Fk〉 according to
R and obtain their respective outputs 〈P (F1), P (F2), . . . , P (Fk)).

4. Examine the results with reference to R. If R is not satisfied, then this
MR has revealed that P is faulty.

5. Report the results of the execution back to B for adaptation of the learning
algorithm.

The arm selection of the bandit, i.e., the selection of a metamorphic relation
R with its parameters is handled by a hierarchy of contextual bandits using the
context features c at each iteration of the algorithm.

On the highest level, the main contextual bandit B selects one MR R from
the set of supported MRs. Afterwards another action-specific contextual bandit

112

Adaptive Metamorphic Testing

BR is queried, using the same context information as the main bandit, for the
configuration parameter φ: BR(ci)→ φ. If the metamorphic relation does not
require additional configuration, the second step is skipped. The MR Rφ can
then be used to generate a follow-up test case for the current iteration. After
test execution, both bandits B and BR are trained from the received feedback.
Tetraband consists of one main contextual bandit plus one additional contextual
bandit for each configurable MR.

Adaptive Metamorphic Testing is independent of the application domain
or the implementation or else the specific MRs that can be applied. It only
takes as inputs a set of MRs, the system under test, a set of test cases, and a
user-defined parameter corresponding to the maximum number of iterations to
run. As output, the method returns a trained bandit B which has learned to
select the MRs which have the greatest chances to detect faults in the system
under test.

3.2 Components

Adaptive Metamorphic Testing requires only a few system-specific components.
In the following, we discuss each of these components.

3.2.1 Extract Context Features

In order to select an appropriate MR which is likely to reveal a fault, for a
source test case, it is mandatory to feed the contextual bandit with relevant
context information about the source test case. This context is captured
with a feature vector, which is a real-valued vector of fixed size n. The
function receives the source test case as input and returns the feature vector:
ExtractContextFeatures : S → Rn.

By using representative features, the contextual bandit can learn a mapping
from the source test cases, which are described through the features, to the
MRs. For that, it has to include test characteristics that can be affected by the
metamorphic relations. Therefore, the features need to capture the necessary
details distinctive about the individual test case, especially those that relate to
the effect of the MR.

How the feature vector is formed, is a domain-specific problem and requires
some degree of domain knowledge. For example, when testing scientific software
for matrix calculations [30], the features should describe the characteristics of
the original input matrix in order to select which transformation is applied. In
our experiments, which are based on testing computer vision problems, we rely
on common feature modeling used in machine learning. For instance, using a
pre-trained neural network to extract image features is common in computer
vision. A similar approach could be used for text processing, where textual
features, e.g., used vocabulary, text sentiment, or sentence structure, can be
derived using pre-trained networks.

113

D. Adaptive Metamorphic Testing with Contextual Bandits

3.2.2 Metamorphic Relations

The most relevant component to acquire for applying Adaptive Metamorphic
Testing is the set of MRs, which is highly domain-dependent. The automatic and
systematic identification of MRs for a system is an ongoing research topic [2],
but in many cases, MRs can be extracted by using domain knowledge about the
system or reviewing the existing literature from the Software Testing community.
In the special case of testing machine learning systems, a starting point to
uncover MRs is to exploit data augmentation methods that are commonly used.
As shown in our experiments, these augmentations can serve as a basis for MRs
and help to identify weaknesses in ML systems.

3.2.3 Select Bandit Arm

The selection of an appropriate MR is mostly handled by the internal contextual
bandit algorithm and does not have to be individually implemented for a
new system under test. The main bandit selects the MR and, if necessary,
the action-specific bandit for this MR selects the parameter to configure the
MR. Nevertheless, the configuration of the contextual bandit influences the
performance of the system and should be adjusted, depending on the number
of available MRs and the robustness of the SUT. This allows us to focus on
exploiting MR that reveal faults in the system or to broadly explore the effects
of many different MRs.

The most important configuration parameter to adjust is the exploration
rate, i.e., how often does the bandit choose a different action than the most
promising one. Using a high exploration rate allows us to examine different
combinations of test cases and systems, which is relevant to detect new faults
in the system and extend the coverage of different tests. Conversely, a lower
exploration rate exploits combinations of tests and MRs that have often fail
previously. Traditionally, Metamorphic Testing often creates follow-up test cases
at random, which corresponds to a maximal exploration rate here.

Exploitation is relevant when repeatedly testing the system, e.g., in continuous
integration settings, or when trying to understand the weaknesses of the system
for a certain group of MRs. Still, it is not only desired to exploit known
weaknesses, but broad coverage of the system behavior is desired for higher test
confidence. If the behavior of the system changes, because it is becoming more
robust to previously effective MRs, the bandit learns this and can adjust its
selection for future iterations. Conclusively, compared to other applications of
contextual bandits, where especially the exploitation of known good actions is
in focus, exploration is more prominent in Adaptive Metamorphic Testing to
broadly test the system behavior.

3.2.4 Transform, Execute and Evaluate

The selected MR and its configuration transform the source test case into a
follow-up test case. That test case is then executed and the test verdict is

114

Application Scenarios of Adaptive Metamorphic Testing

evaluated according to the MR. These core steps of Adaptive Metamorphic
Testing are similar to those required in traditional MT.

3.2.5 Update Bandit

After the follow-up test case has been executed and the results have been
evaluated, the bandit’s policy is updated. This requires information about the
initial context feature vector, the chosen MR and its configuration, and the test
verdict. The update routine updates the expected reward for this MR. The exact
update routine is specific to the contextual bandit algorithm and its configuration
and we refer to the corresponding literature for its description [12, 15].

Nevertheless, choosing the appropriate reward for a failed test case has to
be done while adjusting the bandit for a new system to test. In most scenarios,
where the goal is to find the most fault-revealing MRs, as described below in
Section 4.1, the reward is the same for every failing test case. However, if the
bandit has the goal to identify certain properties of the SUT, it can be necessary
to propose a different reward structure that depends on the selected MR. This
second scenario is further described in Section 5.3.

4 Application Scenarios of Adaptive Metamorphic Testing

Contextual bandits are powerful to explore the effects of the MRs in different
contexts, but can also exploit the gathered experiences to subsequently focus
on those relations that are most likely to reveal faults. From these properties,
we identify two application scenarios of Adaptive Metamorphic Testing that we
discuss further and evaluate as part of the case studies.

4.1 Fault-Revealing MR Selection

The first application of Adaptive Metamorphic Testing is the selection of
metamorphic relations which are prone to reveal faults in the system under
test. In cases where the MR has parameters, an additional contextual bandit
is responsible to select these parameters, as described before. This application,
which we refer to as fault-revealing MR selection, steers MT towards greater
effectiveness when there are many MRs available and not sufficient resources
to apply them all. In this application, all MRs are considered distinct from
each other. Accordingly, the achievable reward received for revealing a fault is
identical for all MRs.

4.2 Robustness Boundaries

The second application uses the exploration/exploitation trade-off of contextual
bandits to identify robustness boundaries of the software under test. With robust
boundaries, we focus on MRs whose effect can be adjusted by user-defined
parameters, especially those with continuous or a range of discrete values that
control the distance between source and follow-up test cases. As an example

115

D. Adaptive Metamorphic Testing with Contextual Bandits

taken from the case studies, while testing an image analysis system, one possible
transformation is to rotate the image, where the degree of rotation is a user-
defined parameter. If the system is susceptible to treat wrongly rotated images, it
is likely that large rotations, e.g. by 90 degrees, are more likely to cause mistakes
than smaller rotations. By identifying the robust boundaries, information can be
inferred about the trade-off between acceptable transformations and exceedingly
strong manipulations. This result yields both a robustness characteristic and a
starting point for a more curated set of requirements on the system under test.

