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Abstract. We adopt a detailed human cardiac cell model, which has
10000 calcium release units, in connection with simulating the electrical
activity and calcium handling at the tissue scale. This is a computa-
tionally intensive problem requiring a combination of efficient numerical
algorithms and parallel programming. To this end, we use a method
that is based on binomial distributions to collectively study the stochas-
tic state transitions of the 100 ryanodine receptors inside every calcium
release unit, instead of individually following each ryanodine receptor.
Moreover, the implementation of the parallel simulator has incorporated
optimizations in form of code vectorization and removing redundant cal-
culations. Numerical experiments show very good parallel performance
of the 3D simulator and demonstrate that various physiological behav-
iors are correctly reproduced. This work thus paves way for high-fidelity
3D simulations of human ventricular tissues, with the ultimate goal of
understanding the mechanisms of arrhythmia.

Keywords: Calcium handling · Multiscale cardiac tissue simulation ·
Supercomputing

1 Introduction

Calcium handling dysfunction is considered the likely cause of several cardiac
pathological conditions such as heart failure [6,10], cardiac hypertrophy [2], car-
diomyopathies [16], and inherited disorders of calcium release processes in the
sarcoplasmic reticulum (SR) [7,17]. Many of these pathological conditions origi-
nate from dysfunctions of subcellular calcium release processes that occur at the
microscopic and nanoscopic levels, ranging from dyadic disorganization by t-
tubule malformation in heart failure [8,9,15] to single ryanodine receptor (RyR)
dysfunction occurring in inherited cardiopathologies [5,7].

Over the last several years, advances in numerical methods and computing
techniques have enabled the development of cardiac cell models of electrophys-
iology and calcium handling that take into account the discrete nature of sub-
cellular stochastic calcium release processes [4,11,19,22]. This new generation of
c© Springer International Publishing Switzerland 2015
G. Wang et al. (Eds.): ICA3PP 2015, Part III, LNCS 9530, pp. 79–92, 2015.
DOI: 10.1007/978-3-319-27137-8 7



80 Q. Lan et al.

models of calcium handling and action potential has been immensely useful in
the study of causative and preventive mechanisms of arrhythmogenesis, which
originates from the local nanoscopic level of channel and dyadic dysfunction to
the subcellular and cellular levels of membrane potential abnormalities in the
form of delayed afterdepolarizations, early afterdepolarizations [20], and cardiac
alternans [12,13,19]. Despite this advancement in our understanding of how
cardiac arrhythmogenesis can progress at different scales, ranging from single
channel to whole-cell action potentials, several challenges remain.

For one, cardiac arrhythmias occur at the tissue and organ scale. Extrapolat-
ing the insights obtained from cell-level studies to understand how arrhythmias
occur at the tissue and/or organ scale is often unclear and at times counter-
intuitive. Secondly, tissue-level studies have proven to be particularly difficult
due to their huge computational demands. A typical human heart has around
2 × 109 cells [1], each of which has about 106 RyRs and roughly 105 L-type
channels operating stochastically in response to membrane potentials and local
calcium concentrations [3]. Realistic simulations at this level of detail require
immense computational power of massively parallel computers, together with
sophisticated algorithms, so that these cardiac excitation processes can be stud-
ied in reasonable time. Thus to date, to the best of our knowledge, arrhythmia
mechanisms at the tissue level have not been investigated computationally with
detailed cell models of calcium handling.

This paper reports our newly developed parallel 3D simulator of electrical
activity and calcium handling in the cardiac ventricular tissue. We will start
with describing the novel numerical and computational approaches that have
enabled such simulations with a detailed model of calcium handling. Then we
will examine the parallel performance of the 3D simulator, followed by presenting
multiscale simulation results of cardiac activity, including single channel RyR
stochastic behavior, local dyadic calcium dynamics, whole-cell action potential
and calcium dynamics, as well as cardiac excitation activity in the 3D tissue.

