
Host Bypassing: Direct Data Piping from the
Network to the Hardware Accelerator

Ralf Kundel∗, Kadir Eryigit∗†, Jonas Markussen¶‡, Carsten Griwodz‡, Osama Abboud§, Rhaban Hark∗, Ralf Steinmetz∗
∗Multimedia Communications Lab, Technical University of Darmstadt, Germany

ralf.kundel@kom.tu-darmstadt.de
†Zoi TechCon GmbH, Stuttgart, Germany

‡Department of Informatics, University of Oslo, Norway
¶Dolphin Interconnect Solutions AS, Oslo, Norway

§Huawei Technologies, Munich, Germany

Abstract—Computer networks have become very important
and influential over the last years for many common services
such as Internet connectivity as well as time-sensitive applications
such as videotelephony. Furthermore, approaches like in-network
computing enable the offloading of latency-critical and high-
performance network functions into the network, e.g. 5G network
functions, to enable such time-sensitive applications.

In this work, we show how FPGAs in PCIe-based systems,
which are typically used as hardware accelerators for latency-
critical in-network functions, can be integrated into the data path.
Our approach, named host bypassing, allows direct data transfer
from the network interface to the accelerator and accomplishes
substantial performance benefits over existing state-of-the-art
approaches. Our detailed evaluation results demonstrate the
possibility of achieving deterministic low latency while operating
under heavy load without any packet loss. In addition, fewer
CPU resources are required.

Index Terms—PCIe, FPGA, Offloading, Bypassing, DPDK

I. INTRODUCTION

The continuously growing number and scale of digital

services in the Internet and all underlying networks has led to

numerous challenges for network and data center operators.

First, due to the very high demand for digital services, a

lot of computing power is needed at the lowest possible

energy consumption. Second, high flexibility and scalability

are required in networks in order to meet the continuously

changing needs of on-top applications [1].

While CPUs are highly flexible and capable of serv-

ing arbitrary computing applications, most network switches

and network interface cards (NICs) are realized with

non-programmable Application Specific Integrated Cir-

cuits (ASICs). Since ASICs can only provide fixed and limited

functionality, the Network Function Virtualization (NFV) [2]

paradigm has resulted in a movement of more network-

ing functionality onto the CPU for flexibility reasons. NFV

describes the execution of network functions in virtualized

software environments, demanding flexibility that is typically

achieved by executing them on standard x86 or ARM servers

and not on purpose-built devices. However, this reduces the

overall performance [2].

Many recently arisen applications have strict Quality of

Service (QoS) requirements, including the requirement of

time-critical processing within the data path. 5G networks,

in particular, impose extreme demands in terms of latency,

throughput and jitter while moving increasingly towards soft-

warized networks. 5G O-RAN systems are examples that

require low latency, high throughput and lower jitter between

their Radio Units and Distributed Unit [3]. This gives rise to

a need for flexible hardware acceleration within the data path.

While achieving these QoS requirements is inhibited by

today’s common approach to NFV, which sacrifices perfor-

mance to gain flexibility, in-network computing approaches

focus on bringing the functionality back from servers into

the data path of the network. Combining the ideas of NFV

and hardware acceleration for in-network computing opens up

huge potentials to fulfill the constraints of time-critical net-

working functions. However, integrating programmable hard-

ware accelerators, such as Graphics Processing Units (GPUs)

and Field Programmable Gate Arrays (FPGAs), into the data

path is challenging. In the context of commodity servers with a

standard PCIe infrastructure, moving network packets between

the NIC and an accelerator requires copying data via system

memory, which introduces additional latency in the data path.

To illustrate this, we introduce a simple reference architec-

ture for a computer system with an FPGA as a hardware accel-

erator in Figure 1. State-of-the-art approaches store incoming

data from the network first in the main memory (DRAM).

The incoming data is then transferred via Direct Memory

Access (DMA) from the main memory into the FPGA in a

second step. After being processed by the accelerated network

function implemented on the FPGA, named fx, the data is sent

out via the same path. The data is moved at least four times

within the system, and CPU interaction is needed.

In this work, we present host bypassing to drive

commodity NICs with an FPGA directly as shown in Figure 1.

It reduces the number of memory copies to two that do not

require CPU involvement. As a consequence, we expect an

increased throughput, lower latency and strongly reduced CPU

utilization. This approach can be realized with any poll-mode

23

2021 IEEE 14th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)

978-1-6654-3860-5/21/$31.00 ©2021 IEEE
DOI 10.1109/MCSoC51149.2021.00012

20
21

 IE
EE

 1
4t

h
In

te
rn

at
io

na
l S

ym
po

siu
m

 o
n

Em
be

dd
ed

 M
ul

tic
or

e/
M

an
y-

co
re

 S
ys

te
m

s-
on

-C
hi

p
(M

CS
oC

) |
 9

78
-1

-6
65

4-
38

60
-5

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

M
CS

O
C5

11
49

.2
02

1.
00

01
2

Authorized licensed use limited to: UNIVERSITY OF OSLO. Downloaded on October 24,2022 at 12:21:57 UTC from IEEE Xplore. Restrictions apply.

NIC

FPGA P
C
I
e

...
...core 1

core n

DRAM

CPU

DDR4

2x
 1

0G

computer systemstate-of-
the-art
host-
bypassing

fx

Fig. 1. Reference computer system with a PCIe-based FPGA accelerator. The
red path represents the current state of the art for packet I/O to accelerators.
The host bypassing approach utilizes PCIe peer-to-peer capabilities.