5 Experimental Evaluation

5.1 Case Studies

We consider two case studies to evaluate our tool Tetraband. Both case studies
come from the field of digital image processing, where deep learning methods
commonly represent the state-of-the-art approaches [11]: image classification
and object detection. For each of the case studies, we consider both previously
introduced application scenarios (see Section 4) and identify fault-revealing MRs
as well as robustness boundaries against configurable image transformations.
We have formulated the following three research questions as a guideline for our
experiments:

RQ1 Does Adaptive Metamorphic Testing, implemented as Tetraband, learn to
select MRs whose follow-up test cases reveal faults?

RQ2 Is AMT effective to approximate the distribution of faults in the system
under test?

RQ3 Is AMT computation- and data-efficient compared to random sampling of
MRs and exhaustive search of all follow-up test cases?

Previous work for testing image processing applications has considered
random and metamorphic testing [42, 43], but focused on the evaluation of
handcrafted image processing applications, whereas we focus in our experiments
especially on machine learning-based computer vision systems. The existing
studies focus on testing the basic functionality of the system by generating
random images and transforming them using a set of transformations, different
from our approach where we base on an existing dataset of images from the
domain that the ML model has been trained on. We furthermore especially
consider the selection of good MRs. Xu et al.recently presented another use case
for metamorphic relations in image classification applications beyond testing
[44]. Their work uses metamorphic relations, based on separation and occlusion,
to augment the training data and fine-tune the model.

In the following, we present the two case studies, image classification and
object detection, with their setup and the considered MRs. We further discuss
the configuration of Tetraband, and finally, present the experimental results and
our findings.

116

Experimental Evaluation

(a) Image Classification Example (from
ImageNet [45]). The goal is to assign a
single class label to the image, e.g. toucan
here.

person: 0.98

cow: 1.00
cow: 0.94 cow: 0.90

(b) Object Detection Example (from [46]).
The goal is to identify and categorize
objects by drawing a bounding box and
assigning a class label.

Figure D.1: Image classification and object detection examples.

5.2 Image Processing Applications

We describe two case studies where testing image processing systems is necessary
(see Figure D.1). In the first case study, an image classification system is tested.
The second case study focuses on an object detection application.

5.2.1 Image Classification

An image classification task, also image recognition, has the goal to identify the
object shown in an image, e.g., assign the image to one of a fixed number of
classes. Since 2012, the state-of-the-art method for image classification, among
other image analysis tasks, are deep neural networks, such as residual neural
networks (ResNets) [47] or SqueezeNet [48].

In our case study, we test a SqueezeNet model that has been initially trained
on the ImageNet dataset [45] and then fine-tuned for the 10 classes of the
CIFAR-10 dataset [49]. For testing the model, we use the CIFAR-10 test set,
consisting of 10, 000 labeled images.

Following the metamorphic relation between source and follow-up test cases,
we consider a test as failed, if the transformed image leads to a different
classification result than the original image. The correctness of the original
class prediction does not influence the test result, because the bandit does
not know the initial model performance. Instead, the bandit aims to select
transformations that affect the outcome in a fault-revealing manner compared
to the original output. Testing the difference in outputs between source and
follow-up test cases removes the dependency from having to use labeled data,
i.e. data where the ground-truth class is known and allows the integration of
other data sources. Nevertheless, for testing the system, we monitor also the
accuracy of the system for correctly classifying the images, but we do not use
this information as feedback for the test transformation bandit, although that
would also be a viable setup.

117

D. Adaptive Metamorphic Testing with Contextual Bandits

5.2.2 Object Detection

Object detection is a generalization of the image classification task in the sense
that there can be multiple objects on a single image. Besides assigning classes to
these objects, it is also necessary to provide bounding boxes around the location
of each object. This means that the output of an object detection model consists
of a class label and four coordinates for the bounding box for each detected
object. Object detection systems employ deep neural networks of a similar, but
extended, architecture compared to image classification systems.

The system to test in this case study is a pre-trained object detection model,
based on the open-source TensorFlow Object Detection API1 [50]. In particular,
we test an implementation of a single shot multibox detector (SSD) [46] with a
feature pyramid network (FPN) [51], based on a ResNet-50 network [47]. We
refer the reader to the given references for an in-depth overview of the models.
We see the system to test here as a black box. However, briefly said, the model
detects objects in images with a single neural network by assigning one of multiple
predefined box sizes, their size adjustment and classification scores at the same
time. By reducing the complexity to a single neural network, it is a fast model
for real-time object detection that achieves state-of-the-art performance. The
used model was trained on Microsoft COCO dataset [52] and is available within
the Object Detection API2.

For testing, we use 5, 000 images from the validation set of the MS COCO
challenge 2017 as source test cases. We apply the same input transformations on
the images as in the image classification case study and as described in Section 5.3.
Because each image annotation consists of an additional bounding box per object
in the image, the metamorphic relations are extended to transformation also on
the bounding boxes. For example, rotating the image rotates the bounding box
of the object to match the rotated object, and flipping the image from left to
right also flips the positions of the bounding boxes in the image (see the next
Section 5.3 for an introduction of the applied transformations).

Furthermore, we consider the different evaluation metrics for object detection
tasks. In image classification, the result is easily verified by comparing the
estimated class with the ground truth class. In object detection, it is necessary
to evaluate the overlapping regions between the estimated bounding boxes and
the ground truth, which is called the intersection-over-union (IoU), in addition
to the class label of each box:

IoU(A,B) = A ∩B
A ∪B

where A are the proposed pixels from the object detection model and B is the
ground-truth from the dataset. If the IoU value exceeds a certain threshold, the
object is counted as correctly detected. We follow the evaluation guidelines from

1TensorFlow Object Detection API: github.com/tensorflow/models/tree/master/research/
object_detection

2The exact name in the object detection model zoo is
ssd_resnet50_v1_fpn_shared_box_predictor_640x640_coco14_sync_2018_07_03

118

github.com/tensorflow/models/tree/master/research/object_detection
github.com/tensorflow/models/tree/master/research/object_detection

Experimental Evaluation

the MS COCO challenge and compare the results for the mean average precision
(mAP) which is calculated over all objects in an image and the average of different
IoU thresholds 0.5, 0.55, 0.6, . . . , 0.95, for both the original and the transformed
image. If the mAP of the transformed image is below the original mAP minus
a performance reduction of 0.05 which is close to 10% of the average model
performance, we interpret the test case to be violating the MR and therefore as
failed.

5.3 Metamorphic Relations and Rewards

In the case studies of this paper, we use tests where the input is an image and
the output is a classification of this image to recognize certain objects. The
considered MRs are all related to image transformations, e.g. mirroring or
rotating, under the property that the results of image classification and object
detection do not change, i.e., the MR defines equality of the outputs, while the
input is transformed.

In most cases, these transformations must only not modify the class of these
images. However, in object detection, some transformations of images that
impact object location markers entail similar transformation over the outputs.
Here, the MR defines a relation between the outputs that is similar to the
transformation of the input.