2 Mathematical Models and Numerical Methods

2.1 At the Tissue Level

The cardiac tissue is modeled by the following partial differential equation, which
is commonly called the monodomain model:

∂Vm

∂t
=

−Iion
Cm

+ Dx
∂2Vm

∂x2
+ Dy

∂2Vm

∂y2
+ Dz

∂2Vm

∂z2
, (1)

where Vm is the membrane potential, Iion the ionic current provided by the under-
lying multiscale cell model of calcium handling (see Sect. 2.2), Cm = 1µF cm−2

the membrane capacitance of the cell, Dx = Dy = Dz = 0.2 mm2/ms the volt-
age diffusion coefficients in three spatial directions. In this paper, we consider the
3D solution domain of (1) as a slab of tissue made up of cardiac cells. The finite
difference method, combined with an operator-splitting approach [18], is used to
discretize (1). This means that the diffusion terms are treated separately from the
Iion term,where the latter requires solving the following detailed cellmodel per cell.
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2.2 At the Cell Level

Electrophysiology Component. The multiscale model of stochastic calcium
handling in a ventricular myocyte [4] forms the basis of the cell model used in
this work. The electrophysiological currents used in [4] were those of a guinea-
pig. Therefore, to perform simulations of the human cardiac ventricular tissue,
we replace the electrophysiological current formulation with the O’Hara-Rudy
(ORd) model [14] of a healthy human cardiac ventricular action potential. The
total ionic current Iion needed in (1) is computed by summing up the total
ionic currents obtained from solving the ordinary differential equations in the
ORd model.

Calcium Handling Component. The cell model consists of 10000 calcium
release units (CaRUs) or dyads arranged as an internal 100×10×10 grid in each
cell. Each CaRU consists of five calcium compartments: (1) myoplasm, (2) sub-
membrane space, (3) network sarcoplasmic reticulum, (4) junctional sarcoplas-
mic reticulum, and (5) dyadic space. The reader is referred to [4] for the detailed
equations and parameters. Of particular importance, however, is the dyadic space
that contains 15 L-type calcium channels and 100 RyRs that operate stochas-
tically. More specifically, each RyR can be in one of four states, denoted as
C1, C2, C3, and O1, at any given time. Figure 1 shows the possible transitions
between them, which occur stochastically with probabilities that are related to
the local calcium concentrations. The number of open RyRs, i.e. those having
state O1, is of principal interest due to the effect of calcium influx on a cell’s
interior voltage.

Fig. 1. The eight possible transitions between four states of a RyR, where the labels
on the arrows indicate the probabilities of the transitions.

3 Implementation

3.1 Multi-level Parallelization

We adopt a multi-level parallelization strategy to facilitate our large scale tissue
simulation. First, we divide the 3D tissue grid into a number of subgrids, each
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being handled by one MPI process that occupies a compute node of a cluster.
Then, OpenMP threads are used within each MPI process to parallelize all the
computations at the cell level. These together provide the value of Iion per cell.
MPI communication is only needed at the tissue level, due to calculating the
diffusion terms in (1). The majority of the computing time is spent on the cell-
level computations.

3.2 Cell-Level Computations

Among all the cell-level computations, the most time-consuming part concerns
calcium handling. We therefore direct our attention to the following function,
named computeCalciumInDyad, which implements the calcium handling com-
ponent (see Sect. 2.2):

Fig. 2. The function that implements calcium handling per cell.

It can be seen that function computeCalciumInDyad invokes five functions,
where function generateRandData generates all the needed random numbers
per cell per time step, and function computeCaConcentrationDiffusion com-
putes the diffusion of intracellular calcium concentrations between the dyads.
The other three functions are invoked in every iteration of the for loop. In
particular, the main part of function computeLocalSRCaRelease addresses the
random state transitions for the 100 RyRs per dyad. In the following, we will
present three programming and numerical techniques that have a positive impact
on the performance of a baseline implementation of the parallel simulator. Note
that the computational cost of the entire computeCalciumInDyad function is
directly proportional to the number of dyads Fig. 6.

