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Abstract—To ensure the quality of requirements, a common 

practice, especially in critical domains, is to review require-

ments within a limited time and monetary budgets. A require-

ment with higher importance, larger number of dependencies 

with other requirements, and higher implementation cost 

should be reviewed with the highest priority. However, require-

ments are inherently uncertain in terms of their impact on the 

requirements implementation cost. Such cost is typically esti-

mated by stakeholders as an interval, though an exact value is 

often used in the literature for requirements optimization (e.g., 

prioritization). Such a practice, therefore, ignores uncertainty 

inherent in the estimation of requirements implementation cost. 

This paper explicitly taken into account such uncertainty for re-

quirement prioritization and formulates four objectives for un-

certainty-wise requirements prioritization with the aim of max-

imizing 1) the importance of requirements, 2) requirements de-

pendencies, 3) the implementation cost of requirements, and 4) 

cost overrun probability. We evaluated the multi-objective 

search algorithm NSGA-II together with Random Search (RS) 

using the RALIC dataset and 19 artificial problems. Results 

show that NSGA-II can solve the requirements prioritization 

problem with a significantly better performance than RS. 

Moreover, NSGA-II can prioritize requirements with higher 

priority earlier in the prioritization sequence. For example, in 

the case of the RALIC dataset, the first 10% of prioritized re-

quirements in the prioritization sequence are on average 50% 

better than RS in terms of prioritization effectiveness.  

Keywords—Requirements Prioritization, Uncertainty, Search 

Algorithms, Multi-Objective Optimization. 

I. INTRODUCTION 

The quality of requirements is critical in any non-trivial 
system/software development lifecycle and requirements are 
expected to possess certain attributes such as unambiguity, 
consistency, and completeness [1]. To ensure that require-
ments meet such attributes, the common practice is via con-
ducting requirements reviews. In a reviewing process, rele-
vant stakeholders often play the role as reviewers, who are 
supposed to identify requirement issues against concerned re-
quirements attributes [1]. A requirement with higher im-
portance, the dependence of on a large number of other re-
quirements, with a higher cost to implement, should be given 
more weight than the other requirements during a review pro-
cess. Such a review process often has a limited time and mon-
etary budget. Therefore, it is practically needed to have an au-
tomated requirements prioritization solution for review by 
taking into account different requirements attributes. 

Search Based Software Engineering (SBSE) has been ap-
plied and proven to be effective in requirements prioritization 
[2]. In the literature, requirements are usually prioritized ac-
cording to their characteristics such as importance, depend-
ency, estimated benefit to stakeholders and cost in terms of 
resource required to realize requirements [2-4]. Unfortunately, 
uncertainty in requirements implementation cost and cost 
overrun probability are rarely considered, while uncertainty is 
an inherent characteristic of software engineering [5]. 

From our perspective, uncertainty in requirements engi-
neering is the “lack of knowledge” of requirements engineers 
about the system to be developed, the development process, 
customer needs, and any other factors that take requirements 
as input to produce important system artifacts (e.g., architec-
ture and implementation) and support critical decision making, 
along the system development lifecycle. Such uncertainty 
may have an impact on various phases of the system develop-
ment [6], the feasibility, cost, and duration of requirements 
implementation [7]. As recommended in [8], requirement im-
plementation cost should be taken into account when priori-
tizing requirements, which is often estimated by stakeholders 
as an interval. An exact value is often taken for requirements 
prioritization, which does not take into account uncertainty in 
requirements implementation cost, thereby, putting projects in 
risk and even leading the projects to fail.  

 Uncertainty should be taken into account by mathematical 
measurement and risk management methods in requirements 
optimization problems. Researchers have used uncertainty 
management into requirements engineering decision for the 
Next Release Problems (NRP) [6, 9]. In the requirements re-
viewing process, the uncertainty of requirements implementa-
tion cost should also be measured quantitatively when explor-
ing the solutions for requirements prioritization. 

Ideally, requirements with higher uncertainty in imple-
mentation cost, measured with cost overrun probability, 
should be given a higher priority for review and one of re-
quirements review objectives could be disclosing and analyz-
ing uncertainty in requirements such that the impact of such 
uncertainty could be mitigated, controlled and/or eliminated 
in an elegant manner during the following development 
phases of a project.  

