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Abstract—Blockchain is a promising emerging technology that
is envisioned to play a key role in establishing secure and reliable
Internet-of-Things (IoT) ecosystems without the involvement of
any third party. Hyperledger Fabric, a permissioned blockchain
system that can yield high throughput and low consensus delay,
has shown its capability in enhancing security and privacy pro-
tection for delay-sensitive IoT services. The literature, however,
has not considered the conflicting transaction problem which
may substantially limit the system performance and degrade
QoS for the end users. In this article, we propose CATP-Fabric,
a new blockchain system to address the conflicting transac-
tion problem by reducing the number of potentially conflicting
transactions with less overhead. First, the transactions within
a block are divided into different groups to facilitate parallel
transaction processing. Then, CATP-Fabric filters stale transac-
tions and prioritizes the read-only transactions in each group
to eliminate unnecessary overhead. Finally, we formulate the
selection of aborting transactions in CATP-Fabric as a binary
integer-programming problem and develop a low-complexity
optimization algorithm to minimize the number of aborted trans-
actions. Illustrative results show that our proposed CATP-Fabric
blockchain system achieves high throughput of successful trans-
actions while maintaining a lower aborting transaction rate
compared to the benchmark blockchain systems.

Index Terms—Conflicting transaction, hyperledger fabric,
Internet of Things (IoT), permissioned blockchain.

Manuscript received October 12, 2020; revised December 2, 2020; accepted
December 23, 2020. Date of publication January 8, 2021; date of current
version June 23, 2021. This work was supported by the PCL Future Greater-
Bay Area Network Facilities for Large-Scale Experiments and Applications
under Grant PCL2018KPO001. (Corresponding authors: Hongfang Yu, Gang
Sun.)

Xiaogiong Xu, Xiaonan Wang, and Zonghang Li are with the School
of Information and Communication Engineering, University of Electronic
Science and Technology of China, Chengdu 611731, China (e-mail:
xiaogiongxu810@gmail.com; Irqnrsm66 @ 126.com; lizhuestc @gmail.com).

Hongfang Yu is with the Key Laboratory of Optical Fiber Sensing and
Communications (Ministry of Education), University of Electronic Science
and Technology of China, Chengdu 610054, China, and also with the
Networks and Communications Research Center, Peng Cheng Laboratory,
Shenzhen 518055, China (e-mail: yuhf@uestc.edu.cn).

Gang Sun is with the Key Laboratory of Optical Fiber Sensing and
Communications (Ministry of Education), University of Electronic Science
and Technology of China, Chengdu 610054, China, and also with the Agile
and Intelligent Computing Key Laboratory of Sichuan Province, Chengdu
611731, China (e-mail: gangsun@uestc.edu.cn).

Sabita Maharjan and Yan Zhang are with the Department of Informatics,
University of Oslo, 0373 Oslo, Norway, and also with the Simula Metropolitan
Center for Digital Engineering, 0167 Oslo, Norway (e-mail: sabita@ifi.uio.no;
yanzhang @ieee.org).

Digital Object Identifier 10.1109/JI0T.2021.3050244

, Hongfang Yu
, Senior Member, IEEE, and Yan Zhang

, Member, IEEE, Gang Sun ", Member, IEEE,

, Fellow, IEEE

I. INTRODUCTION

HE RAPID development of 5G communication technolo-
T gies promotes the widespread application of Internet-of-
Things (IoT) services, such as smart home, smart healthcare,
autonomous vehicles, and smart cities [1], [2]. The IoT
network is connected to billions of heterogeneous devices that
produce a vast amount of data and enable new services and
products for consumers. However, IoT networks may face seri-
ous security and privacy threats, such as Distributed Denial
of Service (DDoS) attack and privacy leakage attack [3], [4].
These threats hinder the widespread implementation of
IoT services. Many works have attempted to address such
issues [5]-[7], but the proposed solutions are of limited use
due to the lack of trust among parties and lack of transparency
in data processing.

Blockchain, a distributed tamper-proof ledger, is a promis-
ing technology to deal with the aforementioned security and
privacy issues [8]-[12]. Considering the delay-sensitive fea-
tures of IoT applications [13], the permissioned blockchain
Fabric [14] is more suitable for supporting IoT interactions
as it offers low transaction delay and high throughput. Fabric
reaches consensus in a relatively shorter time by limiting the
number of nodes participating in the consensus establishment
process, achieves high throughput through a novel transaction
processing paradigm named execute-order-validate, and over-
comes the single point of failure problem with the use of a
decentralized architecture.

Combining Fabric blockchain and IoT can lead to conflict-
ing transactions, a new and unique challenge that needs to be
addressed to fully realize the benefits of the integration. In the
typical IoT scenarios, IoT devices are expected to collect and
exchange data in real time. To ensure privacy protection, these
data are stored in the Fabric blockchain in the form of trans-
actions. When the number of IoT devices is large, the data
collection will have a concurrent bottleneck, that is massive
transactions are prone to conflicting on concurrent data [15].
These conflicting transactions are marked invalid and aborted
only during the validation phase, thus wasting a large amount
of network resources. Besides, IoT devices need to retrans-
mit these aborted conflicting transactions, which can lead to
additional energy consumption and delay. Therefore, a conflict
mitigating transaction processing with low energy and time
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overhead is urgently needed, to efficiently process conflicting
transactions in Fabric.

We observe some efforts to mitigate the effects of con-
flicting transactions in the Fabric blockchain. Xu et al. [16]
used a locking mechanism to detect conflicting transactions
at the beginning of the transaction flow. This method han-
dles almost all conflicting transactions successfully in the case
of high concurrency. However, a trusted distributed locking
service is needed to synchronize access, which requires coor-
dination time and costs excessive network resources, making
the solution less suitable for the delay-sensitive IoT applica-
tions. Amiri et al. [17] and Sharma et al. [18] recorded a
transaction dependency graph in each block to detect con-
flicting transactions, and reordered transactions to minimize
the number of unnecessary conflicts. Unlike the locking
mechanism, these reordering methods do not need addi-
tional service and extra coordination time. Moreover, it can
increase the number of valid transactions in each block to
partially avoid unnecessary retransmissions, thereby reducing
the energy overhead of IoT devices. However, such reorder-
able transactions do not always exist, and a fairly high
number of transactions are still aborted due to conflicts in
high concurrency IoT applications. As a result, further mit-
igating the problem of conflicting transactions with a lower
number of retransmissions is a prominent challenge for delay-
sensitive IoT applications, and more work is needed in this
direction.