We select seven common image transformations among all possible transfor-
mations as MRs, some of which have been used in previous work on metamorphic
testing for image analysis methods [38, 42]. Among these MRs, two are config-
urable by an additional parameter φ. These transformations are the following:

1. Blur the image by the average value of neighbor pixels (Blur)

2. Flip the image from the left to the right (Flip L/R)

3. Flip the image upside down (Flip U/D)

4. Convert a colored image to grayscale (Grayscale)

5. Invert the colors of the image (Invert)

6. Rotate the image by x degrees (Rotation)

7. Shear the image by x degrees (Shear)

The effects of these transformations are shown in Figure D.2. The MRs
Rotation and Shear expect a parameter to define the transformation effect. For
Rotation, we consider 36 distinct values in steps of 5 degrees in the degree range
[−90; 90], excluding rotations of 0 degrees. For shear, we include 18 values in
the range [−45; 45] in steps of 5 degrees, again excluding 0 degrees.

The reward for the main MRs is set up such that a failed test case is rewarded
with 1 and a passed test case with 0, independent of which MR was selected.
For the action-specific bandits, which select the MR parameters for Rotation
and Shear, the reward structure is designed to encourage the selection of the

119

D. Adaptive Metamorphic Testing with Contextual Bandits

(a) Original Im-
age

(b) Blur (c) Flip left ↔
right

(d) Flip up ↔
down

(e) Convert to
grayscale

(f) Invert the im-
age

(g) Rotate -30
degrees

(h) Rotate +30
degrees

(i) Shear -20 de-
grees

(j) Shear +20 de-
grees

Figure D.2: Metamorphic relations, i.e. image transformations, and their effects.
Image taken from the ImageNet dataset [45].

smallest failing parameters. Therefore, the smallest parameter of −5 respectively
5 degrees receives a reward of 10000, if revealing a fault. For each additional
step, the reward is divided by two. Thereby, choosing a smaller parameter value
has always higher payoff than a larger rotation, if successful.

5.4 Implementation

We implemented Adaptive Metamorphic Testing in a tool called Tetraband.
Our implementation package is available at http://github.com/helges/tetraband.
The software is implemented in Python 2.7 and it is structured into two main
components, as shown in Figure D.3.

One component provides the SUTs used in our case studies, i.e. the image
classification and object detection systems. These SUTs are encapsulated via
the OpenAI Gym3 interface [53]. Having separate, standardized environments
allows easier reproduction of the experiments and their usage in other work.
Their functionality includes the feature extraction for each SUT, as well as
the application of the available MRs. The metamorphic relations for image
manipulation are realized with the imgaug library (version 0.2.6) for image
augmentation4. Further details for the setup of the SUTs are given in the
description of the case studies in Section 5.2.

The second component is Tetraband itself, our implementation of AMT. It
is mostly an adaptation of a contextual bandit as the main actor, using the
machine learning library Vowpal Wabbit 8.6.15. Additionally, for comparison, we
include a random agent that uniformly picks an arbitrary MR and configuration.

3OpenAI Gym: https://gym.openai.com/
4imgaug: https://imgaug.readthedocs.io/
5Vowpal Wabbit: github.com/VowpalWabbit/vowpal_wabbit

120

http://github.com/helges/tetraband
https://gym.openai.com/
https://imgaug.readthedocs.io/
github.com/VowpalWabbit/vowpal_wabbit

Experimental Evaluation

Environments: System-under-Test

Image Classification

Object Detection

Metamorphic
Relations DatasetNeural Network

Metamorphic
Relations DatasetNeural Network

Tetraband: Test Transformation Bandit

Main Control Loop

Random SelectionContextual Bandit

Agents

Figure D.3: Overview of Tetraband, our implementation of Adaptive Metamor-
phic Testing. It is a light-weight implementation that allows extension and
adaptation to other environments and settings.

The contextual bandits use the doubly robust policy evaluation algorithm
for learning and action selection [54]. Exploration is performed through a
combination of epsilon-greedy exploration, where it chooses a random action
in 10% of the iterations, and online cover exploration [14] with three policies.
The policy itself is approximated by a feed-forward artificial neural network
with a single hidden layer with 16 neurons. We choose a moderately high
exploration rate, because we not only want the bandits to converge on few single
actions that repeatedly provide high payoff, but we also want to learn about
the effectiveness of other actions. An important aspect of contextual bandits is
that the exploration is not reduced or disabled after training, but stays active
although self-adjusted to a lesser extent than in the initial iterations. This helps
to re-use the bandit to test the SUT repeatedly, e.g. in Continuous Integration,
because it can adapt to changing behaviors in the SUT.

5.5 Experimental Setup

At each iteration, the source test case is formed by an input image and its
annotations from the data set. The context feature vector is extracted through
an additional neural network [55] which processes the image and returns a feature
vector of 512 floating-point numbers. The network is a pre-trained ResNet-18
network [47] from the PyTorch Torchvision model zoo6. The final layer, that
usually outputs the identified image class, has been removed and the output of
the previous layer is used as the feature vector. We have also experimented with
perceptual image hashing for feature extraction but did not find the hash value
expressive enough.

6PyTorch: https://pytorch.org / https://github.com/pytorch/vision

121

https://pytorch.org
https://github.com/pytorch/vision

D. Adaptive Metamorphic Testing with Contextual Bandits

5.6 Fault-Revealing Metamorphic Relations

The first experiment focuses on identifying general weaknesses in the system, i.e.
identifying which metamorphic relations are fault-revealing for the system under
test.

The bandit can freely choose from the seven transformations described in
Section 5.3 and their reward structure. A follow-up test case fails, i.e. it violates
the MR, if the transformed image is classified differently than the source image:
SUT (S) 6= SUT (F). We define the MR to produce equal outputs for the
source and follow-up test cases, but we could instead also consider the annotated
ground-truth labels for comparison. Using the difference in outputs between
source and follow-up test cases reduces the dependency on this labeling, and is
thereby applicable to unlabeled datasets.

5.7 Robustness Boundaries

The second experiment takes two specific transformations and learns the
robustness boundaries of the SUT for these transformations. As the robustness
boundary, we describe the parameterization of the transformation which changes
the source test case as little as possible but is most likely to reveal a fault.

For evaluation, we use the two parameterized MRs that are already used in
the other experiments, i.e. Rotation and Shear transformation. For both MRs
the same parameter space as described in Section 5.3 is kept. The main difference
in this experiment is that the focus lies on a single MR and its parameterization.
This allows us to specifically examine the weaknesses of the SUT towards one
transformation and learn about its robustness.

6 Experimental Results

For each case study, we have performed two experiments: identifying fault-
revealing MRs and robustness boundaries. Each run consists of one pass over the
full training set, i.e. 10,000 iterations for image classification and 5,000 iterations
for object detection. For each of the experiments, we show the mean result of
10 runs with different random seeds. Our findings underline the effectiveness of
Tetraband for controlling the metamorphic testing process in software testing,
especially for testing machine learning systems.

6.1 Effectiveness of Metamorphic Relations on Image
Classification

Before the evaluation of Tetraband, we first analyze the effectiveness of the
selected MRs for our experiments on the image classification dataset, i.e. CIFAR-
10. We aim to understand whether there are different effects of different MRs
and how they affect certain classes of images. To this end, all MRs were applied
to all images of the dataset, which we refer to in the other experiments as
the baseline reference and the changes in the predicted classes are observed.