In this paper, we formulate the objectives of requirements 
prioritization as maximizing: 1) the importance of require-
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ments (IMP), 2) requirements dependencies (DEP), 3) the im-
plementation cost of requirements (COST), and 4) probability 
of requirements cost overrun (PCO). To obtain PCO infor-
mation, the Monte-Carlo Simulation (MCS) based on the tri-
angular distribution [10] is chosen to simulate scenarios to 
generate requirements implementation cost, since MCS simu-
lations can compute good approximations in a statistical cost 
analysis [7], in which a triangle probability distribution is ad-
vocated to simulate the uncertainty in requirements cost. 
Based on these simulation scenarios, the probability of cost 
overrun is calculated. We evaluated the fitness function using 
the RALIC dataset [11] as the real-world case study with a 
multi-objective search algorithm: Fast Nondominated Sorting 
Genetic Algorithms (NSGA-II), together with Random 
Search (RS) as the comparison baseline. In addition, to assess 
the scalability of the fitness function together with the search 
algorithms, we used 19 artificial problems of varying com-
plexity in terms of the number of requirements. Results of the 
evaluation show that: 1) NSGA-II achieved a better perfor-
mance than RS for IMP, DEP, COST, and PCO, respectively, 
and NSGA-II can prioritize requirements faster, e.g., the first 
10% of the requirements in the prioritization sequence have 
the highest prioritization effectiveness as compared to RS for 
the RALIC dataset ; 2) different mode values of the triangular 
distribution to calculate uncertainty in requirements imple-
mentation cost has little impact on the performance of the 
search algorithms; and 3) the performance of NSGA-II de-
creases with the increase in the number of requirements.   

The rest of the paper is organized as follows. In Section II, 
we present a formal representation of our optimization prob-
lem and the fitness function. In Section III, empirical evalua-
tion on the real-world case study and artificial problems is pre-
sented, followed by results and analysis (Section IV). Sections 
V, VI and VII present the threats to validity, related work, 
conclusion, and future work, respectively. 

II. PROBLEMS REPRESENTATION AND FITNESS FUNCTION 

This section presents the problem representation (Section 
A), followed by uncertainty measurement in Section B, and 
the proposed fitness function in Section C.  

A. Problem Representation 

A system S has a set of requirements 
Req= {R1,R2,R3…Rn}, where n is the total number of require-
ments in the set. Each requirement Ri has several associated 
attributes defined below: 

1) Importance: Importance of requirement Ri 
(importance

i
) represents its perceived importance. Require-

ments can be classified as inessential, desirable or mandatory 
[12]. Numerical values are usually used to represent require-
ments importance, which can be in a fine or coarse granular-
ity, such as an integer ranging from 1 to 5, or a float ranging 
from 0 to 1 [13]. 

2) Dependency: A requirement might have a low priority 
from a stakeholder’ perspective, but it is essential for the suc-
cess of the system as it is the basis for other requirements’ 
implementation. Such dependencies should be identified [14] 
since the implementation of a particular requirement might 

impact the implementations of requirements depending on it. 
As discussed in [15], requirements dependency is the rela-
tionship between requirements and more than twenty depend-
ency types have been proposed. In our context, we use the 
"Requires" dependency type to describe that Ri has to be im-
plemented before Rj as "Rj Requires Ri". In this paper, we use 

an integer depNum
i
 to represent the dependency value of Ri, 

i.e., the number of requirements requiring Ri.  

3) Implementation Cost: Each requirement needs 
resources such as human resource, instrumentations, and fa-
cilities, to implement it. We use an integer value costi  to 
measure the cost for each requirement (person hours) needed 
for implementing Ri.  

4) Cost Overrun Probability: This attribute is related to 
uncertainty in requirement implementation cost overrun and 
each requirement Ri has an associated probability value p

i
. 

A solution of requirement prioritization �⃗� = {x1, 
x2, …xn} is a sequence of requirements, in which  𝑥i means 
the position of requirement Ri in the sequence (ranging from 
0 to n-1) and the value of 𝑥i is unique. 𝑥i = 𝑗 means that the 
requirement Ri is the jth requirement in the sequence to be re-
viewed. A smaller value of 𝑥i means a preceding position in 
sequence �⃗� , that is, 0 means the first position, while n-1 
means the last position of a requirement. Thus, there are n! 
possible prioritization solutions for n requirements, where n 
is the number of requirements representing the number of de-
cision variables and n! represents the size of search space. 