In this article, we propose CATP-Fabric, a conflict-
ing transaction-tolerant permissioned blockchain system.
CATP-Fabric first divides transactions into different groups
based on transaction keys. Then, it lets read-only trans-
actions with high priority to schedule during the ordering
phase and filters stale transactions as early as possible. Then,
CATP-Fabric detects conflicting transactions by calculating
the final balance for all accounts and aborts parts of trans-
actions that should have conflicts with the remaining ones in
the validation phase. Finally, we design an optimal aborting
transaction selection algorithm to further minimize the number
of aborted transactions.

The contributions of
as follows.

1) We propose a permissioned blockchain system named
CATP-Fabric, by introducing three plug-in modules, to
effectively mitigate conflicting transactions with a lower
number of retransmissions.

2) We propose a key-based transaction grouping method to
enhance parallel transaction processing. We also design
a transaction filtering mechanism and a priority mecha-
nism to save network resources, thus further improving
the system performance.

3) We formulate conflicting transaction selection problem
as a binary integer-programming (BIP) problem and pro-
pose a new aborting transaction selection algorithm to
obtain the optimal transactions-aborting-set. Numerical
results based on the smallbank benchmark data set cor-
roborate that our CATP-Fabric blockchain achieves a
lower transaction aborting rate compared to existing
solutions.

this article are summarized
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The remainder of this article is organized as follows. In
Section III, we introduce the problem of conflicting transac-
tions in the Fabric blockchain. In Section IV, we present our
CATP-Fabric system in detail. In Section V, we formulate
the aborting transaction selection problem and propose a low-
complexity optimization algorithm to obtain the optimal solu-
tion to it. Extensive experiments are presented in Section VI.
Finally, the conclusion follows in Section VII.

II. RELATED WORKS
A. Blockchain Adaptation for IoT

With the rapid development in IoT technology and the
widespread deployment of IoT services, it has become not
only more important but also more challenging to address
security problems, such as the DDoS attack, Sybil attack, and
privacy leakage [19]. The emergence of blockchain opens the
door to mitigate such security issues in IoT systems by lever-
aging the tamper-proof feature and decentralized consensus
mechanism. We note that efforts have been made to combine
blockchain with IoT networks. For instance, Huang et al. [20]
designed a blockchain with the credit-based consensus mecha-
nism to guarantee the security of Industrial IoT, and proposed
a data authority management method to protect the confi-
dentiality of sensitive data. Debe et al. [21] also utilized
the public Ethereum blockchain to enable decentralized and
trustworthy service provisioning between IoT devices and
public fog nodes. Considering scalability, Lei et al. [22]
proposed Groupchain, a novel scalable public blockchain
with a two-chain structure, that integrates the fog com-
puting of IoT services with blockchain. These blockchains
promote the implementation and deployment of the trusted,
secure, and transparent IoT networks. However, all the above
works are based on blockchains with computation-intensive
consensus mechanisms, in which miners always compete
with each other to create new blocks by solving a difficult
Proof-of-Work (PoW) puzzle. These PoW-based blockchains
result in high energy consumption while the performance
is relatively poor. Such blockchains are, therefore, not
suitable for energy-constrained and delay-sensitive IoT
networks.

To address such issues, some studies proposed to utilize the
Fabric blockchain with a deterministic consensus mechanism
to replace the PoW-based blockchains. Fabric [14] is one of
the prominent permissioned blockchains, which offers signifi-
cantly higher throughput compared to Bitcoin and Ethereum,
and achieves a reasonably fast consensus. Based on Fabric
blockchain, Liu et al. [23] proposed an opensource access
control system named Fabric-IoT to provide fine-grained
and dynamic access control management for IoT networks.
Liang et al. [24] used the Fabric blockchain-based dynamic
secret sharing mechanism to ensure secure data transmission
in industrial IoT networks. These solutions are, however, of
limited applicability for IoT applications with a large num-
ber of conflicting transactions, that can consequently lead to
the failure of a large number of transactions and considerably
degrade the overall performance.
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B. Conflicting Transactions in Fabric Blockchain

A few works have attempted to address the conflicting
transaction problem in Fabric blockchain. Xu et al. [16]
proposed a locking-based mechanism by detecting conflict-
ing transactions at the early stage of Fabric’s transaction flow.
This locking-based method can mitigate the effect of con-
flicting transactions, but it is of limited practical value for
energy-constrained IoT applications due to larger coordina-
tion overhead. Sharma et al. [18] proposed to use a dependency
graph between transactions to detect possible conflicts between
transactions and designed a reordering mechanism to allevi-
ate conflicting transactions within a block. This reordering
mechanism has been shown as a practical approach for mitigat-
ing conflicting transactions without a centralized coordinator.
However, there is still a higher number of transaction retrans-
missions due to unnecessary aborts, leading to high energy
and time overhead. Besides, Nasirifard et al. [25] proposed
the FabricCRDT blockchain system to address conflicting
transactions by integrating conflict-free replicated datatypes
(CRDTs) into Fabric blockchain. FabricCRDT successfully
merges all conflicting transactions without any failures, but
it requires a specified data structure for CRDT transactions,
thus not suitable for many IoT applications. In this article,
we propose a conflicting transaction mitigating solution for
Fabric blockchain, where the energy consumption and latency
requirements of IoT applications are incorporated.

III. BACKGROUND AND MOTIVATION

In this section, we first present the overview of the Fabric
blockchain for IoT applications. Then, we define the problem
of conflicting transactions in Fabric IoT systems, and explain
with an example how existing approaches have attempted to
address this problem.