Fig. 2. Example of a PCIe subsystem topology in a computer system. Several
devices are connected to the CPU through the root complex. Devices may read
from or write to system memory (DRAM) using DMA.

capable hardware and no special NIC is needed. In addition, it

can be extended to chain several hardware-accelerated network

functions within the same PCIe domain [4].

The outline of this paper is as follows: First, the fundamental

basics of the PCIe subsystem and NIC drivers are introduced.

Second, we present the design and implementation details of

the host bypassing approach. Third, we evaluate and discuss

the performance characteristics of the presented approach in

several scenarios. Finally, after discussing related works of

other researchers, we conclude this paper.

II. BACKGROUND

This section introduces the two main technologies under-

lying on our work: 1) the PCIe bus standard for integrating

peripheral devices and hardware accelerators into computer

systems, and 2) user space poll mode drivers for NICs.

A. PCIe Subsystem

PCIe is the de facto standard for high-speed computer

expansion that connects hardware devices such as NICs, GPUs

and FPGAs to a computer system [5]. Figure 2 depicts an

example of a PCIe subsystem topology: Several devices are

connected to the CPU, either directly or via a PCIe switch

on the motherboard. Each connection is a point-to-point link,

consisting of 1 to 16 lanes. Each lane is a full-duplex serial

connection. Data is striped across multiple lanes, so broader

links yield higher bandwidth. Connecting the CPU to the

PCIe subsystem is the so-called “root complex”. Devices are

mapped into the same physical address space as the CPU, and

memory transactions are routed in the PCIe subsystem based

on these mapped addresses. Because of this mapping, CPU

applications can access device memory in the same way as

system memory (DRAM). Likewise, if a device is capable of

NIC user space
application

shared memory:

. . .

mbuf:

rx-ring:
head pointer

tail pointer#1#2
#3

direct write

Fig. 3. DPDK principle of receiving incoming packets directly into the user
space. Synchronization between the application and NIC is realized by a
descriptor ring and a shared memory buffer.

DMA, it can directly read from and write to the main system

memory.

A device may even access other devices in the PCIe

subsystem directly, as they are mapped into the same address

space. This is called “peer-to-peer” in PCIe terminology.

PCIe switches are assigned the combined address range of

their downstream devices, allowing memory transactions to

be routed over the shortest path in the subsystem instead of

passing through the root complex. In Figure 2, transactions

between device 3 and device 4 would be routed directly

through the switch without involvement of the root complex.

B. User Space Poll Mode Driver

The idea of driving NICs directly from user space has

become very popular over the last years, as this provides

several benefits over kernel based approaches. In contrast to

the whole Linux kernel stack, only the required functionality

is implemented in the application in a simplistic manner [6].

In addition, zero-copy mechanisms are possible, which means

that the arriving packets are stored in a memory region where

the application can process them. By that, huge performance

benefits can be achieved.

In this work, we build upon the Data Plane Development

Kit (DPDK) library, a user space driver supporting a wide

range of NICs [7]. The main principle of DPDK is using ring

buffers to exchange packets between NIC and application, as

shown in Figure 3 for receiving packets. In a first step, the

NIC reads from a free descriptor ring entry indicated by the

head pointer. This entry contains the physical memory address

where the next received packet should be stored. As soon as

the packet arrives, the NIC writes it to this memory address.

Last, packet metadata and the information that a packet was

received are written into the descriptor ring and the head

pointer is advanced by one. The user space application polls

the descriptor ring at the tail pointer location asynchronously

to the NIC for new packets. When the application has read

a packet, the rx tail pointer is advanced by one and written

into the NIC. This tail pointer indicates the range of free

descriptors to the NIC. In Figure 3, the NIC currently receives

three packets but are not yet processed by the application.

24

Authorized licensed use limited to: UNIVERSITY OF OSLO. Downloaded on October 24,2022 at 12:21:57 UTC from IEEE Xplore. Restrictions apply.

PCIe
IP-Core

AXI4

BRAM ctrl.

BRAM ctrl.

BRAM ctrl.

BRAM ctrl.

BRAM ctrl. tx buffer

tx ring

rx ring

rx buffer

config reg.

AXI4
direct write

fx

descriptor
control packet

handler

descriptor
control packet

handler

AXI4-stream

AXI4-stream

convert
rx/tx tailpointer
update

FPGA specific logic target platform independent design

delay
delay (optional)

NIC

FPGA design

E

C

A

D

B

A
B
C
D
E 0X10_2000 - 0x10_2FFF

0X10_1000 - 0x10_1FFF
0X10_0000 - 0x10_0FFF
0X08_0000 - 0x0F_FFFF
0X00_0000 - 0x07_FFFF
address range

rx-handler

tx-handler

Fig. 4. FPGA internal design for host bypassing. The left side is FPGA type specific while the right side is platform independent. Modules in light green
depict the receive logic, while red modules represent the transmission part of the DPDK driver. Compare Section II-B for ring and buffer functionality.

III. DESIGN AND IMPLEMENTATION

The overall design can be divided into several modules

within the FPGA, as shown in Figure 4. In the following

subsections, we first focus on the PCIe data path that maps

the ring memory structures and packet buffer memory into

the FPGA. Second, we describe the software driver stack for

initializing the NIC and FPGA. In the third subsection, the

design of the NIC driver within the FPGA is explained.