122

Experimental Results

Airplane Automobile Bird Cat Deer Dog Frog Horse Ship Truck Avg.
Blur 10.60 11.40 13.10 9.81 7.30 13.50 17.70 9.00 6.00 6.20 10.46
Flip L/R 2.90 1.00 4.10 6.71 2.20 6.80 1.30 2.40 0.90 2.40 3.07
Flip U/D 14.90 74.60 37.80 33.13 59.10 53.90 29.30 92.40 72.20 43.30 51.06
Grayscale 4.70 5.40 28.10 7.91 18.10 26.00 14.30 6.70 4.80 5.30 12.13
Invert 16.50 29.40 29.50 33.13 41.40 70.30 41.80 38.30 27.30 35.70 36.33
Rotation 25.49 37.09 35.43 17.70 69.00 46.10 20.63 60.44 42.44 50.01 40.43
Shear 11.22 4.99 26.69 35.79 45.45 51.97 15.63 40.24 19.78 55.24 30.70
Avg. 12.33 23.41 24.96 20.60 34.65 38.37 20.10 35.64 24.77 28.31 26.31

Table D.1: CIFAR-10 dataset: Effects of MRs by the true class of the image.
Each cell value shows the percentage of images in the class, which are wrongly
classified after applying the MR. Every class contains 1000 images. Rotation
and Shear are parameterized by 30 degrees. The values are determined using
the baseline method, i.e. exhaustive search over all MRs and all images.

The baseline results reported for image classification correspond thereby to the
average violation rate over all classes as shown in the rightmost column of the
table.

Table D.1 shows the percentage of images in a class that is affected by a
MR, such that they are wrongly classified afterward. CIFAR-10 consists of
ten classes of images, printed as column names. The effectiveness of the image
transformations varies between both MRs and image classes. The MR Flip U/D
is an example of a particularly effective transformation that affects over 50%
of the images in the test set. However, when noting the different classes in
the dataset, all images have a clear vertical orientation and the flipped image
of the objects is unlikely to occur in the dataset, for example for automobiles
where 74.6% of the images are misclassified. Images of frogs or airplanes, where
the perspectives of the images vary more naturally are less affected, but still
to a moderately high degree compared to other MRs. This is different for the
MR Flip L/R where the horizontal orientation is reversed, which corresponds
to a variation that is already included in the training data and therefore is
the least effective MR. Other MRs identify stronger differences between classes.
Converting the image to grayscale has little effect on airplanes or ships, which
commonly have few distinct features related to color, but large effects for birds
or dogs, where colors are more distinctive characteristics.

Conclusively, from the experiment using the image classification dataset, we
see different effects per MR and image, which underlines the motivation to learn
which MRs are effective for a particular image.

6.2 Fault-Revealing Metamorphic Relations

6.2.1 Case Study 1: Image Classification

In our first case study, which is an image classification ML model, the goal of the
bandit is to select a MR which leads to a different classification of the transformed
image compared to the original image of the source test case. While we looked
at the true classes of the source images in the previous initial experiment, we

123

D. Adaptive Metamorphic Testing with Contextual Bandits

only consider the change of the predicted class from source to a follow-up test
case in this experiment. This approach focuses on the consistency of outputs
for different variants of the same input image, i.e., the follow-up test cases. The
actual true label is not as relevant in this case, as it is unlikely to find one
MR which transforms the image consistently in a way that the correct label
is predicted. Additionally, the accuracy, i.e., the correctness of the outputs is
usually already tested during or after the training of the model. Focusing on
the difference between outputs for source and follow-up test cases furthermore
allows to extend the set of source test cases from unlabelled datasets, making it
easier to enlarge the system’s test suite.

For the seven main transformations, Figure D.4a shows the distribution of
the violation rate for each follow-up test case generated by a selected MR. We
compare this violation rate of MRs selected by Tetraband to the true violation
rate for the set of source test cases, which corresponds to the rightmost column
(Avg.) in Table D.1. These ground-truth results form our baseline and are
determined by applying all available MRs to all source test cases in an exhaustive
search. While this exhaustive search covers all possible follow-up test cases, it is
time- and resource-intense compared to adaptive metamorphic testing and not
ideally suited for repeated testing. We have therefore considered the random
selection of a MR, such as it is common in traditional metamorphic testing,
as the comparison method for computational cost and resource consumption.
Conclusively, to discuss the quality of the selected MRs with Tetraband, we
use exhaustive search as the baseline. The evaluation of computational cost,
including a comparison to the common random selection, is discussed separately
in Section 6.2.3.

The violation rate estimates how often the image classifier changes its
prediction after the MR was applied to the source image. This can be different
from the failure rate in cases where the prediction on the original image was
wrong, but the transformation made the model predict the correct output.
However, as we do not expect the test data to be labeled, we do not require and
consider this information for our experiments and instead focus on the robustness
and consistency of the model for the predictions. Therefore, we mostly report
the violation rate. Ideally, a perfectly-trained image classification model should
not show any change and the violation rates should be zero independently of the
selected MR.

Generally speaking, the violation rate distribution shows a different impact
for different MRs. The least fault-revealing MR is the one that mirrors images
over the middle vertical axis, i.e., flip left and right. This transformation is
most likely to be found in the training datasets for the image classifier. Often
the image is either symmetric by itself, like a human face or body, or included
together with another image of the same object but taken from a different angle,
showing a symmetric profile. Other MRs are more effective to reveal faults in
the image classifier, which is related to the disturbance impact they have on the
original image. They often represent transformations that could be expected in
real-world applications and should be covered by a robust image classification
system. As seen from the exhaustive search baseline experiment, the most

124

Experimental Results

Flip L/R Blur Grayscale Shear Invert Rotation Flip U/D
Metamorphic Relation

0
10
20
30
40
50

V
io
la
ti
on

R
at
e
(i
n
%
)

Tetraband
Baseline

(a) Violation rate of MRs selected by Tetraband and baseline results for exhaustive
search

−80 −60 −40 −20 0 20 40 60 80
0

20

40

60

80

V
io
la
ti
on

R
at
e
(i
n
%
)

(b) Configuration of Rotation transforma-
tion (in degrees)

−40 −30 −20 −10 0 10 20 30 40
0

20

40

60

80
Tetraband
Baseline

(c) Configuration of Shear Transformation
(in degrees)

Figure D.4: Fault-Revealing MRs for image classification: Violation rate and
configuration of parameterized MR transformations. Tetraband approximates
the true error distribution and select fault-revealing MRs and their parameters.

fault-revealing MR identified by Tetraband showed to be flipping the image
upside-down, i.e., mirroring on the middle of the horizontal axis. This is within
expectations, as it results in an image, which is unlikely to be represented in the
distribution of training images, e.g., an image of a car is likely to be shown with
its wheels on the ground. Nevertheless, high violation rates are also observed
for less invasive MRs, such as rotating the image or inverting it, and these MRs
are either likely to be encountered in practical applications or preserve many of
the distinctive features. Having this statistic not only allows us to identify the
weaknesses of the classifier (model testing), but it can also be used as a basis to
configure image augmentation techniques to train a new version of the image
classification model (model training). With image augmentation, the training
set of images is extended by including modified versions of the original image,
through small perturbations or affinity scaling, while preserving the original label.
By knowing the MRs that fail the old classifier, the necessary transformations
to include in future image augmentation are known and can help to improve
the performance of new models. However, not all MRs are necessarily suitable
image augmentations at training time, as they might produce images that are
not within the distribution of inputs, i.e. images, for which the model is trained.