A. Fabric IoT System Infrastructure

In the Fabric IoT systems, the massive data produced by
IoT devices (such as sensors and actuators) are transmitted to
Fabric blockchain in the form of transactions. Nodes in the
Fabric blockchain start to validate and store these transactions
under an execute-order-validate transaction flow. In terms of
functional division, these nodes can be divided into three cat-
egories, i.e., client, peer, and ordering nodes. Client nodes are
those energy-constrained IoT devices, they send new transac-
tions and do not store blockchain ledger. Peer nodes are IoT
devices with processing and storage capacity such as gateways,
and their main duty is to maintain blockchain ledger and exe-
cute the chaincode. Ordering nodes are powerful devices like
servers, which produce new blocks according to the consensus
mechanism. All nodes in Fabric IoT systems are identified by
a specific manager that also helps to manage (add/delete) the
IoT devices and Fabric blockchain.

The transaction flow in Fabric blockchain consists of three
phases: 1) simulation; 2) ordering; and 3) validation, as shown
in Fig. 1. In the following, we describe those phases in more
detail.

Simulation Phase: Client node sends a transaction proposal
with its identifier to one or more peer nodes, called endorsers.
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Fig. 1. Transaction flow in fabric involves three phases: simulation, ordering,
and validation.

The endorsers verify the client’s identifier and execute the
transaction proposal based on the preinstalled chaincode. After
that, each endorser builds a readset (RS) and a writeset (WS) as
the simulation result. The RS contains the keys read during the
execution and the corresponding versions, while the WS con-
sists of the modified keys, versions, and updated values. Note
that the simulation results do not directly modify the ledger
state. After the execution, endorsers return the simulation
results with their signatures to the client. When the client has
collected enough simulation results, it checks the consistency
of all results and assembles them into a transaction.

Ordering Phase: The client submits this assembled transac-
tion to the ordering service (ordering node). The transaction
contains a transaction proposal, a set of simulation results,
and a channel ID. The ordering nodes maintain the order of
all submitted transactions per channel without inspecting the
contents of transactions. Then, the ordering nodes batch a cer-
tain number of transactions per channel into a new block and
produce a hash-chained value for this block. Ordering nodes,
then, deliver this block to all peers using a gossip protocol.

Validation Phase: The block is received by all peers and
enters the validation phase. For all transactions within the
block, peers first execute the validation system chaincode
(VSCC) in parallel to validate the simulation results of the
transaction. If the simulation results do not satisfy the require-
ments of the endorsement policy, the transaction is marked as
invalid and aborted. Second, peers carry out a read—write con-
flict check for all transactions sequentially. The check includes
whether the versions of the keys in the RS or WS field are
the same as those in the current ledger state, that is, whether
the transaction conflicts with any preceding transactions. If the
versions are different, the transaction is also marked as invalid
and aborted. Finally, the block is appended to the blockchain,
and the ledger changes its state from the WS of all valid
transactions and updates the version number of the modified
keys.

B. Conflicting Transaction Problem in Fabric loT Systems

In Fabric blockchain, only a few nodes (endorsers) exe-
cute transactions, thereby achieving a fast consensus and
making it more suitable for the delay-sensitive IoT applica-
tions. However, IoT devices report data continuously, which
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Fig. 2. Sample of conflicting transactions in Fabric IoT system: there are
three clients (two drivers D1 and D2 and one parking lot P in the smart
packing scenario) who propose four transactions (Tx1, Tx2, Tx3, Tx4) at the
same time or in a short time interval. These four transactions are batched into
a block at orderer and then validated by all peers. Finally, only Tx3 is valid
to write into the ledger, others are invalid and aborted due to conflicting with
Tx3, resulting in 75% aborting transactions.

need to be processed and stored on Fabric blockchain in real
time, leading to high concurrency. When multiple transac-
tion requests access the same entry, conflicts can occur in
Fabric blockchain. These conflicting transactions are marked
as invalid only during the validation phase and are completely
aborted, resulting in inefficient use of resources. The mathe-
matical definition of a conflicting transaction within a block
is given as follows.

Definition 1 (Conflicting Transaction): Let Tx; and Tx; be
two transactions. After being executed by endorsers, the simu-
lation results of Tx; are RS(Tx;) and WS(Tx;), where RS(Tx;)
represents the readset and WS(Tx;) is the writeset. The simula-
tion results of Tx; are RS(Tx;) and WS(Tx;). Assume that Tx;
is ordered before Tx; within a block, then Tx; will be a con-
flicting transaction which will be marked invalid and discarded
in the validation phase when one of the following conditions
is true.

1) WS(Tx;) NRS(Txj) # @.

2) WS(Tx;) N WS(Tx;) # @.

Next, we present an example to discuss the impact of
conflicting transactions in detail.

Example: The smart parking system [26] is a typical IoT
scenario, where each parking lot periodically collects the num-
ber of available spaces through IoT devices and sends these
data to the Fabric blockchain. Drivers can send transactions to
the Fabric blockchain to retrieve parking offers and make an
online reservation. Let us assume there are two drivers (D1,
D2) and one parking lot (P), as shown in Fig. 2. In the initial
ledger state, the key of the available spaces Np in the parking
lot is 1 and the version number is V1. There are four trans-
actions (Tx1, Tx2 from D1, Tx3 from P, and Tx4 from D2)
that are submitted to the Fabric blockchain in a short time
interval. According to the transaction flow of Fabric, these
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Fig. 3. How the caching mechanism [27] mitigates the conflicting transaction
problem: there is a cache service between IoT clients and the Fabric system
to remove conflicting transactions into the waiting queue by analyzing the
relationship of different transactions RS & WS.

four transactions are sent to endorsers for execution to obtain
simulation results (as shown in the Simulation Results Table
in Fig. 2). Subsequently, these four transactions are sent to
the ordering nodes to be batched into a new block with a con-
sistent order Tx3=Tx1=Tx2=Tx4. Then, all peers receive
this new block from the ordering nodes and perform VSCC
and read—write conflict checks. Peers first compare the local
ledger state with the simulation result of Tx3. The version
corresponding to key Np in the WS field is consistent with
those in peers’ local ledger state. Therefore, this transaction
Tx3 is marked as valid to be stored in the ledger, while the
value of Np in the ledger is updated to 2 and the version of
Np is updated to V2 successfully. Afterward, transaction Tx1
comes to be validated. Because the version of Np in the ledger
state has been changed to V2, so Tx1 is marked as invalid and
aborted. Likewise, peers find that Tx2 and Tx4 also have con-
flicts with preceding transactions. Thus, Tx1, Tx2, and Tx4
fail to be committed and require retransmissions resulting in
extra resource and time overhead.