A. Shared Memory Mapping into the FPGA

The host bypassing approach presented in this work operates

with commodity poll-mode capable NICs. Consequently, the

same behavior as the software driver is emulated by the

FPGA. As introduced in Section II-B, current user space poll-

mode drivers communicate with applications through a shared

memory region in the main memory of the host system. For

the FPGA implementation, four shared memory regions, two

descriptor rings and a memory buffer, are realized within the

FPGA and accessible via DMA by the NIC. Figure 4 shows

the implementation of these data structures in the FPGA. The

two descriptor rings and two memory regions for receiving and

sending packets are realized with internal SRAM-based block

RAM (BRAM) memory cells. In addition, a fifth module with

a BRAM interface was specified for configuration purposes.

Together, these five memory blocks provide a simple interface

to the BRAM controller. The PCIe module, realized by an

Intellectual Property Core (IP-core) of the FPGA vendor, is

connected by a crossbar to the five memory controllers, and

the module forwards read and write requests according to the

mapping table shown in Figure 4. In the implementation for

Xilinx FPGAs, we used the AXI4 data bus with a data width

of 256 bit and running at 250MHz, supporting a theoretical

symmetric throughput of 64Gbit/s within the FPGA. The

PCIe module was configured to Gen. 3 and 8 lanes, providing

a symmetric throughput of up to 64Gbit/s. As the NIC used

in our prototype has a link speed of 10Gbit/s, this memory-

mapped design should not cause any bottlenecks.

As the block memories create an abstraction layer between

the platform independent NIC driver and the FPGA-specific

logic on the PCIe-side, our open-source prototype imple-

mentation1 supports Xilinx and Intel FPGAs. For that, only

modifications of the FPGA specific logic are needed. Note

that an IP-core for PCIe, memory interconnect and BRAM

controllers are available for both vendors.
In addition to the memory-mapped I/O, it is also necessary

to update both tail pointers in the NIC as described in

Section II-B. For that, a low-throughput write channel from

the rx and tx logic to the PCIe module is used.

B. Software Driver Modifications
Our prototype is based on the DPDK library, which required

minor changes to work with the host bypassing approach. We

added the functionality to provide a custom physical memory

address for the rx and tx descriptor rings. In addition, we

created access to the DPDK device wrapper by the newly

added function rte eth dev *eth dev get(uint16 t port id);.
In the FPGA driver, only one function is required to

initialize the configuration register of the FPGA with 1) the

physical base address of the NIC, 2) the physical base address

of the FPGA and 3) the start command. Finally, a kernel

module is loaded for the FPGA whose only purpose is to make

the physical memory address regions available. After this, all

required functionality is implemented on the FPGA.

C. FPGA-based NIC Driver
After having mapped the shared memory regions into the

internal BRAM of the FPGA successfully, the next step is the

implementation of the DPDK driver functionality within the

FPGA. As the rx and tx logic can be treated independently,

implementing these two directions is also done independently

from each other. The driver logic has therefore been split up

into two modules:
rx-handler: This module is connected to the rx descriptor

ring and the rx packet buffer on the PCIe side. Towards

the application, it provides the received packets through a

standardized AMBA AXI4-stream interface.
tx-handler: Mirroring the rx-handler, this module receives

packets on an AXI4-stream interface from the network func-

tion running on the FPGA and sends it out via PCIe. It is

connected to the tx descriptor ring and tx packet buffer.

1https://github.com/ralfkundel/HostBypassing

25

Authorized licensed use limited to: UNIVERSITY OF OSLO. Downloaded on October 24,2022 at 12:21:57 UTC from IEEE Xplore. Restrictions apply.

NIC

P
C
I
e DRAM

CPU
10G

NIC

FPGA P
C
I
e DRAM

CPU
10G

NIC

FPGA P
C
I
e

...

10G

NIC

FPGA P
C
I
e

...

10G

10G

31

2 4

Fig. 5. Evaluation scenarios for host bypassing. Scenario 1+2: baseline/state-
of-the-art, scenario 3+4: bidirectional/unidirectional bypassing.

Besides having access to the shared memory rings and

buffers, both handlers write directly into the NIC’s physical

address range in order to update the rx and tx tail pointers.

The rx-handler polls the rx descriptor ring continuously for

new packets. While busy waiting would use the capacity of an

entire CPU core, this is done by the FPGA with little compu-

tational effort. As soon as a new packet has been received, the

rx handler reads it out from the rx buffer and sends it out on

the AXI4-stream interface. The descriptor control of the rx-

handler then increases the rx tail pointer and writes an empty

rx buffer memory address into the descriptor ring to allow

the NIC to receive a new packet on that descriptor. Last, the

descriptor control starts polling the next descriptor ring entry.

The tx path works analogously to this. The packets are

first stored in an empty region of the tx buffer. Second, the

tx-handler updates the tx ring entry accordingly. Third, the

descriptor control of the tx-handler updates the tail pointer in

the NIC to indicate the packet to be sent.

Updating the rx and tx tail pointer is a 4 byte write access

on the NIC via the direct write data path. Even though this

is comparatively little data compared to network packets (of

up to 1514 bytes), it is still an independent PCIe bus access

with a corresponding overhead. In order to decrease this

overhead, multiple tail pointer updates are batched together

by the optional delay modules. This module updates the tail

pointer either after some time or after a number of packets to

be sent, e.g., 2500ns or 8 packets.