Avoiding Redundant Calculations. s Many variables are involved in the
computation of each dyad. Some of these variables vary from dyad to dyad,
whereas others remain constant. Considering that the number of dyads in our
detailed cell model is 10000, pre-calculating the constant variables outside the
for-loop can yield substantial performance gains. The effort required is to iden-
tify these loop-constant variables among the complicated equations involved.
Figure 5 clearly shows that the effect of this optimization is considerable.
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Vectorizing Intracellular Diffusion Calculations. Intracellular diffusion in
the 10000 dyads, which form an internal 100 × 10 × 10 grid, is needed for three
calcium concentrations. The code segment in Fig. 3 shows the actual implemen-
tation of one such 3D diffusion computation. In order to utilize the vectorization
capability of modern CPUs, it is important to use a data structure where ele-
ments in x are continguous in memory since the x loop is the innermost of the
nested triple for-loops. In order to inform that the compiler that it is safe to
vectorize this loop, we add the ivdep. Note that this pragma only asserts the
data independency of the grid cells in the diffusion step. The actual vectoriza-
tion is left to the compiler. However, even though the 256 bit vector length of
our target machine suggests the possibility of a fourfold speeup, the fact that
such stencil computations are generally memory bound implies that the actual
performance gain will be far lower. Furthermore, the other parts of the compu-
tation are not vectorized manually and cannot be vectorized automatically by
the compiler. The techniques required for efficient vectorization of such complex
code are beyond the scope of this work.

Using Binomial Distribution. Recall from Sect. 2.2 that the dyadic space
contains 100 RyRs, each of which can be in one of four states at any given time.
Transitions between the states occur stochastically. To count the number of RyRs
that have the open (O1) state, which determines the calcium influx on a cell’s
interior voltage, a straightforward approach is to individually simulate the ran-
dom transition per RyR. In total 100 random numbers (lying uniformly between
0 and 1) are needed, one per RyR. Depending on the current state and on the
corresponding transition probabilities, a RyR may change into another state.
Such an approach is very computationally heavy, due to the need of generating
many random numbers and the use of many if-tests in the implementation.

Therefore, it is computationally beneficial to collectively compute the number
of RyRs in the four states, instead of individually tracing the transition of each
RyR. We thus replace the 100 individual random experiments with eight random
samples from a binomial distribution, one for each possible state transition, as
shown in Fig. 1. The cumulative probability of having up to k successes in n
trials with individual probabilities of success p is given as follows:

F (k, n, p) = Pr(X ≤ k) =
k∑

i=0

(
n

i

)
pi(1 − p)n−i, (2)

where (
n

i

)
=

n!
i!(n − i)!

is the binomial coefficient.
As the number of RyRs in each state ranges from 0 to 100, we can pre-

compute all the required binomial coefficients. This has a significant performance
benefit. Using a random number r that is drawn from a uniform distribution in
[0, 1], we sample from the binomial distribution by finding the smallest k for
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Fig. 3. Pragma guided vectorization (in the x direciton) of one of three diffusion com-
putations between the dyads in function computeCaConcentrationDiffusion.

which r ≤ F (k, n, p). While standard implementations of the binomial distribu-
tion incur a high computational cost, we use an efficient custom implementation
which is shown in Fig. 4. Since the binomial coefficients are precomputed, we
only need to multiply the base probability which starts at (1 − p)n by p/(1 − p)
in every round, store the result and multiply it by the binomial coefficient.

Let us denote the number of RyRs in the four states as x1, x2, x3, x4, and
the number of RyRs which transition from state i to state j as xij . The values
xij are obtained by sampling the binomial distribution as described above. Now,
the number of RyRs in each state in the next time step is:

xi = xi −
∑

j

xij +
∑

j

xji. (3)

Based on this, we add two optimizations according to the characteristics of the
cell model. In our model, the transition probabilities from O1 to C1 and from
C3 to C2 are constant at pc = 0.5 ∗ dt. Thus, we can pre-compute the entire
cumulative probability function F (k, n, pc) in the same way that we pre-compute
the binomial coefficient. In both cases, we need to store 101∗100/2 = 5050 values,
which is no significant cost. In fact, storing a square table of 1012 entries is more
efficient and convenient.

In addition, we exploit a second property of the cell model. Most of time the
RyRs are in state C2 and all the transition probabilities except the two constant
ones mentioned above are close to 0. This means that it is quite likely that the
result obtained by sampling from the binomial distribution is also 0. We make
use of this by setting a small probability pt as a threshold, and precompute
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F (0, n, pt) for all 0 ≤ n ≤ 100. Now, if p ≤ pt, for a given random number r we
can simply check whether r ≤ F (0, n, pt), and if that is the case, we obtain k = 0,
i.e. no state transition happens, without computing the binomial distribution.
Of course, if the number of RyRs in one state is 0, then the number of RyRs
transitioning from that state is also 0. Figure 4 below shows our implementation
of the optimized sampling from the binomial distribution.