C. Existing Solutions

There are some existing solutions to this problem, which can
be divided into two categories: 1) caching mechanism [27],
a simple approach to mitigate the conflicting transaction
problem with a cache service and 2) reordering mecha-
nism [17], [18], where the main idea is to turn partial
conflicting transactions into conflict-free transactions based on
transaction dependency graph analysis.

The caching mechanism detects conflict at an early stage
of the transaction flow. As shown in Fig. 3, after receiving
enough simulation results from endorsers, clients assemble
transactions and submit them to a cache service. This novel
cache service first buffers transactions, then analyzes whether
there are conflicts between different transactions. If one trans-
action (e.g., Tx1 in our example) is conflict-free with the
preceding transactions, this transaction is sent to the order-
ing service directly. Otherwise, transactions (e.g., Tx2, Tx3,
and Tx4 in our example) conflicting with the preceding ones
(Tx1) are moved to a conflict queue. After conflict-free trans-
actions (e.g., Tx1) are committed successfully, one transaction,
e.g., Tx2, can be removed from the conflict queue and sent
to endorsers for execution again. if this transaction (Tx2) is
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Fig. 4. How the reordering mechanism [18] mitigates the conflicting trans-
action problem: it introduces a transaction reordering mechanism that aims
at minimizing the number of unnecessary conflicting transactions within each
block.

conflict-free in this round, it will be submitted to the order-
ing service and committed. Finally, other transactions, e.g.,
Tx3 and Tx4, are also removed from the conflict queue and
committed sequentially after both Tx1 and Tx2 are committed.

Indeed, all four transactions in our example are committed
successfully to the Fabric blockchain based on the caching
mechanism. Unfortunately, simply caching conflicting trans-
actions brings some challenges: 1) the cache service can be a
bottleneck, large buffer space is required when the transaction
arrival rate is high or when transactions are highly concur-
rent; 2) the average transaction latency is very high due to the
waiting time of conflicting transactions; and 3) the additional
resource overhead is unavoidable due to the need of execution
and conflict analysis once again. Thus, the caching mechanism
is not suitable for the energy-constrained and delay-sensitive
IoT applications.

The Reordering mechanism is requested as a part of the
ordering service. After establishing an order agreement and
constructing a block for all pending transactions, the ordering
service generates a dependency graph for transactions within
this block based on the relationship of their RS and WS. Then,
it forms a cycle-free graph by removing certain transactions
and reorders the remaining transactions to create a serializable
schedule. With this serializable schedule, all transactions can
be marked as valid and committed successfully in the valida-
tion phase. Recalling the same example in Section III-B, all
four transactions Tx1, Tx2, Tx3, and Tx4 are sent to the order-
ing service. Then, the ordering service constructs a conflict
graph as shown in Fig. 4. Then, Tx2 is removed to get a cycle-
free graph and a serializable schedule with Tx1=Tx4=Tx3
is provided by the ordering service.

Compared to the caching mechanism, the reordering mech-
anism increases the number of valid transactions within a
block without rolling back the processed transactions. This can
indeed improve resource utilization and decrease transaction
latency. There are, however, some issues with the reordering
mechanism. In our example, Tx2 is aborted in the ordering
phase because it conflicts with other transactions. However,
checking the value of the available spaces Np in the parking
lot indicates that it is available for offering parking service,
that is, Tx2 is not a double-spending transaction. Tx2 can be
committed successfully by retransmission. We call this type of
transaction final valid transaction and provide its mathematical
definition below.

IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 13, JULY 1, 2021
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Fig. 5. Overview of CATP-Fabric. After finishing the execution phase (same
as vanilla Fabric, not presented), clients send the transactions and simulation
results to the ordering service. This ordering service batches the receiving
transactions into a new block and sent it to the key-based transaction group-
ing module (1). Transactions are divided into different groups to preprocess
(2). Then, low version transactions filtered (3) and read-only transactions pri-
oritized (4). After that, final balance detection for all keys within the block
to decide whether to perform transaction aborting (5). If need, a conflicting
transaction selection mechanism gets a transaction set to abort (6) and other
transactions are merged (7). Finally, this block only with final-transactions is
delivered to all peers for validation (8).

Definition 2 (Final Valid Transaction): A client issues a
transaction Tx to perform a write operation on a key x. If the
value of the key x in the ledger state is sufficient to support
the operation of Tx, then Tx is called a final valid transac-
tion, i.e., transactions that are not double-spending for all keys.
Certainly, all read-only transactions are final valid ones.

The final-valid transactions can be executed and committed
to the ledger successfully, but have to go through at least two
rounds of endorsing and ordering in the reordering mecha-
nism, thus leading to an inefficient use of resources and high
transaction delay. In some special scenarios with high concur-
rency, this problem is more prominent due to a considerable
number of aborted transactions that require retransmissions,
resulting in high latency and lower QoS for end users.

IV. CATP-Fabric ARCHITECTURE

In this section, we present an overview of the proposed
CATP-Fabric system. Conflicting transactions in CATP-Fabric
are operated and processed in the ordering service by intro-
ducing three modules: 1) the key-based transaction grouping
module; 2) transaction preprocessing module; and 3) conflict-
ing transaction resolution module.

The flow of transactions in CATP-Fabric is depicted in
Fig. 5: after finishing the simulation phase (same as vanilla
Fabric), clients send transactions and simulation results to the
ordering service. When the ordering service receives a certain
number of transactions, it batches all pending transactions into
a new block. Due to the high delay associated with sequen-
tial transaction execution within a block, transactions in this
new block are divided into a set of independent groups so
that they can be processed in parallel in the subsequent steps.
Then, for transactions in each group, the preprocessing mech-
anism filters stale transactions (defined in Section IV-B) that
may cause data inconsistency in the validation phase. After
that, transactions in each group will be the read or write ones
with a uniform version of RS and WS. Because the read-only
transactions do not modify the value and version number of
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Algorithm 1: Key-Based Transaction Grouping
Input: Block = {Txy, Tx3, ..., Txy}: a new block;
Output: S: The grouped transaction set;