IV. EVALUATION

In the following, we demonstrate the performance of the

host bypassing approach by presenting several performance

characteristics. Note that while the results presented here are

from our implementation using Xilinx Alveo U50 FPGAs,

experiments with Intel Stratix 10 FGPAs yield similar results.

For that, we compare two baseline scenarios (scenario 1+2)

with two host bypassing scenarios (scenario 3+4) as shown in

Figure 5.

In the first scenario, we consider the performance of a

DPDK application running in the user space without any

hardware acceleration. In this scenario, the data is transferred

only between the NIC and the main memory of the CPU. The

second scenario realizes packet I/O over the main memory

of the CPU and copies the data for processing to the FPGA.

P4STA-Stamper

Loadgen 1

Loadgen 2

Loadgen 1

Loadgen 2

NIC FPGAPCIe

...
...core 1

core n
DRAM CPU

host bypassing system (DUT)

DDR4-
controller

10G 10G

Fig. 6. Testbed setup for generating test traffic and measuring QoS charac-
teristics. Packets can be injected and received either by a 10Gbit/s link to
the commodity NIC or the FPGA. The FPGA port is only used for measuring
single-direction delays. The stamper device of the P4STA setup can create
fine-shaped test loads and measure latency and loss with very high accuracy.

These two scenarios represent the state of the art of high-

performance packet processing without/with hardware acceler-

ators. In the third scenario, all incoming and outgoing packets

are transmitted directly between NIC and FPGA via PCIe

without going through the main memory and CPU.

As the used FPGA also provides a native Ethernet port,

we can evaluate sending and receiving over PCIe separately.

Therefore, we include a fourth scenario where we use this

Ethernet port to send out packets received by the NIC and

copied via PCIe to the FPGA. Incoming packets on the

Ethernet port of the FPGA are sent by the NIC via PCIe. While

this is similar to the third scenario, as packets can be sent and

received over PCIe directly from the NIC, this last scenario

allows the investigation of one-way delay measurements.

The descriptor size was 64 on the FPGA and did not affect

the performance. In software, 256 descriptor ring entries are

used as this has shown up the best performance.

A. Testbed Setup

For gathering performance evaluation results, we built upon

the existing open-source framework P4STA for benchmarking

and validating network functions [8]. In the following, we

consider the host bypassing implementation as Device under

Test (DUT), directly connected to the P4STA stamper as

shown in Figure 6. Depending on the evaluation scenario,

packets can be injected and received either on the NIC port or

directly from the FPGA via a 10Gbit/s port. Test packets are

created by the load generators and are aggregated, counted and

timestamped within the stamper. In addition, packets can be

duplicated in order to generate very high loads. This setup

allows the detection of one single lost packet in a multi-

million packet test and latency measurements with only a

few nanoseconds error. Furthermore, packet reordering can be

easily detected. All tests are performed with UDP test packets

of 300bytes-size and 10Gbit/s load, except the tests that are

explicitly denoted differently. Even though packets in com-

puter networks typically have a size of close to the Maximum

Transfer Unit (MTU), e.g. 1500 bytes, with smaller packets we

can stresstest the system as the packets/s rate increases at a

constant link speed. Furthermore, latency-critical applications

typically have much smaller average packet sizes [9].

All measurement results are latency corrected by the mea-

surement overhead of the setup and the length of the used

26

Authorized licensed use limited to: UNIVERSITY OF OSLO. Downloaded on October 24,2022 at 12:21:57 UTC from IEEE Xplore. Restrictions apply.

Fig. 7. Measured latency over time for the DPDK baseline, receiving +sending
packets via PCIe, receiving only and sending only via PCIe.

fibers. By that, all results show the port-to-port latency only.

B. General Forwarding Behavior

As mentioned in Section II-A, PCIe devices can be either

attached directly to the CPU root complex or an external

PCIe switch. In the following, we will consider only the

PCIe-topology of both PCIe devices, NIC and FPGA, are

connected to a PCIe switch of the type Broadcom PEX8747.

The CPU root complex is not involved in the data path, and

in contrast to state-of-the-art approaches, no additional CPU

utilization occurs. The congestion control between NIC and

FPGA, which causes descriptor writebacks after successfully

sending packets, and tailpointer batching are disabled.

In Figure 7, four measurement results are presented. First,

baseline scenario 1 in green is shown. It is apparent that the

forwarding latency is mostly below 25μs with medium jitter

but increases every 2s strongly. This pattern is very repro-

ducible. We assume this to be caused by the DRAM controller

of the CPU used for storing the packets. In general, DRAM

memory technology is known to provide non-deterministic

behavior due to refresh cycles. However, we could not identify

the source of this jitter.

Second, the black curve depicts the latency over time for

evaluation scenario 3, where the FPGA receives and sends

packets over PCIe. The average latency is 7.99μs and the

standard deviation 99.02ns. The blue and red lines show

the latency for evaluation scenario 4 with only receiving or

sending packets via PCIe. For receiving packets via PCIe and

sending them out over an Ethernet port on the FPGA we

measured an average latency of 3.37μs and 40.01ns standard

deviation. Receiving packets with the FPGA and send them out

via PCIe has 4.56μs latency and 46.96ns standard deviation.