The performance of Tetraband closely approximates the violation distribution
for the baseline results and exceeds them for all MRs, except Rotation where
the violation rate is close to the baseline violation rate. The reason for the lower

125

D. Adaptive Metamorphic Testing with Contextual Bandits

violation rate is related to the necessary exploration to select an appropriate
parameter to rotate the source image. Due to the large number of parameters
from −90 to 90 the bandit exploration had to take ineffective actions to learn,
which leads to an initially lower violation rate.

However, we also observe that longer runtime and more iterations over the
dataset further increase the averaged violation rate as the bandit algorithm can
focus more on exploitation than exploration. This can be explained as initial
iterations do not have knowledge about the MRs effectiveness and the selection
is more random, which includes selecting ineffective MRs. While these actions
are valuable for exploration, they do not contribute to the violation rate. Later,
when the effect of MRs has been sufficiently explored, the focus changes on
also exploiting the MRs and selecting fault-revealing MRs. These actions then
contribute to increasing the violation rate. Accordingly, if the system under test
does not rapidly change, more iterations will increase the amount of exploitation
with high violation rates and the impact of the initial exploration on the violation
rate decreases.

The violation distribution for the different parameters of the MRs Rotation
and Shear are shown in Figure D.4b and Figure D.4c. The bandit effectively picks
the appropriate degree of rotation to closely resemble the true error distribution.
The only exceptions are the largest degrees of rotation, where the selection does
not completely approximate the true distribution. However, due to our reward
structure, the agent is encouraged to focus on minimal rotations in the images
that lead to some misclassification. Especially in the range between −45 and 45
degrees the parameter selection is appropriate, which indicates the successful
convergence towards the most revealing parameter for image rotation.

In the Shear transformation, Tetraband was less effective to smoothly
approximate the true error distribution but broadly follows its shape. Here, we
observe that due to the lower general violation rate of the MR, there are fewer
chances for successful exploration of the parameter space than for the Rotation
MR. Accordingly, the approximation of the parameter distribution for Shear is
not as close as for Rotation, but still follows the general distribution.

6.2.2 Case Study 2: Object Detection

The second case study application is the object detection neural network. Similar
to the presentation of the first case study, Figure D.5 shows the results of the
object detection case study. As a first main difference, the results show a higher
violation rate for object detection, with over 70% violation rate for four of the
seven MRs. The ranking of MRs is similar but applying the Shear MR with
parameter selection is more efficient here than in the image classification case
study, where the Invert MR showed a higher violation rate, and Rotation is
the most effective MR. The MRs Flip L/R, Blur and Grayscale have the lowest
violation rate, i.e., the model is most robust to these changes. However, while the
total violation rate is higher, the case study itself is more difficult as the dataset
on which we apply Tetraband is smaller and only consists of 5000 images, which
means the overall process takes half of the iterations of the image classification

126

Experimental Results

Flip L/R Blur Grayscale Invert Shear Flip U/D Rotation
Metamorphic Relation

0

20

40

60

80

V
io
la
ti
on

R
at
e
(i
n
%
)

Tetraband
Baseline

(a) Violation rate of MRs selected by Tetraband and baseline results for exhaustive
search

−80 −60 −40 −20 0 20 40 60 80
50

60

70

80

90

100

V
io
la
ti
on

R
at
e
(i
n
%
)

(b) Configuration of Rotation transformation
(in degrees)

−40 −30 −20 −10 0 10 20 30 40
50

60

70

80

90

100
Tetraband
Baseline

(c) Configuration of Shear transformation
(in degrees)

Figure D.5: Fault-Revealing MRs for object detection: Violation rate and
configuration of parameterized MR transformations. Tetraband approximates
the true error distribution and select fault-revealing MRs and their parameters.

case study. This difference explains the approximation difference for some of the
main MRs in comparison to the baseline violation rates.

For the two MRs Rotation and Shear, the approximation quality for the
additional parameter is similar to the image classification results. For Rotation,
the distribution is close to the true distribution of the exhaustive search baseline
results, related to the high overall violation rate for this MR and its corresponding
higher selection and thereby better exploration opportunities. The Shear
parameters match the true distribution less closely in this case study, which is
also related to the higher general effectiveness of this MR for the object detection
dataset.

In general, the results of the object detection case study confirm the results of
the image classification case study while at the same time respecting the higher
difficulty of fewer iterations, due to which the violation rate of the main MRs is
close to the true violation rate, but does not exceed it after the given number of
iterations.

6.2.3 Computational Cost and Random Selection

From the previous experiments, we have evaluated the effectiveness of Tetraband
for selecting fault-revealing MRs in image classification and object detection
systems. However, we did not consider the computational cost of introducing
machine learning in the MT process or compared Tetraband to the commonly used

127

D. Adaptive Metamorphic Testing with Contextual Bandits

Runtime (in s) Accuracy (in %)
Case Study Tetraband Random Unmodified Tetraband Random
Image Classification 0.1 0.06 96.6 54.0 72.9
Object Detection 0.63 0.56 54.3 23.1 36.3

Table D.2: Computational cost and accuracy of Tetraband and random selection
for selecting fault-revealing MRs. The average runtime per image shows that
the overhead introduced by the ML model is relatively small, especially for
object detection with a more costly test execution. Tetraband selects MRs more
effectively and the accuracy is smaller than with random selection.

approach of randomly selecting MRs and their parameters. In this experiment,
to answer RQ3, we analyze common characteristics for both case studies, which
consider the computational cost of introduced contextual bandits and the
additional learning step in the MR process. We further briefly discuss another
comparison method that more closely resembles the state-of-practice in MT,
which is to randomly select MRs and their parameters. A summary of the results
is given in Table D.2.

Running Tetraband is computationally cheaper and more sample-efficient
than the exhaustive search that we consider as a baseline. While the exhaustive
search considers all MRs with all different parameters for Rotation and Shear, in
total 59 different transformations, Tetraband selects one MR and one parameter
per iteration. In addition to the application of the MR and the execution of the
SUT, Tetraband has a small computational overhead for selecting the MR and
its parameter and learning from the received feedback. The average duration per
iteration in the image classification case study is 0.1s using Tetraband and 0.06s
when using a random MR and not learning from feedback. While this overhead
increases the execution time, it is still faster and more efficient than running all
possible transformations, as we will see below. For object detection, the average
duration is 0.63s with learning and 0.56s without, here the main computation lies
in the object detection neural network. The overhead for training the contextual
bandit could be further reduced by moving the learning step outside the main
processing loop; however, we argue that in a practical application the overhead
is negligible due to the lower number of executions and the availability of highly
optimized contextual bandit implementations.

We also considered a random selection of MRs and their parameters. At
each iteration, a random MR is sampled uniformly instead of using the bandit
selection. This selection is less efficient than Tetraband. Using Tetraband, the
accuracy of the image classifier is reduced from 96.6% for the unmodified images
to 54.0% for the images modified by the selected MRs. With random selection,
the accuracy for the modified images remains at 72.9%, which is a substantial
reduction, but not as high as Tetraband. In object detection, the precision
is reduced from 54.3% to 23.1% with Tetraband and to 36.3% with random
selection. Due to the lower general effectiveness of random selection, we do not

128

Experimental Results

−80 −60 −40 −20 0 20 40 60 80
0

20

40

60

80

V
io
la
ti
on

R
at
e
(i
n
%
)

(a) Configuration of Rotation transformation
(in degrees)

−40 −30 −20 −10 0 10 20 30 40
0

20

40

60

80
Tetraband
Baseline

(b) Configuration of Shear transformation
(in degrees)

Figure D.6: Image classification: Average violation rate per degree step. The
approximated violation rate closely approximates the true violation distribution
of the ground truth baseline, i.e. exhaustive search.

further discuss its results in detail.