1 Initialize S = 0;

2 for Tx; € Block do

3 for (key,, version,) € TX;.readset do
4 Creat a sub_transaction Tx;(m);
Tx;(m) . readset = (key,,, versiony);
if key,, € S. groupIDs then
5 | S[keyn] - append(Tx;(m));
6 end
7 else
8 Add a group with key,, as group ID to S;
Slkeym] = Tx;(m);
9 end
10 end
1 for (key,, version,, value,) € TX;.writeset do
12 Creat a sub_transaction Tx;(n);
Tx;(n) « writeset = (key,, version,, value,);
if key, € S. groupIDs then
13 | S[keym] « append(Tx;(n));
14 end
15 else
16 Add a group with key, as group ID to S;
Slkeyn] = Tx;(n);
17 end
18 end
19 end
20 return S;

keys in the ledger state, these transactions are final valid ones
based on Definition 2 in Section III-C. Thus, giving the high-
est priority to these transactions can reduce the number of
conflicting transactions within a block. Finally, the conflict-
ing transaction resolution module divides transactions in each
group into nonfinal valid transactions and final-valid transac-
tions. The nonfinal valid transactions are discarded directly
and all final-valid transactions are sent to peers for validation.

Next, we elaborate on the details of the design of these three
modules.

A. Key-Based Transaction Grouping

Peers in the Fabric blockchain maintain the ledger state
in the form of versioned key value, and conflicting transac-
tions occur due to the read or write operations on the same
keys according to Definition 1 in Section III-B. Thus, to
enable highly parallel processing of conflicting transactions,
we design a grouping algorithm using the keys in RS or WS
fields of transactions as group ID to divide transactions into
different groups.

As shown in Algorithm 1, we iterate through all transactions
within a block. For each transaction, we iterate through the
key-value pairs of its RS (lines 3—10) and WS (lines 11-18).
The algorithm first checks if a group ID for the key in RS or
WS field already exists in the group set S. If it does not exist,
the algorithm instantiates a new group with the key as a group
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ID and adds subtransaction to this new group. This subtrans-
action includes the same content with their parent transaction,
and a RS or WS only with a single key. Afterward, the trans-
actions are converted to multiple subtransactions with only
one key-value pair and inserted into the corresponding groups.
Finally, all transactions in each group are processed in parallel
in the subsequent steps.

Let us consider an example here. A parent transaction Tx is:
a driver D retrieves the available parking spaces in parking lots
P1 and P2. The simulation results of Tx are {(Np;, version),
((Npp, version) }. Then, these two subtransactions are split: Tx;
with RS {(Npy, version} and Tx; with RS {(Np,, version}.
Finally, Tx; is added in to the group with group ID Np; and
Tx; to the group with group ID Np;.

B. Transaction Preprocessing

After dividing transactions within a block into different
groups, we run a lightweight transaction preprocessing mech-
anism for all groups in parallel. First, since transactions with
outdated versions are aborted in the validation phase due to
data inconsistency, the preprocessing mechanism filters these
outdated transactions at an early stage to save resources and to
reduce time overhead. We identify these outdated transactions
as stale transactions and provide the mathematical definition
of stale transactions as follows.

Definition 3 (Stale Transaction): A client issues transaction
Tx to operate on a key x, and another transaction Tx’ also
updates the value of the key x before Tx. After Tx is endorsed
in the simulation phase, and Tx’ is committed to update the
version and value of the key x in the ledger state. Since the
simulation results of Tx have an older version of key x in
the RS or WS, Tx fails validation. In this case, transaction T
is called a stale transaction, i.e., transaction with the outdated
version number in their RS or WS field.

In general, stale transactions occur due to additional latency
between the simulation and validation phases, outdated ledger
state of offline peers, and can also be a result of malicious
behavior [25], [28]. If a transaction is stale, it is bound
to be aborted in the validation phase. This untimely dis-
carding results in unnecessary transmission overhead from
ordering service to validation peers. Thus, filtering stale trans-
actions at the early stage of the ordering phase can save
resources and reduce the average transaction completion time.
In CATP-Fabric, we sort transactions in each group based on
their version number. Then, we filter out the transactions with
lower version numbers, and only keep the transactions with
the highest version.

Besides, after grouping, each group contains either read or
write transactions for the same key. Since the read-only trans-
actions only query the current ledger state and do not execute
any operations on the value or version of the keys. Reordering
all read-only transactions to handle them first can ensure that
all read-only transactions can be committed successfully in the
validation phase, thereby reducing the number of transaction
retransmissions. Moreover, it also decreases the possibility of
conflict with subsequent write transactions. For transactions in
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each group, the preprocessing mechanism performs reorder-
ing such that the read-only transactions are followed by write
transactions.

C. Conflicting Transaction Resolution

From the observations of the example in Section III-B,
reordering mechanism aborts the final valid transactions that
have conflicts with other transactions in the current round
of updates. However, this type of transaction can be pro-
cessed successfully in the next round because the value (or
balance) of the key in the WS field of the transaction is suffi-
cient to support its payment. Discarding final valid transactions
leads to nontrivial transaction latency and retransmission over-
head. To avoid the failure of these final valid transactions, in
CATP-Fabric, we design a novel conflicting transaction resolu-
tion module. We first apply the final balance detection method
to check whether there are transactions in each group making
the value of some key exceed its balance. If such transactions
exist, a conflicting transaction selection mechanism divides
transactions within a block into nonfinal valid transactions or
final valid ones. Then, nonfinal valid transactions are aborted
directly and all final valid write transactions in the same group
are integrated into a total transaction with the uniform version
to be sent to all peers for validation.

1) Final Balance Detection: For all keys in the group
set S within a block, we implement the final balance detec-
tion concurrently. Assume that there are K write transactions
{Tx1, Txa, ..., Txg} in a group S,, € S with group ID m, and
the WS of Tx; (i € [1, K]) is (key;, value;, version;). Then, the
final balance Bal,, of key m associated with group S,, is

K
Bal,, = Ball"t 4 Z A(Tx;) (1)
i=1

where Balf;llit is the value of key m in the ledger state and
A(Tx;) is the updated value of transaction Tx;, which can be
calculated as follows:

A(Tx;) = value; — Bal™, )

If the final balance of keys associated with all groups are
nonnegative, transactions within this new block are both final
valid transactions that can be merged to avoid failure in the
validation phase. In contrast, a part of transactions are selected
to ensure the nonnegative final balance of all keys and are early
aborted. The optimal conflicting transaction selection will be
discussed in Section V.