Note that the sum of the rx and tx latency is 60ns lower

than the bidirectional latency. In addition, the native Ethernet

ports, including the intellectual property core of the FPGA,

also cause a slight latency increase. This latency variation is

0 2000 4000 6000 8000 10000
input rate [Mbit/s]

101

102

la
te

nc
y

[μ
s]

dpdk baseline (1)
dpdk+fpga (2)
Intel (3)
Broadcom switch (3)
AMD (3)

loss Intel (3)
loss dpdk+fpga (2)

0%

20%

40%

60%

80%

100%

pa
ck

et
 lo

ss

Fig. 8. Observed packet loss and latency for three different PCIe root/switch
architectures. The DPDK baseline, Broadcom switch and AMD root complex
scenarios did not show up any packet loss.

avg. goodput avg. latency loss
Intel Xeon 4110 7.77Gbit/s 36.63μs 1.84%
AMD Epyc 7402 9.28Gbit/s 13.89μs 0.00%
Broadcom PEX8747 9.29Gbit/s 13.12μs 0.00%

TABLE I
PERFORMANCE CHARACTERISTICS OF THE RECEIVING + SENDING

EVALUATION SCENARIO NR. 3. THE TRAFFIC LOAD GENERATION WAS

PERFORMED WITH TCP AND A PACKET MTU LIMIT OF 1514 BYTES.

caused by the higher utilization of the PCIe bus as each packet

is transferred twice. As shown later in Section IV-C, a higher

bus utilization slightly increases the latency. All in all, we

can observe that the latency for sending packets via PCIe is

significantly higher than for receiving packets.

C. PCIe Infrastructure Implications

In order to investigate further the impact of PCIe architec-

tures, we performed several input-rate sweeps on evaluation

scenario 3 for different architectures. In addition, we did the

same measurement for the pure software forwarding baseline

implemented in DPDK (scenario 1) and the state-of-the-art

approach for copying data from the network into FPGAs and

back (scenario 2). For the latter, we build a high-performance

DPDK application in software that is receiving all packets and

handing over a pointer to the FPGA. After that, the FPGA

fetches the packet via DMA and writes it back to the main

memory without any processing. From there, the software

applications hands the packet over to the NIC for sending.

Note that this application is single-threaded and with two

threads for receiving and sending the packets, the performance

might be doubled. We investigated an Intel Xeon Silver 4110,

AMD Epyc 7402 and a Broadcom PEX8747 external PCIe

switch as shown in Figure 8. Each curve consists of at least

20 measurements, dependent on its characteristically points.

All tests are performed for 10 seconds and are statistically

significant as each run contains multiple millions of packets.

27

Authorized licensed use limited to: UNIVERSITY OF OSLO. Downloaded on October 24,2022 at 12:21:57 UTC from IEEE Xplore. Restrictions apply.

The baseline of forwarding packets with DPDK shows up a

slight increase of latency for higher loads. Only when reaching

the link speed, the average latency increases strongly. Note that

this scenario is not comparable to our approach, as it does not

contain the forwarding of packets to and from the hardware

accelerator within the system.

The second baseline, dpdk+fpga, represents the state of the

art. We observed an increased latency at 2Gbit/s rate and

between 2.35Gbit/s and 2.4Gbit/s first packet loss occurs.

After that point, the latency is constantly high as the system

is overloaded and the packet loss increases with the input rate.

In the case of both PCIe devices being connected to the Intel

CPU, we observed a latency between 6.3μs and 8.2μs in the

range between 100Mbit/s and 7Gbit/s. After that, the latency

strongly increases and we observed the first packet loss at

8.42Gbit/s. This means, within a range of around 1.4Gbit/s,

the increasing latency is an excellent indicator for reaching

the system performance without any packet loss. We observed

only packets of up to 64bytes arriving from the NIC on the

PCIe transaction layer. In the case of the PCIe switch they

were much bigger. This might be the cause of the comparable

bad performance.

The results for the external PCIe switch do not show up any

packet loss and are pretty good in general. Only the latency

increases slightly with the input rate.

The root complex of the AMD CPU shows up surprising

behavior. First, it is noteworthy that no packet loss was

observed at any input rate. Second, for low rates the latency is

much higher. We observed this behavior for the first packets

of high throughput tests as well but could not determine

the reason behind this. However, the behavior resembles the

characteristics of caches. The lowest latency was observed at

a rate of 5.5Gbit/s.

In addition to the UDP test with small packets of 300bytes,

we did a TCP test with three flows and maximum packet size

as shown in Table I. As TCP detects packet loss and reduces

the sending rate, a packet loss of only 1.84% was detected for

the Intel CPU. The average goodput is measured by TCP and

does not contain the packet header overhead. 9.29Gbit/s TCP

throughput corresponds to 9.99Gbit/s on the link layer.

Overall, the results for the external PCIe switch are best.

This is not surprising, as these devices are made for this

purpose and CPUs are currently designed for PCIe devices that

want to access the system memory. However, the presented

results are still all good and could be improved even better if

CPU vendors would optimize for this use case.

D. Controlled vs. Uncontrolled Packet Loss

Exceeding the maximum system performance causes un-

avoidable packet loss as previously shown in Figure 8. How-

ever, we can distinguish between controlled and uncontrolled

packet loss. As mentioned before in Section III-C it is possible

to enable an optional congestion control between NIC and

FPGA for transmitting packets. As soon as a packet was sent,

the NIC marks the tx-descriptor entry on the FPGA as sent.