6.3 Robustness Boundaries

As a second experiment and application of Tetraband to learning MR selection,
we aim to find the robustness boundaries of the case study systems against
different degrees of image rotations and shearing. We show the results for both
case study applications in Figure D.6 for image classification and Figure D.7
for object detection. The experimental results mostly confirm the inherent
hypothesis, also following the previous results from the first experiments that
larger modifications of the source test case lead to a higher violation rate of the
follow-up test case. This is true for both case study applications, but the extent
to which the effect applies varies with the object detection system being much
more susceptible to images rotated even only by small degrees. At the same
time, we confirm that a larger number of iterations allows better exploration and
approximation of the true error distribution. Where the parameter distribution in
the previous experiments showed divergence, mostly for larger parameter values,
the focus on the specific MRs in this experiment allows sufficient exploration
and good approximation.

The results for image classification clearly show the effect that larger rotations
of the original image are more likely to cause a different classification (see
Figure D.6a). Here, the bandit does not only learn to select the largest rotation
but does accurately approximate the distribution of true faults as given by the
exhaustive search baseline. Our results show that for more than 10% of the
source test cases a rotation of at least 10 degrees leads to a different image
classification. When considering real-world scenarios for the application of image
classification systems, a rotation of 10 degrees can likely occur due to tilt or
shifts in either the camera or due to external influences on the actual object.

For object detection, the interpretation of the results needs to consider
two aspects, which lead to the conclusion that the results can not be directly
compared to the image classification case study. First, the original SUT already

129

D. Adaptive Metamorphic Testing with Contextual Bandits

−80 −60 −40 −20 0 20 40 60 80
50

60

70

80

90

100

V
io
la
ti
on

R
at
e
(i
n
%
)

(a) Configuration of Rotation transformation
(in degrees)

−40 −30 −20 −10 0 10 20 30 40
50

60

70

80

90

100
Tetraband
Baseline

(b) Configuration of Shear transformation
(in degrees)

Figure D.7: Object detection: Average violation rate per degree step. The
approximated violation rate closely approximates the true violation distribution
of the ground truth baseline, i.e. exhaustive search.

has lower performance for the original data set than the image classification
SUT. When considering the system to be more imprecise for unmodified data,
then it is also likely to be more fragile for modified data. Second, the evaluation
metric used, mean average precision, is more fragile than the metric used for
image classification. The results show the fragility of the object detection system,
as well as the capability to learn to approximate this error distribution over
transforming each of the 5000 source test case images only once.

6.4 Discussion

For both case studies in our experiments, our results showed the effectiveness
of contextual bandits, as part of Tetraband, to adapt to a prior unknown error
distribution in two different case study applications, based on two different neural
network architectures and tasks.

From the results, we draw two major conclusions. First, we see a confirmation
for the applicability of Tetraband for selecting metamorphic relations using
contextual bandits (i.e., Adaptive Metamorphic Testing), as is shown by the
close approximation of the true error distribution with limited iterations. Second,
our tests reveal robustness weaknesses in the two systems-under-test. Weaknesses
in neural networks have been addressed before and are an active research area [56,
57, 58]. The research under the area of adversarial examples focuses on finding
input perturbations that lead to misbehavior of the model with only minimal
or hard-to-detect changes in the input. This approach is different from the
setting of our experiment. We select distinct and known image transformations
to modify the image without the goal to hide the transformation, which often is
the intent of an adversarial example.

7 Conclusion

This paper introduces Adaptive Metamorphic Testing (AMT), a method to
control metamorphic testing using contextual bandits. AMT receives a feature

130

References

vector representing the source test case and selects a MR to generate a follow-up
test case. From the result of evaluating the follow-up test case, whether it
reveals a fault, the bandit learns which MRs can be used to exploit weaknesses
in the system. At the same time, using state-of-the-art algorithms for contextual
bandits, AMT explores non-optimal actions to identify previously unknown
weaknesses and to adapt to changing behavior in repeated testing of the same
system.

We have evaluated the applicability of AMT using our implementation
Tetraband on two image analysis case studies in two distinct tasks. For both case
studies, our results showed that Tetraband approximates the true distribution
of faults in the SUT with fewer iterations and executions of the SUT than an
exhaustive search and more efficiently than random sampling of MRs and their
parameters, which is the common best practice. Tetraband learns to select fault-
revealing MRs in relation to the source test case while ignoring non-relevant MRs.
Furthermore, in the second experiment, Tetraband proved to be effective for the
identification of robustness boundaries, that is, exploring the parameterization
of individual MRs, which have different impacts on the SUT. Our experiment
explored how different degrees of rotation and shear affected the classification
result of the transformed image.

In conclusion, AMT is effective for selecting MRs and is more time-efficient
than exhaustive testing and more effective than the standard approach of pure
random sampling. We see the method to be useful in repeated testing scenarios,
such as continuous integration, where regression of the SUT can be tested from
an initial knowledge about previous fault characteristics. For future work, we
plan to investigate the combination of multiple MRs to create follow-up test
cases instead of selecting only one MR per iteration.

Acknowledgements

This work is supported by the Research Council of Norway (RCN) through
the research-based innovation center Certus, under the SFI program. The
experiments were performed on the Abel Cluster, owned by the University
of Oslo and Uninett/Sigma2, and operated by the Department for Research
Computing at USIT, the University of Oslo IT-department.

Declarations of Interest

None of the authors declares a conflict of interest.

References

[1] Chen, T., Cheung, S., and Yiu, S. Metamorphic Testing: A New Approach
for Generating Next Test Cases. Technical Report HKUST-CS98-01. Hong
Kong: Department of Computer Science, Hong Kong University of Science
and Technology, 1998.

131

D. Adaptive Metamorphic Testing with Contextual Bandits

[2] Chen, T. Y., Kuo, F.-C., Liu, H., Poon, P.-L., Towey, D., Tse, T. H.,
and Zhou, Z. Q. “Metamorphic Testing: A Review of Challenges and
Opportunities”. In: ACM Computing Surveys vol. 51, no. 1 (2018).

[3] Barr, E. T., Harman, M., McMinn, P., Shahbaz, M., and Yoo, S. “The
Oracle Problem in Software Testing: A Survey”. In: IEEE Transactions on
Software Engineering vol. 41, no. 5 (2015), pp. 507–525.

[4] Murphy, C., Kaiser, G., Hu, L., and Wu, L. “Properties of Machine Learning
Applications for Use in Metamorphic Testing”. In: Proceedings of the
20th International Conference on Software Engineering and Knowledge
Engineering (SEKE) (2008), pp. 867–872.

[5] Ding, J., Hu, X.-H., and Gudivada, V. “A Machine Learning Based
Framework for Verification and Validation of Massive Scale Image Data”.
In: IEEE Transactions on Big Data vol. 26, no. 3 (2017), pp. 1–1.

[6] Dwarakanath, A., Ahuja, M., Sikand, S., Rao, R. M., Bose, R. P. J. C.,
Dubash, N., and Podder, S. “Identifying Implementation Bugs in Machine
Learning Based Image Classifiers Using Metamorphic Testing”. In:
Proceedings of the 27th ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA). 2018, pp. 118–128.