2) Transaction Merging Mechanism: When the final bal-
ance of all keys within a block are nonnegative, a merging
mechanism is executed for all groups in parallel to avoid the
failure of transaction validation. First, it reorders all read-
only transactions in front of the block queue. Afterward, for
write transactions with the same key and version, the neces-
sary merging operation is performed to integrate these write
transactions into a total transaction. The new total transac-
tion has the WS <key, value, version>, where the value is the
final balance Bal based on the sum of all write value, and the
version is the highest version number. The merging operation
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also holds a dependency list containing specific write trans-
actions. Finally, this total write transaction is appended to the
block queue after all read-only transactions.

V. TRANSACTION ABORTING DECISION: PROBLEM
FORMULATION AND ALGORITHM DESIGN

When the final balance of some keys are not sufficient
to support operations of all transactions within a block, we
consider aborting parts of transactions to guarantee the non-
negative final balance for all keys. That is, given a block with
group set S = {S1,82,...,Sn}, we use (1) to calculate the
final balance for all keys associated with S, if Bal,, < 0
(m € [1, N]), we consider aborting some transactions.

A. Problem Formulation

Let us define the problem of transaction aborting formally.
Assume that A is a transaction set in a block, the goal of
the aborting transaction selection problem is to find a subset
of transactions A’ C A to abort, such that after aborting all
transactions in subset A’, the remaining transaction set A/A’
makes the final balance of all keys nonnegative. To formulate
this problem, we model the transaction relations in a block
with an associated edge- and node-weighted dependency graph
G = {S, E, W, ©}. In which, the node set S = {S1, So, ..., Sn}
denotes the related N keys (group IDs) in this block.The
directed edge set E includes write transactions in a block (since
read transactions do not update any values and are prioritized
in the preprocessing module, they do not have any conflict
with other transactions, thus making it not necessary to insert
edges for read-only transactions into the graph). Given a trans-
action that transfers value from key i to key j (i,j € V), add
an edge from node i to node j. VW is an N x N weight matrix
and w;j € W — R represents the transferring value from i
to j. If there is no transaction from key i to key j, w;j = 0.
A nonnegative weighted scalar ® = [01, 6, ..., Oy], where
0; (i € [1, N]) indicates the value of the key associated with
group S; in the current ledger state. Thus, the aborting transac-
tion selection problem can be converted to searching an edge
set E' € Ein G.

We design an actual objective function to select the edge
set (aborting transactions) based on delay-sensitive IoT appli-
cations. In our design, we consider an objective function that
minimizes the size of aborting transactions set A’, that also
minimizes the retransmission overhead.

The optimization problem with this objective can be con-
verted to a minimum edge set searching problem for graph G.
By using a binary variable x;; to indicate whether the edge
i — j is involved in the solution, this problem can be
formulated as follows:

P1: max E E CijXij
Xij

i€V jev

s.t. xj € {0,1} Vi,j eV (3a)
ij,-wji — Zx,-jwij <6; Vi,j eV (3b)
jev jev
Z inj > 1 (3c)
ieV jeVv
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where C = {¢;} is an N x N binary coefficient matrix, if
there is a transaction from i to j, ¢;; = 1; otherwise, ¢;; = 0.
While the first item on the left-hand side of constraint (3b) is
the sum weights of incoming edges of node i, i.e., the amount
transferred to i. The second item is the sum weight of outgoing
edges, i.e., the amount received. Constraint (3b) guarantees
that the final balance of all keys in this block are nonnegative.
Moreover, constraint (3¢) ensures that at least one transaction
is left behind.

B. Algorithm Design

The key challenge in solving P1 is the integer constraint
x;; € {0, 1}, which makes P1 a BIP problem. In general, BIP
is NP-hard and cannot be solved without relaxing the integer
constraint. Then, by solving the resulting LP, there will be an
optimal LP solution that may contain variables with noninte-
ger values. Finally, rounding the values of the LP solution up
or down to get an integer-valued solution may lead to feasi-
ble solutions for BIP. Unfortunately, the number of possible
roundings grows rapidly as the number of integer variables
increases, i.e., when the size of the transaction set within a
block is very high, it may take too long to find a good integer-
valued solution. We, therefore, propose an efficient algorithm
based on the branch-and-bound approximation that has been
widely used for obtaining BIP solutions.

First, we create the LP relaxation of P1 by removing the
binary constraints as following:

LP Relaxation: II)Ing Z Z CijXij

ieV jeVv
st. 0<x; <1 VieV (4a)
(3b), (3c). (4b)

Then, we solve the LP relaxation to obtain a fractional
optimal solution X with the optimal objective value zy p. If the
optimal solution X is integer-valued, then it is also an optimal
solution to P1 and we can stop. Otherwise, the LP relaxation
becomes the first unfathomed node of the branch-and-bound
tree and zg p is the bound on the first unfathomed node. Then,
we should choose a variable X;; with fractional value to round
up or down and create a new subproblem. To reduce the num-
ber of rounds, we use a greedy algorithm to find the optimal
branching step.

First, we consider a new trimmed dependency graph G’ =
{S,E', W, ©'}. Where the edge set E’ only includes the edge
for which 0 < X;; < 1. The weighted scalars ®” are the updated
values after calculating the original ® with the weights of
outgoing or incoming edges X;; = 1 in LP relaxation.