By that, overruns of the tx-descriptor ring can be prevented.

However, it causes an additional overhead on the PCIe bus.

Figure 9 shows measurement results for evaluation scenario

3, receiving and sending packets on the NIC via PCIe. In the

case of connecting the FPGA and NIC directly to the CPU root

complex, we observed a quick increase in latency and out-of-

order packets on the tx-port of the NIC (marked by red shading

in the background) if no congestion control between NIC

and FPGA is enabled. In total, 176, 761 out of 35, 784, 597
forwarded packets were out of order. In the beginning, the

latency increases quickly as a queue builds up in the system

due to limited PCIe performance. The results with enabled

congestion control show up a similar increase of latency in

the beginning but no out of order packets occur. Assuming 64

ring buffer slots, a packet size of 300bytes and 10Gbit/s link

speed, this would cause a latency jitter of 15μs every time the

descriptor ring runs over. This can be observed in the scenario

without writeback and the devices being connected via the

root complex of the CPU. In the case of enabled congestion

control, this latency jitter can not be observed. The NIC is

causing the remaining latency of almost 400μs as the received

packets can not be transferred faster to the FPGA and packets

are buffered in there. It is noteworthy that the latency in case

of writing back the descriptors is higher. First, this is caused

by back pressure within the FPGA caused by the congestion

control mechanism. Second, only a lower sending rate can be

achieved due to the additional PCIe bus overhead and thus the

delay of the fixed-size buffers increases.

Without congestion control we observed a packet loss rate

of 9.90%, writing back the state for each sent packet increases

the loss rate to 15.79%. This means, if packet reordering is

less critical than a lower rate, it might be beneficial to disable

the writeback congestion control.

The last plot in the figure depicts the latency over time for

enabled and disabled congestion control and the devices being

connected to the PCIe switch instead of a root complex. The

measured latency was exactly the same. In both scenarios, the

latency is constant low as the NIC can read and write packets

at line rate in the FPGA memory. Consequently, in case of

having a PCIe switch, the congestion control is not needed.

These results show that a descriptor writeback might be

needed if the FPGA can send packets faster than the NIC

can execute these requests. In the scenario of PCIe devices

attached directly to the root complex this is caused by limited

PCIe peer-to-peer bandwidth. Note that this might be the case

as well for 1) NICs with higher link speeds, e.g. 40/100 Gbit/s,

or 2) in case the FPGA creates new packets or increases the

packet size and by that the rate within the FPGA is higher

than the tx link speed of the NIC.

E. Batching tailpointer updates

The FPGA driver of the NIC must write the tailpointer for

sending and receiving packets periodically into the NIC. As

previously described in Section III-C, this pointer increase can

be either done for each send/received packet or only after n
packets in order to reduce control overhead. By that, packets

28

Authorized licensed use limited to: UNIVERSITY OF OSLO. Downloaded on October 24,2022 at 12:21:57 UTC from IEEE Xplore. Restrictions apply.

Fig. 9. Observed latency and reordered packets in case of an overloaded
system with hardware accelerator and NIC directly attached to the root
complex. Red shading in the background mark out of order packets. Packet
reordering occured only in case of root complex and no writeback.

batch-factor/ latency [ns] PCIe transfers [bytes/pkt]
timeout [ns] average std. deviation outgoing ingoing

1/- 8.14μs 101.23ns 324 316
8/2500 9.43μs 98.93ns 317 316

16/2500 9.92μs 65.33ns 316.7 316

TABLE II
IMPACT OF INCREASING RX/TX TAILPOINTER ONLY FOR EVERY n PACKET.

are handed over in batches to the NIC in tx direction and rx

descriptors freed in batches respectively. In order to determine

the exact overhead increase, we recorded and evaluated a trace

of the FPGA internal PCIe data bus with the Xilinx Integrated

Logic Analyzer. A tailpointer update will be only performed,

e.g., for every 8th packet or after 2500ns latest. In addition,

we measured the end-to-end latency and its variation for both

scenarios. The results are shown in Table II.

First, an increase of the batch size lowers the written bytes

per packet on the PCIe bus. The number of bytes written and

read out via DMA from the NIC on the FPGA is constant, but

the number of direct writes from the FPGA to the NIC has

decreased. Second, it is noteworthy that the latency increases

with a higher batch factor in tx direction. The NIC can not

start sending a packet before being notified that there is a new

packet as the NIC is not polling the descriptor ring. By that,

packets are not sent out immediately after being received. In

the case of packet sizes of 300bytes, a link speed of 10Gbit/s
and batches of 8 packets this leads to a theoretical increase

of latency by 7 · 300B/10Gbit/s = 1680ns. The measured

increase in latency was only 1.29μs. We assume the remaining

390ns being contained in the baseline with no tailpointer

batching but could not confirm this. In the case of 16 packets

per batch, the timeout of 2500ns will be reached before 16

packets have been accumulated and by that, the tailpointer on

the NIC will be increased every 2500ns. Indeed, the measured

latency increase is slightly smaller, presumably for the same

reason. However, it is noteworthy that the latency standard

deviation, which is a good indicator for jitter, has decreased.

The rx tailpointer is only used for indicating free descriptor

entries to the NIC and as long as enough free entries are

available for receiving new incoming packets, this optimization

has no negative implication on the system performance.