B. Uncertainty Measurement 

In our context, uncertainty occurs when stakeholders es-
timate the cost of implementing a requirement and is meas-
ured as cost overrun probability. As discussed in [7],  Monte-
Carlo Simulation (MCS) was used to simulate a large number 
of scenarios and compute good approximations of cost over-
run probability. This method has been used to address the 
Next Release Problem (NRP) as reported in [6, 9]. In our re-
quirements prioritization problem, requirements engineers 
usually can provide an estimated value of requirements im-
plementation cost and ignore the uncertainty of implementa-
tion cost. Therefore, we apply MCS to simulate uncertainty 
in requirements implementation cost and therefore calculate 
the probability of requirements cost overrun based on simu-
lated scenarios.  

1) Cost Probability Distribution: The triangular distri-
bution is advocated to simulate uncertainty in requirements 
implementation cost [7] and it is a continuous probability dis-
tribution with lower limit a, upper limit b and mode c, where 
a≤ c ≤b. The probability density function (PDF) is defined in 
[10] as: 

𝑓(𝑥) =

{
 
 

 
 

0,                x<a  , 𝑜𝑟  x>b
2(x-a)

(b-a)(c-a)
,        𝑎 ≤ x ≤ 𝑐     

    
2(b-x)

(b-a)(b-c)
,        𝑐 < 𝑥 ≤ 𝑏     

                   1) 

http://www0.cs.ucl.ac.uk/staff/S.Lim/requirements_and_cost.txt


In Section III.A, we will discuss how to determine the tri-
angular distribution parameters (a, b, and c) of the implemen-
tation cost of a requirement in our experiments.  

2) The probability of Cost Overrun under MCS: Based 
on the probability distribution of the cost of implementing a 
requirement, many simulation scenarios can be simulated 
through MCS. In a scenario, MCS samples a random value 
using the triangular distribution for a requirement, represent-
ing the implementation cost under the scenario. Thus, each 
requirement Ri  under the simulated scenario j, has a cost 
value costi, j. The implementation cost of requirements under 

multi-simulation-scenarios are represented as:  

cost(n, sn) = (

cost1,1 ⋯ cost1,sn

⋮ ⋱ ⋮
costn,1 ⋯ costn,sn

)                  2) 

in which, n is the number of requirements and sn is the num-
ber of simulated scenarios.  

Based on MCS, among sn scenarios, we count the times 
tsi, of costi, j larger than the implementation cost expected by 

stakeholders (costi, presented in Section II.A) for each re-
quirement. The probability of cost overrun of requirement Ri 
(p

i
) is represented as the frequency of cost overrun, which is 

calculated as: 

p
i
= P{costi,j>costi} = ts𝑖 sn⁄                     (3) 

C. Fitness Function 

Based on the definitions provided in Section A and Sec-
tion B, we provide formal definitions of the four objectives 
of a solution �⃗�={𝑥1,𝑥2,…𝑥n} and the fitness function below. 

1) Objective IMP(�⃗�) calculates the total importance value 
of the prioritization sequence �⃗�. To differentiate the impact 
of the position in �⃗� of a requirement to IMP (�⃗�), each require-

ment Ri has a weight 
n-xi

n
 of 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒i to IMP (�⃗�), which 

means that a requirement in a preceding position has a bigger 
contribution to IMP (�⃗�). 

IMP(x⃗)=
∑

n-xi
n

*importancei
n
i=1

∑ importancei
n
i=1

                                      (4) 

2) Objective DEP(�⃗� ) calculates the total dependency 
value of the prioritization sequence �⃗� . Similar to IMP (�⃗�), 

each requirement Ri has a weight 
n-xi

n
 related to its position in 

�⃗�. 

DEP(x⃗)=
∑

n-xi
n

*depNumi
n
i=1

∑ depNumi
n
i=1

                                           (5) 

3) Objective COST(�⃗�) calculates the total expected cost 
value of the prioritization sequence �⃗� . Similarly, each re-

quirement Ri has a weight 
n-xi

n
 related to its position in �⃗�. 

COST(x⃗)=
∑

n-xi
n

*costi
n
i=1

∑ costi
n
i=1

                                           (6) 

4) Objective PCO(�⃗� ) calculates the total probability 

value of the prioritization sequence �⃗�.  