Based on G’, we calculate the new weighted final balance
for all §,, € S as follows:

Balin 29,;14- E iji*wji_ E iij*w,-j
jev jev

(&)

where 0 < X;;,X; < 1 form the optimal solution of the
LP relaxation problem. From constraint (3b), we know that
Bal;,l > 0 for all S, € S. We sort S,, based on their new
weighted final balance Bal), in increasing order. Then, we
choose an outgoing edge of the node with a bottom-ranked
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Algorithm 2: Transaction Aborting Decision
Input: G = {S,E, W, ©}
Output: E’: The aborting transactions set.
1 Initialize Set E' = @
2 Built the BIP problem P1 based on G;
3 Let X be an optimal solution of the LP relaxation;
4 zp be the optimal objective value of the LP
relaxation;
if there are unfathomed nodes in the branch-and-bound
tree then
Built the trimmed graph G';
Calculate the new weighted final balance Bal’ for all
node in S;
Rank the node in S with increasing Bal';
Choose the edge r,k from node with bottom-ranked
Bal’ to remove;
10 E' =E U{i,j}

W

11 Add constraint X,z = 0 to LP relaxation;
12 Sovle the new subproblem LP’;

13 X be an optimal solution of the LP’;

14 Go to 5;

15 end

16 for (i,j) € {(1,2,...,N) x (1,2,...,N)} do
17 if X;; = O then

18 | E'=E U{i.j}

19 end

20 end

21 return E’

weighted final balance to remove. That is, suppose S, has the
lowest weighted final balance and there is an edge from node
Sy to node Si (S;x € S), then we should add a new constraint
Xr = 0 to the LP relaxation, creating a new subproblem. Then,
we add only one new node to the branch-and-bound tree that
is associated with this subproblem, and find the bound for
the new node of the branch-and-bound tree by solving these
associated subproblems (LP’)

/l / ..
LP: max Z E CiXij
Xij

ieV jeVv
s.t. Zxﬁwji — injwij < 9; VieV (6a)
jev jev
xk=0 rkeV (6b)
(4a), (3c) (6¢)
where C' = {c;j} is an updated coefficient matrix of C. If

the solution of variable X;; = 0 in LP relaxation, we update
cijj = 0. If there is an incumbent integer-valued solution, then
the incumbent solution is optimal. Otherwise, a new solu-
tion is found iteratively by branching-and-bounding on the
new remaining graph. The procedure of transaction aborting
decision is shown in Algorithm 2.

VI. NUMERICAL RESULTS

In this section, we present a comprehensive evaluation of
our CATP-Fabric. We first describe the experimental setup
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for our prototype and the workload adopted in our experi-
ments. Then, we evaluate the performance of CATP-Fabric
against vanilla Fabric and Fabric++. As the caching mecha-
nism is not a distributed mechanism, and as it usually yields
high queuing delay, we do not compare CATP-Fabric with it.

A. Setup

Environment: Our experiments are conducted in a local
Fabric network with one ordering node and two organiza-
tions. Each organization includes three peers and both of them
join in a single channel. Each node is launched as a Docker
container and then connected to the Fabric network using the
Docker Swarm. Containers corresponding to each node (client,
peer, or ordering node) are run on an independent physical
server in a LAN. Each physical server has four vCPUs (Intel
Xeon 2.2 GHz) with 12-GB RAM. Each machine runs Ubuntu
16.04 LTS with Fabric V1.4 installed. All physical servers are
connected with a 1 Gb/s Ethernet switch.

Workloads: We use SmallBank [29] as the workload in our
experiments. SmallBank is a standard benchmark available in
BLOCKBENCH [30] and was used in several studies for eval-
uating the performance of distributed databases. There are six
transaction types in the SmallBank workload for simulating the
typical operations under banking applications. CreatAccount
initializes each customer with a random balance in their
checking account and savings account. TransactSavings and
DepositChecking add an amount (can also be a negative
number) to the customer’s savings account and checking
account, respectively. WriteCheck removes an amount from
the customer’s checking account, while SendPayment moves
funds from one customer’s checking account to another’s.
Amalgamate transfers the entire contents of one customer’s
savings account into another customer’s checking account. In
addition to the above five write transactions, there is also a
read-only transaction Query that queries the balance of sav-
ing and checking account of a customer. For all experiments
in this article, we initialize workload with 10000 customers
and 100000 transactions. We set to send these six types of
transactions randomly, and the probability of generating Query
transactions (i.e., read transactions) is P,, while the probability
of one of the five writing transactions is 1 — P,. Furthermore,
we use Zipfian distribution for the Smallbank workload to
simulate contention for data access and configure the data
skewness by setting the skew parameter. Note that setting the
skew parameter with O corresponds to a uniform distribution.

We use the Hyperledger Caliper tool [31] to measure the
performance under the Smallbank workload. By implementing
a set of predefined use cases, Hyperledger Caliper can generate
reports, including throughput, latency, and successful transac-
tion numbers. In our experiments, the caliper runs on client
nodes and broadcasts Smallbank workloads into the Fabric
blockchain. Then, it listens to block events from peers to check
for transaction confirmations on the blockchain ledger.

B. Results

We now evaluate the impact of different parameters on the
performance of different blockchain systems. We parametrize:
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TABLE I
FABRIC BLOCKCHAIN CONFIGURATION

Parameters Values

Transaction submission rate 50 tps [32]
10, 20, 40, 80, 100

1 second [32]

Number of transactions in a block (block size)
Interval time to batch a new block (block interval)

TABLE 11
SMALLBANK WORKLOAD CONFIGURATION

Parameters Values
Total Number of transactions 100, 000
Number of customers 10,000

10% - 90% in steps of 10% [25]
0.2 - 2.0 in steps of 0.2 [18]

Percentage of read transactions

Skew parameter of Zipf distribution

1) the block size; 2) the skew parameter of Zipfian distribu-
tion; and 3) the read transaction percentage. The performance
metrics measured in our experiments include the transaction
aborting rate to measure the number of transaction retransmis-
sions, average transaction latency, and successful transaction
throughput. For all experiments shown in this section, we con-
duct 500 runs for each parameter and the final results are the
average of these sum runs.

Impact of Block Size: First, to evaluate the impact of block
size on performance, we increase the number of transactions
in each block from 10 to 100. Similar to [18] and [25], we
set the percentage of read transactions as 50% and the skew
parameter as 1.0. For other parameters, refer to Tables I and II.

Fig. 6(a) shows the transaction aborting rate under three
simulated blockchain systems. In this figure, we set the per-
centage of read transactions as 50% and the skew parameter
as 1.0. For other parameters, refer to Tables I and II. The
results show that all three systems only drop 0%—10% transac-
tions with conflicts when the block size is set to 10. However,
with an increase of block size from 20 to 100, we see that
both Fabric and Fabric++ exhibit a sharp increase in trans-
action aborting rate. The reason is that the larger block size
causes a greater probability of increasing the number of con-
flicting transactions within a block. Our CATP-Fabric keeps
the transaction aborting rate much less compared to Fabric and
Fabric++. Moreover, we observe that the transaction aborting
rate drops further in CATP-Fabric even for block size 80 and
100. The reason is that CATP-Fabric can resolve conflicting
transactions and integrate most of them into conflict-free trans-
actions. Moreover, the results also indicate that CATP-Fabric
can achieve a transaction aborting rate close to 0.7%, that is,
CATP-Fabric can successfully handle almost all transactions in
the case of high concurrency conflicts. Thus, CATP-Fabric is
more efficient for IoT applications with concurrency conflicts.