F. Resource Utilization

The resource utilization of the NIC driver on the FPGA is

negligible in terms of logic cells and acceptable in terms of

memory. It is noteworthy that a PCIe module is needed requir-

ing some resources. Nevertheless, this module is integrated as

fixed silicon by the vendor of modern FPGAs and requires

only little additional programmable resources. Further, this

module is also needed for hardware acceleration approaches

without host bypassing. Our design for sending and receiving

packets via PCIe on the Xilinx Alveo U50 utilized 2.08%
of lookup tables, 1.44% of the available flip flops, 23.14%
of BRAM and 0 ultra ram. In total, 311 BRAM cells were

used while 128 cells are used for the rx and tx buffer each.

Further 8 cells for the rx and tx descriptor rings are needed.

The remaining cells are used for the PCIe module and its

infrastructure, realized with intellectual property of the FPGA

vendor. The utilization could be decreased by reducing the

PCIe bandwidth, which is currently Gen.3 x8, and by that the

input data width of the BRAM memory from 256bit to 64bit.
However, we did not investigate this further.

V. RELATED WORK

Reconfigurable hardware for networking purposes is an

ongoing research issue. Newly introduced concepts for pro-

grammable NICs and switches enable reconfiguration with the

same performance as ASICs with fixed functionality [10], but

their flexibility is limited. Domain-specific languages which

are made for such hardware architectures, such as P4, allow

the description of the data plane behavior for use cases

with low and medium complexity [11]. However, complex

network functions, e.g., the encoding of radio signals within

the Distributed Unit of 5G O-RAN systems, can not be realized

with such programmable networking hardware, and more

general accelerators are needed [12], [13]. Using FPGAs as

hardware accelerators for network functions not only increases

the system’s energy efficiency [14], we have also shown in

previous work that it enables higher and more deterministic

performance characteristics [15].

In addition to FPGAs, offloading network functions on

GPUs has been discussed as well. GASPP is a framework

for network packet processing on a GPU [16]. It uses page-

locked host memory that is accessible by both an Ethernet

NIC and the GPU, but must still be transferred for processing

in case of discrete GPUs. Sun et al. [17] propose an extension

of the Click router for packet processing on GPUs. Also

their solution copies packets via the system’s main memory.

Kalia et al. [18] evaluate the benefits of GPUs for network

packet processing critically. Their main finding is that a pure

CPU-based implementation can outperform the GPU for some

simple network functions due to fewer packet copies. They

mention that the “NVIDIA GPUDirect” technology, which

is similar to our host bypassing approach, could improve

the performance. GPUnet [19] employs GPUDirect for direct

communication between GPU and InfiniBand NIC using PCIe

peer-to-peer, bypassing host memory. The focus of the work is,

however, the simplicity of GPU programming and not network

29

Authorized licensed use limited to: UNIVERSITY OF OSLO. Downloaded on October 24,2022 at 12:21:57 UTC from IEEE Xplore. Restrictions apply.

function processing on GPUs. Moreover, these GPUDirect

approaches require support in GPUs and specialized NICs that

is usually not available in commodity hardware, while our

solution is open source and uses standard NICs.

The benefits of direct data exchange between FPGAs and

GPUs via PCIe without any CPU interaction have been shown

for several applications [20], [21]. Markussen et al. [22]

propose a solution for sharing devices in a PCIe-interconnected

cluster system. They demonstrate similar performance benefits

from peer-to-peer PCIe transfers, avoiding unnecessary copies

to main memory, but they also observe a similar reduction

in bandwidth as observed in our own evaluation when DMA

transactions are routed through the root complex of an Intel

Xeon CPU instead of a PCIe switch.

VI. CONCLUSION

It is crucial for many applications and use cases to have an

underlying network infrastructure with in-network computing

capabilities that provides high throughput, minimal latency and

jitter, and avoids packet loss. This work has shown how PCIe-

based hardware accelerators, specifically FGPAs, can be more

efficiently integrated into the network data path, thus enabling

such network infrastructures.

The presented host bypassing approach implements a

mechanism for driving a commodity NIC from an FPGA. Our

implementation allows receiving and sending network packets

from commodity NICs without requiring any CPU interaction

or unnecessary memory copies via system memory. Our evalu-

ation results show that even for commodity CPU architectures,

which are not optimized for direct communication between

different devices, huge performance benefits can be achieved

by building on peer-to-peer host bypassing.

We believe that with optimization of PCIe root complex

architectures of future CPU generations for this particular

scenario, even better performance can be observed.

In future work, we will investigate the host bypassing

approach with GPUs. Related work has already demonstrated

performance benefits from network function offloading using

GPUs, which we believe can be improved further by utilizing

host bypassing and relying on PCIe peer-to-peer capabilities.

ACKNOWLEDGMENT

This work has been funded by the Federal Ministry of Ed-

ucation and Research (BMBF, Germany) within the Software

Campus Project ”5G-PCI” and by the German Research Foun-

dation (DFG) as part of the project C2 within the Collaborative

Research Center (CRC) 1053 MAKI. We thank Xilinx and

Intel for their software and hardware donations. Furthermore,

we thank our reviewers for their valuable feedback.

REFERENCES

[1] W. Kellerer, A. Basta, P. Babarczi, A. Blenk, M. He, M. Klugel,
and A. M. Alba, “How to measure network flexibility? a proposal
for evaluating softwarized networks,” IEEE Communications Magazine,
vol. 56, no. 10, pp. 186–192, 2018.