Binomial distributions for modeling RyR transitions have been used in e.g.
[19]. However, there the authors do not compute the actual binomial distribution.
Instead, they approximate it using the normal and Poisson distributions, at the
expense of accuracy.

4 Performance Results and Analysis

4.1 Hardware and Numerical Setup

Our test system is Abel [21], a supercomputer operated by the University of Oslo.
The compute nodes on Abel are equipped with dual Intel Xeon E5-2670 (Sandy
Bridge) processors. Each node has 16 physical compute cores running at 2.6 GHz.
The interconnect is FDR (56 Gbps) Infiniband. We use Intel’s icc compiler 15.1.0
for compilation and the Intel MPI 5.0.2 library for communication. Up to 128
compute nodes, i.e. 2048 CPU cores, have been used for the following numerical
experiments.

For all the experiments, a fixed time step size of 0.05 ms is used at both the
tissue level and the cell level. When doing tissue-scale simulations, we have chosen
a fixed spatial mesh resolution of 0.5 mm to discretize the diffusion terms in (1).

4.2 Performance Optimization Experiment

The goal of our first numerical experiment is to test the improvement in perfor-
mance obtained by our optimizations to the compute cell function described in
Sect. 3.2. To do so, we run 10000 time steps for a single cell with 10000 dyads. This
is equivalent to simulating one cardiac beat of 500 ms. The cell is stimulated at
t = 50 ms. Figure 5 shows the improvement in performance due to different opti-
mizations. Removing redundant calculations yields a substantial improvement in
three functions: computateLocalLtypeCurrent (by 37.5%), computeLocalSRCa
Release (by 24.4%) and computeCaConcentrationDiffusion (by 12.4%). The
vectorization accelerates the diffusion further by 25%. Finally, using binomial dis-
tributions has the highest impact, accelerating SRCaRelease by another 70% and
RandData by 79.9%. The latter improvement is solely due to the reduced number
of random values required by the binomial method. Overall, the combined effect
of all three optimizations reduces the computation time by 50.7%.

4.3 Scaling Experiment

We perform both weak scaling and strong scaling tests for a simulation of 1000
ms, and for each test we run two types of simulation, one uses 100 dyads per
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Fig. 4. Implementation of Binomial Distribution Method. Function
constant p binomial simply finds k by using the precomputed lookup table. In
function binomial, we first test if the computation can be skipped, using the threshold
pt and the precomputed value F (0, n, pt). If this is not the case, the distribution
function F (k, n, p) is computed iteratively by subtracting from randValue using the
precomputed binomial coefficients.

cell and the other uses 10000 dyads per cell. For weak scaling tests, the number
of compute nodes we use ranges from 1 to 128. When using 100 dyads, the
tissue size is 64 × 64 × 64 per node for a total of 512 × 256 × 256 cells at 128
nodes. For 10000 dyads, the tissue size is 16×16×16 per node, which amounts to
128×64×64 cells when using 128 compute nodes. We measure scalability via the
number of cell computations performed for each wall-clock second of simulation
time used. Here, a cell computation is defined as computing one cell for a single
time step. We then plot this metric against the number of nodes used. Figure 6
shows that we obtain very good weak scaling.

For the strong scaling test, the tissue size is fixed at 256 × 256 × 256 cells
for the 100 dyad case and at 32 × 32 × 32 cells when using 10000 dyads per
cell. Due to memory requirements, at least 8 compute nodes are needed. The
same cell computation metric as in the weak scaling case is used. Figure 6 shows
the results of our experiments. Compared with the result of weak scaling, we
achieve almost the same performance. The difference can be explained by the
communication overhead, which is not hidden by computation in our current
implementation.
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Fig. 5. Performance improvement of the individual functions in computeCalciumInDyad

due to the different optimization techniques. The three optimizations are applied cumu-
latively. Thus, the values for the Binominal method reflect the sum of all improvements.

Fig. 6. Performance of weak and strong scaling tests of tissue simulations. The Y axis
shows performance measured via the number of cell computations (i.e. time steps for
a single cell) performed for each wall-clock second of simulation time used.
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Fig. 7. Calcium handling in a cell in a human tissue during normal excitation. (A)
Action Potential. (B) Number of open RyRs (NoRyR) in the center dyad of the cell.
(C) Dyadic space calcium (Cads) (D) Submembrane space calcium (Cass) (F) Simu-
lated linescan image of intracellular Ca (Cai (G) Whole-cell Cai and (H) Whole-cell
junctional sarcoplasmic reticulum (JSR). The 3D tissue was plane-stimulated at an
edge at a cycle length (CL)=500 ms. Last two steady-state beats are shown.