Fig. 6(b) shows the average transaction latency under dif-
ferent block size settings. From this Figure, we can see that
Fabric always maintains a low latency (below 2 s) and out-
performs all systems. While the average latency increases
in both Fabric++ and our CATP-Fabric as the block size
increases. These results are expected since both Fabric+-+
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and our CATP-Fabric require additional computation to pro-
cess conflicting transactions. More transactions included in a
block result in longer processing time thus leading to higher
latency. But the latency in Fabric++ is comparable with
latency in CATP-Fabric. We show that the successful trans-
action throughput of the three systems under various block
size values in Fig. 6(c). We observe that CATP-Fabric has
a higher throughput than both Fabric and Fabric++. This
further corroborates the effectiveness of our proposed system.

Impact of Transaction Contention: Next, we perform a
detailed analysis of the impacts of transaction contention on
the overall performance. We set different degrees of transac-
tion contention by adjusting the skew parameter of the Zipf
distribution in Smallbank workload from 0.2 to 2 with step
size 0.2, as Fig. 7 shows, where the small skew parameter
means low transaction contention. Then, we evaluate the trans-
action aborting rate, average latency and successful transaction
throughput of the three systems under diverse skew parame-
ters. In this experiment, we configure the block size as 50
and the percentage of read transactions as 50%. For other
parameters, refer to Tables I and II.

Fig. 8(a) summarizes the results of transaction aborting rate
under various skew parameters. We can see that for small skew
(below 0.4), the transaction aborting rate of all three systems
is relatively low because the number of potentially conflicting
transactions is small by default. But, it can be seen that the
transaction aborting rate in Fabric and Fabric++ increases
with the higher skew parameter (>0.4). The reason is that

Block size
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Impact of the block size on transaction (a) aborting rate, (b) average latency, and (c) throughput of Fabric, Fabric++, and our CATP-Fabric.

high data skew in Smalllbank workload leads to a large num-
ber of potential conflict transactions that cannot be resolved
by Fabric and only small part can be resolved by Fabric++.
In contrast, our CATP-Fabric allows the system to maintain
the transaction aborting rate below 1% for all skew parame-
ters. CATP-Fabric is not sensitive to the increase of contention
degree due to merging all final valid transactions.

We compare the average latency in Fig. 8(b). We can
observe that our CATP-Fabric and Fabric++ experience a
higher latency than Fabric. Fabric++ shows a maximum
increased 6.1x latency than Fabric, and our CATP-Fabric
shows a maximum increased 5.5x latency. This is because
Fabric++ and CATP-Fabric might need extra processing time
to resolve conflict transactions in the ordering phase. We
can also see that, compared to Fabric++, our CATP-Fabric
brings in additional latency less than 1 s when the skew
parameter is lower than 1.2, but shows an improvement when
the skew parameter is higher than 1.2. The reason is that
increasing data contention would lead to more conflicting
transactions, and thereby leading to high time complexity in
Fabric++. But it has a relatively small impact on latency in
our CATP-Fabric system which employs a key-based grouping
method to process transactions in parallel.

Finally, we provide the results of successful transaction
throughput under various data contention rates in Fig. 8(c).
We find that successful transaction throughput decreases as
the skew parameter increases in all three systems. This hap-
pens due to an increase in the number of potentially conflicting
transactions that bring in a higher transaction aborting rate and
larger transaction processing time. Moreover, Fig. 8(c) shows
that CATP-Fabric significantly improves the successful trans-
actions throughput compared to Fabric and Fabric++. When
skew parameter is sets to 2.0, CATP-Fabric achieves over 400
successful transactions per second outperforming Fabric++
by up to 2x and Fabric by up to 10x. That is because
CATP-Fabric prefers to maintain more valid transactions
within a block by the optimal conflicting transaction selection
algorithm. Moreover, CATP-Fabric is able to convert the con-
flicting transactions, which would be final-valid to conflict-free
ones to minimize the number of unnecessary aborts [as shown
in Fig. 8(a)].

Impact of Read Transaction Percentage: In this part, we
evaluate how the percentage of read transactions impacts the
performance of the simulated blockchain systems. We set the
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skew parameter to 1.0, and the block size to 50. For other
parameters, refer to Tables I and II. We vary the percentage
of read transactions from 0.1 to 0.9.

From Fig. 9(a), we can see that the transaction aborting
rate of Fabric and Fabric+-+ decreases with the increase in
the percentage of read transactions. A higher percentage of
read transactions implies that transaction records will update
by fewer transactions in a short timeslot, resulting in a lower
number of potentially conflicting transactions. On the other
hand, since CATP-Fabric optimizes over reordering of all read-
only transactions first. It ensures that all read-only transactions
can be processed successfully. Hence, the transaction abort-
ing rate of CATP-Fabric is better than Fabric and Fabric++-.
Fig. 9(b) and (c) shows the average latency and the success-
ful transaction throughput of the three systems. We see that
the latency of Fabric++ and CATP-Fabric are affected by the
percentage of read transactions as expected. In comparison to
Fabric++, CATP-Fabric shows a higher successful transaction
throughput.

VII. CONCLUSION

In this article, we proposed CATP-Fabric, a permissioned
blockchain system that supports conflicting transaction execu-
tion effectively in IoT ecosystems. We adopted a key-based
transaction grouping method to improve system performance
with parallel processing. A low-complexity stale transaction
filtering mechanism was then developed to discard unnec-
essary transactions as early as possible to save network
resources. Finally, an optimal conflicting transaction selection

algorithm was proposed by optimizing selection decision and
computation resources. Experimental evaluations based on a
real workload demonstrated that the CATP-Fabric achieves
significantly better performance compared to both Fabric and
Fabric++ permissioned blockchain systems when incorporat-
ing conflicting transactions.
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