[2] Y. Li and M. Chen, “Software-defined network function virtualization:
A survey,” IEEE Access, vol. 3, pp. 2542–2553, 2015.

[3] R. Kundel, T. Meuser, T. Koppe, R. Hark, and R. Steinmetz, “User plane
hardware acceleration in access networks: Experiences in offloading
network functions in real 5g deployments,” in Proceedings of the
55th Hawaii International Conference on System Sciences. Computer
Society Press, 2022, p. 1–10.

[4] R. Kundel, T. Burkert, C. Griwodz, and B. Koldehofe, “Chaining of
hardware accelerated virtual network functions in pcie environments,”
in Proceedings of the 20th International Middleware Conference Demos
and Posters. New York, NY, USA: Association for Computing
Machinery, 2019, p. 13–14.

[5] PCI Express 3.1 Base Specification, Peripheral Component Interconnect
Special Interest Group (PCI-SIG), 2010.

[6] P. Emmerich, M. Pudelko, S. Bauer, S. Huber, T. Zwickl, and G. Carle,
“User space network drivers,” in 2019 ACM/IEEE Symposium on Archi-
tectures for Networking and Communications Systems (ANCS), 2019,
pp. 1–12.

[7] T. L. Foundation, 2010, https://www.dpdk.org/.
[8] R. Kundel, F. Siegmund, J. Blendin, A. Rizk, and B. Koldehofe,

“P4STA: High performance packet timestamping with programmable
packet processors,” in Network Operations and Management Symposium
(NOMS). IEEE/IFIP, 2020, pp. 1–9.

[9] B. R. Opstad, J. Markussen, I. Ahmed, A. Petlund, C. Griwodz, and
P. Halvorsen, “Latency and fairness trade-off for thin streams using
redundant data bundling in tcp,” in Proceedings of the 2015 IEEE
40th Conference on Local Computer Networks (LCN 2015), 2015, p.
287–294.

[10] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Iz-
zard, F. Mujica, and M. Horowitz, “Forwarding metamorphosis: Fast
programmable match-action processing in hardware for sdn,” in ACM
SIGCOMM Computer Communication Review, vol. 43, no. 4, 2013.

[11] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp. 87–95, 2014.

[12] J. Bishop, J.-M. Chareau, and F. Bonavitacola, “Implementing 5g nr
features in fpga,” in 2018 European Conference on Networks and
Communications (EuCNC), 2018, pp. 373–9.

[13] J. C. Borromeo, K. Kondepu, N. Andriolli, and L. Valcarenghi, “An
overview of hardware acceleration techniques for 5g functions,” in
2020 22nd International Conference on Transparent Optical Networks
(ICTON), 2020, pp. 1–4.

[14] L. Nobach, B. Rudolph, and D. Hausheer, “Benefits of conditional fpga
provisioning for virtualized network functions,” in 2017 International
Conference on Networked Systems (NetSys), 2017, pp. 1–6.

[15] R. Kundel, L. Nobach, J. Blendin, W. Maas, A. Zimber, H.-J. Kolbe,
G. Schyguda, V. Gurevich, R. Hark, B. Koldehofe, and R. Steinmetz,
“OpenBNG: Central office network functions on programmable data
plane hardware,” International Journal of Network Management, 2021.

[16] G. Vasiliadis, L. Koromilas, M. Polychronakis, and S. Ioannidis,
“GASPP: A gpu-accelerated stateful packet processing framework,”
in 2014 USENIX Annual Technical Conference, USENIX ATC ’14,
Philadelphia, PA, USA, June 19-20, 2014, G. Gibson and N. Zeldovich,
Eds. USENIX Association, 2014, pp. 321–332.

[17] W. Sun and R. Ricci, “Fast and flexible: Parallel packet processing with
gpus and click,” in Architectures for Networking and Communications
Systems, 2013, pp. 25–35.

[18] A. Kalia, D. Zhou, M. Kaminsky, and D. G. Andersen, “Raising the
bar for using gpus in software packet processing,” in 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
15). Oakland, CA: USENIX Association, May 2015, pp. 409–423.

[19] M. Silberstein, S. Kim, S. Huh, X. Zhang, Y. Hu, A. Wated, and
E. Witchel, “GPUnet: Networking abstractions for GPU programs,”
ACM Trans. Comput. Syst., vol. 34, no. 3, pp. 1–31, sep 2016.

[20] Y. Thoma, A. Dassatti, and D. Molla, “Fpga2: An open source frame-
work for fpga-gpu pcie communication,” in 2013 International Confer-
ence on Reconfigurable Computing and FPGAs (ReConFig), 2013, pp.
1–6.

[21] R. Bittner, E. Ruf, and A. Forin, “Direct gpu/fpga communication via
pci express,” Cluster Computing, vol. 17, no. 2, pp. 339–348, 2014.

[22] J. Markussen, L. B. Kristiansen, R. J. Borgli, H. K. Stensland, F. Seifert,
M. Riegler, C. Griwodz, and P. Halvorsen, “Flexible device compositions
and dynamic resource sharing in pcie interconnected clusters using
device lending,” Cluster Computing, vol. 23, pp. 1211–1234, June 2020.

30

Authorized licensed use limited to: UNIVERSITY OF OSLO. Downloaded on October 24,2022 at 12:21:57 UTC from IEEE Xplore. Restrictions apply.