In conclusion, due to the heavy cell computation, the simulation scales very
well. Thus, using the metric of cell computations per second, one can easily
predict the runtime of simulations using an arbitrary grid size, number of time
steps, and compute nodes.

4.4 Calcium Handling in a Cell

In Fig. 7 we show calcium handling in a human cell during normal cardiac exci-
tation. The calcium handling results are shown at different scales for the cell at
the center of the tissue. Panel A shows action potential (AP) in two consecutive
beats. Panel B indicates the number of open RyRs (NoRyR) in the dyad at the
geometric center of the cell. These numbers were computed using our binomial
distribution method as described in Sect. 3.2. Simulations predict that early dur-
ing the AP most of the RyRs are open. In response to these channel openings,
Cads (Panel C) in the dyad rises to a values as high as 500µM and Cass (panel
D) to 0.1 mM. Within a dyad, the temporal profile of both Cads and Cass follow
closely that of NoRyR. At the subcellular scale, the simulated linescan image of
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Fig. 8. Simulation of scroll waves in a 3D tissue. The top part shows voltage snap-
shots at different time points. The bottom section shows membrane potentials at three
different locations in the tissue.

intracellular Ca (Cai) indicates that calcium release occurs synchronously across
all the dyads (Panel F). The corresponding whole-cell Cai is indicated in Panel
G. Panel H shows the whole-cell JSR. In summary, these results show calcium
handling at different scales: dyad, subcell, and cell during tissue-simulations in a
normal cardiac excitation process. The whole-cell values are consistent with [14].
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4.5 Simulated Arrhythmia in Tissue

Figure 8 shows time snapshots of membrane potential in the 3D tissue. The tissue
was stimulated at one edge at t = 0 ms. At t = 600 ms a portion of the tissue
was cross field stimulated during the vulnerable window. This protocol initiates a
scroll wave. The membrane potentials in the cell at three different tissue locations
indicated by A, B, and C are shown below the snapshots. During the duration
of this simulation the scroll waves were stable and did not degenerate into wave
breaks. The simulations shows the ability of the tissue simulator to generate
scroll waves which are commonly used to computationally study mechanisms of
arrhythmia in cardiac tissue.

5 Summary and Conclusions

In summary, in this paper we report detailed 3D tissue simulations of electrical
activity and calcium handling in a human cardiac ventricle using a multiscale
model of calcium handling in a cell. Many previous 3D tissue simulation studies
have employed whole-cell calcium handling models. To date multiscale calcium
handling cell models have not been used for tissue simulations. This is both due
to the immense computational power required to handle such simulations and
limitations of current numerical and algorithmic approaches for these computa-
tions. Here, we have used optimizations such as avoiding redundant computa-
tions, vectorization and binomial distribution to reduce the computation time of
3D tissue simulations. Overall, the computation time was reduced by half. The
most significant performance gain was due to using binomial distribution and
the subsequent reduction in the random number generations required for the
stochastic simulations that compute the SR Ca release flux and the L-type Ca
flux. The weak scaling test indicates a near-constant compute time under varying
tissue size. The strong scaling test indicates a near-linear decrease in compute
time as a function of the number of compute nodes used. These results indicate
a promising possibility of porting the tissue simulation to a massive compute
cluster. Finally, we show the fidelity of our tissue simulations by demonstrating
that calcium handling in a cell is consistent with the published human cell model
[14]. We also show the ability to simulate reentrant arrhythmias in the 3D tissue.

To conclude, we have developed a detailed 3D tissue simulator of electrical
activity and calcium handling in a human cardiac ventricle using algorithmic
optimizations. The promising scalability suggests that whole-heart simulations
are potentially within reach of the largest supercomputers available today. In
future work, we intend to further improve the performance of our simulator
and port it to hardware accelerator architectures. This will eventually open up
the possibility of understanding the multiscale mechanisms of reentrant cardiac
arrhythmias originating from calcium handling dysfunction.
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