[7] Zhou, Z. Q. and Sun, L. “Metamorphic Testing of Driverless Cars”. In:
Communications of the ACM vol. 62, no. 3 (2019), pp. 61–67.

[8] Zhou, Z. Q., Xiang, S., and Chen, T. Y. “Metamorphic Testing for Software
Quality Assessment: A Study of Search Engines”. In: IEEE Transactions
on Software Engineering vol. 42, no. 3 (Mar. 2016), pp. 264–284.

[9] Shahri, M. P., Srinivasan, M., Reynolds, G., Bimczok, D., Kahanda, I.,
and Kanewala, U. “Metamorphic Testing for Quality Assurance of Protein
Function Prediction Tools”. In: 2019 IEEE International Conference On
Artificial Intelligence Testing (AITest). Apr. 2019, pp. 140–148.

[10] LeCun, Y., Bengio, Y., and Hinton, G. “Deep Learning”. In: Nature vol. 521,
no. 7553 (2015), pp. 436–444.

[11] Pouyanfar, S., Sadiq, S., Yan, Y., Tian, H., Tao, Y., Reyes, M. P., Shyu,
M.-L., Chen, S.-C., and Iyengar, S. S. “A Survey on Deep Learning:
Algorithms, Techniques, and Applications”. en. In: ACM Computing
Surveys vol. 51, no. 5 (2018), pp. 1–36.

[12] Langford, J. and Zhang, T. “The Epoch-Greedy Algorithm for Multi-
Armed Bandits with Side Information”. In: Advances in Neural Information
Processing Systems 20 (NIPS 2007). 2007, pp. 817–824.

[13] Zhou, L. “A Survey on Contextual Multi-Armed Bandits”. In: arXiv
preprint arXiv:1508.03326 (2016).

[14] Agarwal, A., Hsu, D., Kale, S., Langford, J., Li, L., and Oct, L. G. “Taming
the Monster: A Fast and Simple Algorithm for Contextual Bandits”. In:
International Conference on Machine Learning. 2014, pp. 1638–1646.

132

References

[15] Lattimore, T. and Szepesvari, C. Bandit Algorithms. en. Vol. Revision:
8b22b8b6131c37e388d5e3b2eecf0b4ff5d7db92. https://banditalgs.com/,
2019.

[16] Sutton, R. S. and Barto, A. G. Reinforcement Learning: An Introduction.
2nd. MIT Press, 2018.

[17] Li, L., Chu, W., Langford, J., and Schapire, R. E. “A Contextual-
Bandit Approach to Personalized News Article Recommendation”. In:
International Conference on World Wide Web (WWW). 2010, pp. 661–670.

[18] Lu, T., Pal, D., and Pal, M. “Contextual Multi-Armed Bandits”. In:
Proceedings of the 13th International Conferenceon Artificial Intelligence
and Statistics (AISTATS). 2010, pp. 485–492.

[19] Tang, L., Rosales, R., Singh, A., and Agarwal, D. “Automatic Ad Format
Selection via Contextual Bandits”. In: Proceedings of the 22nd ACM
International Conference on Conference on Information & Knowledge
Management. 2013, pp. 1587–1594.

[20] Baskiotis, N., Sebag, M., Gaudel, M.-C., and Gouraud, S.-D. “EXIST:
Exploitation/Exploration Inference for Statistical Software Testing”. In:
On-Line Trading of Exploration and Exploitation, NIPS 2006 Workshop.
2006.

[21] Loth, M., Sebag, M., Hamadi, Y., and Schoenauer, M. “Bandit-Based
Search for Constraint Programming”. In: International Conference on
Principles and Practice of Constraint Programming. 2013, pp. 464–480.

[22] Balafrej, A., Bessiere, C., and Paparrizou, A. “Multi-Armed Bandits for
Adaptive Constraint Propagation”. In: International Joint Conference on
Artificial Intelligence (2015), pp. 290–296.

[23] Ontañón, S. “Combinatorial Multi-Armed Bandits for Real-Time Strategy
Games”. In: Journal of Artificial Intelligence Research vol. 58, no. 1 (Mar.
2017), pp. 665–702.

[24] Segura, S., Fraser, G., Sanchez, A. B., and Ruiz-Cortes, A. “A Survey on
Metamorphic Testing”. In: IEEE Transactions on Software Engineering
vol. 42, no. 9 (2016), pp. 805–824.

[25] Sun, L. and Zhou, Z. Q. “Metamorphic Testing for Machine Translations:
MT4MT”. In: 2018 25th Australasian Software Engineering Conference
(ASWEC). Nov. 2018, pp. 96–100.

[26] Segura, S., Troya, J., Durán, A., and Ruiz-Cortés, A. “Performance
Metamorphic Testing: A Proof of Concept”. In: Information and Software
Technology vol. 98 (June 2018), pp. 1–4.

[27] Johnston, O., Jarman, D., Berry, J., Zhou, Z. Q., and Chen, T. Y.
“Metamorphic Relations for Detection of Performance Anomalies”. In:
2019 IEEE/ACM 4th International Workshop on Metamorphic Testing
(MET). 2019, pp. 63–69.

133

D. Adaptive Metamorphic Testing with Contextual Bandits

[28] Akgün, Ö., Gent, I. P., Jefferson, C., Miguel, I., and Nightingale, P.
“Metamorphic Testing of Constraint Solvers”. In: Principles and Practice
of Constraint Programming. Ed. by Hooker, J. Vol. 11008. LNCS. 2018,
pp. 727–736.

[29] Gotlieb, A. and Botella, B. “Automated Metamorphic Testing”. In:
Proceedings 27th Annual International Computer Software and Applications
Conference (2003), pp. 34–40.

[30] Mayer, J. and Guderlei, R. “An Empirical Study on the Selection of Good
Metamorphic Relations”. In: 30th Annual International Computer Software
and Applications Conference. 2006, pp. 475–484.

[31] Kanewala, U. and Bieman, J. M. “Using Machine Learning Techniques
to Detect Metamorphic Relations for Programs without Test Oracles”.
In: 2013 IEEE 24th International Symposium on Software Reliability
Engineering (ISSRE) (2013).

[32] Kanewala, U., Bieman, J. M., and Ben-Hur, A. “Predicting Metamorphic
Relations for Testing Scientific Software: A Machine Learning Approach
Using Graph Kernels”. In: Software Testing, Verification and Reliability
vol. 26, no. 3 (May 2016), pp. 245–269.

[33] Pei, K., Cao, Y., Yang, J., and Jana, S. “DeepXplore: Automated Whitebox
Testing of Deep Learning Systems”. In: Proceedings of the 26th Symposium
on Operating Systems Principles. ACM Press, 2017, pp. 1–18.

[34] Ma, L., Liu, Y., Zhao, J., Wang, Y., Juefei-Xu, F., Zhang, F., Sun, J., Xue,
M., Li, B., Chen, C., Su, T., and Li, L. “DeepGauge: Multi-Granularity
Testing Criteria for Deep Learning Systems”. In: Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering
- ASE 2018. 2018, pp. 120–131.

[35] Xie, X., Ho, J. W., Murphy, C., Kaiser, G., Xu, B., and Chen, T. Y. “Testing
and Validating Machine Learning Classifiers by Metamorphic Testing”. In:
Journal of Systems and Software vol. 84, no. 4 (2011), pp. 544–558.

[36] Chan, W. K., Ho, J. C. F., and Tse, T. H. “Finding Failures from Passed
Test Cases: Improving the Pattern Classification Approach to the Testing
of Mesh Simplification Programs”. en. In: Software Testing, Verification
and Reliability vol. 20, no. 2 (2010), pp. 89–120.

[37] Yang, S., Towey, D., and Zhou, Z. Q. “Metamorphic Exploration of an
Unsupervised Clustering Program”. In: Proceedings of the 4th International
Workshop on Metamorphic Testing. 2019, pp. 48–54.

[38] Mekala, R. R., Magnusson, G. E., Porter, A., Lindvall, M., and Diep, M.
“Metamorphic Detection of Adversarial Examples in Deep Learning Models
with Affine Transformations”. In: Proceedings of the 4th International
Workshop on Metamorphic Testing. 2019, pp. 55–62.

134

References

[39] Saha, P. and Kanewala, U. “Fault Detection Effectiveness of Metamorphic
Relations Developed for Testing Supervised Classifiers”. In: 2019 IEEE
International Conference On Artificial Intelligence Testing (AITest). Apr.
2019, pp. 157–164.

[40] Cai, K.-Y., Gu, B., Hu, H., and Li, Y.-C. “Adaptive Software Testing with
Fixed-Memory Feedback”. en. In: Journal of Systems and Software. The
Impact of Barry Boehm’s Work on Software Engineering Education and
Training vol. 80, no. 8 (Aug. 2007), pp. 1328–1348.

[41] Zhou, Z. Q., Sinaga, A., Susilo, W., Zhao, L., and Cai, K.-Y. “A
Cost-Effective Software Testing Strategy Employing Online Feedback
Information”. en. In: Information Sciences vol. 422 (Jan. 2018), pp. 318–
335.

[42] Mayer, J. and Guderlei, R. “On Random Testing of Image Processing
Applications”. In: 2006 Sixth International Conference on Quality Software
(QSIC’06). Oct. 2006, pp. 85–92.

[43] Guderlei, R. and Mayer, J. “Towards Automatic Testing of Imaging
Software by Means of Random and Metamorphic Testing”. In: International
Journal of Software Engineering and Knowledge Engineering vol. 17, no. 06
(Dec. 2007), pp. 757–781.

[44] Xu, L., Towey, D., French, A. P., Benford, S., Zhou, Z. Q., and Chen, T. Y.
“Enhancing Supervised Classifications with Metamorphic Relations”. In:
Proceedings of the 3rd International Workshop on Metamorphic Testing -
MET ’18. 2018, pp. 46–53.

[45] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang,
Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei, L.
“ImageNet Large Scale Visual Recognition Challenge”. In: International
Journal of Computer Vision vol. 115, no. 3 (2015), pp. 211–252.

[46] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-y., and Berg,
A. C. “SSD: Single Shot MultiBox Detector”. In: European Conference on
Computer Vision. Vol. 9905. LNCS. 2016, pp. 21–37.

[47] He, K., Zhang, X., Ren, S., and Sun, J. “Identity Mappings in Deep Residual
Networks”. In: European Conference on Computer Vision. Vol. 9908. LNCS.
2016, pp. 630–645.

[48] Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J.,
and Keutzer, K. “SqueezeNet: AlexNet-Level Accuracy with 50x Fewer
Parameters and <0.5MB Model Size”. In: arXiv preprint arXiv:1602.07360
(2016).

[49] Krizhevsky, A., Nair, V., and Hinton, G. “The CIFAR-10 Dataset”. In:
online: http://www. cs. toronto. edu/kriz/cifar. html (2014).

135

D. Adaptive Metamorphic Testing with Contextual Bandits

[50] Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A.,
Fischer, I., Wojna, Z., Song, Y., Guadarrama, S., and Murphy, K.
“Speed/Accuracy Trade-Offs for Modern Convolutional Object Detectors”.
In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
2017, pp. 3296–3297.

[51] Lin, T.-Y., Dollar, P., Girshick, R., He, K., Hariharan, B., and Belongie,
S. “Feature Pyramid Networks for Object Detection”. In: 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). IEEE,
2017, pp. 936–944.

[52] Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D.,
Dollár, P., and Zitnick, C. L. “Microsoft COCO: Common Objects in
Context”. In: European Conference on Computer Vision. Vol. 8693. LNCS.
2014, pp. 740–755.

[53] Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J.,
Tang, J., and Zaremba, W. “OpenAI Gym”. In: arXiv:1606.01540 [cs]
(June 2016). arXiv: 1606.01540 [cs].

[54] Dud, M. and Langford, J. “Doubly Robust Policy Evaluation and Learning”.
In: Proceedings of the 28th International Conference on Machine Learning.
2011, pp. 1097–1104.

[55] Sharif Razavian, A., Azizpour, H., Sullivan, J., and Carlsson, S. “CNN
Features Off-the-Shelf: An Astounding Baseline for Recognition”. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops. 2014, pp. 806–813.

[56] Goodfellow, I., Lee, H., Le, Q. V., Saxe, A., and Ng, A. Y. “Measuring
Invariances in Deep Networks”. In: Advances in Neural Information
Processing Systems. Vol. 22. 2009, pp. 646–654.

[57] Carlini, N. and Wagner, D. “Towards Evaluating the Robustness of Neural
Networks”. In: IEEE Symposium on Security and Privacy. 2017, pp. 39–57.

[58] Biggio, B. and Roli, F. “Wild Patterns: Ten Years after the Rise of
Adversarial Machine Learning”. In: Pattern Recognition vol. 84 (Dec.
2018), pp. 317–331.

Authors’ addresses

Helge Spieker Simula Research Laboratory, Martin Linges vei 25, 1364 Fornebu,
Norway, helge@simula.no

Arnaud Gotlieb Simula Research Laboratory, Martin Linges vei 25, 1364
Fornebu, Norway, arnaud@simula.no

136

https://arxiv.org/abs/1606.01540
mailto:helge@simula.no
mailto:arnaud@simula.no

	Preface
	Acknowledgements
	List of Papers
	Contents
	Summary
	Introduction
	Motivation
	Research Objectives
	Contributions
	Structure of the Thesis

	Test Suite Optimization for Continuous Integration Testing
	Software Testing
	Continuous Integration
	Machine Learning
	Constraint Programming
	Test Suite Optimization

	Summary of Results
	pap:retecs
	pap:globalresources
	pap:rotationaldiversity
	pap:adapmt

	Discussion
	Future Work
	Conclusion

	References

	Papers
	Reinforcement Learning for Automatic Test Case Prioritization and Selection in Continuous Integration
	Introduction
	Formal Definitions
	The RETECS Method
	Experimental Evaluation
	Related Work
	Conclusion
	References

	Time-aware Test Case Execution Scheduling for Cyber-Physical Systems
	Introduction
	Existing Solutions and Related Work
	Problem Modeling
	The TC-Sched Method
	Implementation and Exploitation
	Experimental Evaluation
	Conclusion
	References

	Multi-Cycle Assignment Problems with Rotational Diversity
	Introduction
	Related Work
	Problem Description
	Maintaining Rotational Diversity
	Experimental Evaluation
	Conclusion
	References

	Adaptive Metamorphic Testing with Contextual Bandits
	Introduction
	Background
	Adaptive Metamorphic Testing
	Application Scenarios of Adaptive Metamorphic Testing
	Experimental Evaluation
	Experimental Results
	Conclusion
	References