PCO(x⃗)=
∑

n-xi
n

*pi
n
i=1

∑ pi
n
i=1

                                            (7) 

Based on Formula (4) -(7), the problem of requirements 

prioritization for review can be formulated as: searching for 
a solution x⃗ from n! solutions that should:  

Maximize (IMP(x⃗)), Maximize (DEP(x⃗)), Maximize 

(COST(x⃗)), and Maximize (PCO(x⃗)). 

III. EMPIRICAL EVALUATION 

A. Experiment Design 

Our experiments aim to evaluate the fitness function ad-
dressing our requirements prioritization problem with two al-
gorithms: NSGA-II and RS (as the baseline for comparison) 
for the RALIC dataset and 19 artificial problems.  

1) Research questions: We address the following re-
search questions: RQ1: Is NSGA-II effective to solve our pri-
oritization problem, compared with RS? RQ2: How does 
mode c of the triangular distribution impact the performance 
of the search algorithms? RQ3: How does the increment in 
the number of requirements impact the performance of 
NSGA-II? 

RQ1 helps us in assessing whether the requirements pri-
oritization problem is complex and deserves the use of a com-
plex multi-objective search algorithm. RQ2 studies the im-
pact of mode c of the triangular distribution used to simulate 
uncertainty in requirements implementation cost on the per-
formance of NSGA-II. RQ3 analyzes the impact of the 
growth of the number of requirements on the performance of 
the algorithms. We used several metrics to compare the per-
formance of NSGA-II and RS, including the objectives (IMP, 
DEP, COST, and PCO) and HV (Hypervolume), measuring 
the convergence and uniform diversity of a Pareto front [16]). 

To illustrate how fast NSGA-II prioritizes requirements 
for RQ1, we introduced an effectiveness metric for measuring 
how effective of an algorithm for prioritizing requirements 
by taking all the objectives into account. Firstly, we defined 
the overall fitness value (OFV) for a solution �⃗� = {x1, 
x2, …xn} , based on each requirement’s attributes (im-

portance, depNum, cost and p defined in Section II.A) as:  

OFV=∑
(importancei+depNumi+costi +pi)

4

𝑛
𝑖=1              8) 

where i is the position of a requirement in a solution and n is 
the total number of requirements being prioritized. 

Then, OFV𝑓𝑝 is the value of OFV in terms of prioritizing 

fp% of the total n number of requirements, as defined below: 

OFV𝑓𝑝=∑
(importancei+depNumi+costi +pi)

4

𝑛∗𝑓𝑝%
𝑖=1              9) 

where fp could be 10, 20, …100. 

Therefore, we define the improvement percentage of OFV 
in terms of prioritizing fp% of the total requirements, when 
comparing with RS, as:  

AIPOFV𝑓𝑝=
OFV𝑓𝑝_𝑁𝑆𝐺𝐴−𝐼𝐼−OFV𝑓𝑝_RS

OFV𝑓𝑝_RS
             10)  

2) RALIC Dataset: RALIC is a large-scale software pro-
ject to enhance the existing access control system at the Uni-
versity College London, having more than 60 stakeholders 
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groups and approximately 30,000 users [13]. The RALIC da-
taset contains data of stakeholders and their requirements, in-
cluding raw requirements textual description, recommenda-
tions from stakeholders, and importance values from stake-
holders on requirements. The RALIC dataset and additional 
data about the cost (person hours) for each requirement are 
both provided in [11]. There are 143 requirements and 31 de-
pendency relations among these requirements that are used in 
our requirements prioritization problem.  

There is no uncertainty data in the RALIC dataset. Accord-

ing to the conclusion in [6], the actual cost of implementing 

the requirements ranges from 25% to 400% of expected value 

and each requirement in the RALIC dataset has an 

implementation cost value cv, which is an expected cost 

value, estimated based on historical data. Thus, in the trian-

gular distribution of requirements implementation cost (For-

mula (1) in Section II.B), we set the lower limit a as 25%*cv 

and the upper limit b as 400%*cv in Formula (5) to describe 

the triangular distribution of implementation cost of a re-

quirement.  

To discover the effect of different values of mode c on the 

prioritization problem, we selected five values for c ranging 

from a to b with an increment 
1

4
*(b-a) and the values are a, 

a+
1

4
*(b-a) , a+

1

2
*(b-a) , a+

3

4
*(b-a)  and b, respectively. 

When we simulate 10, 000 scenarios for each value of mode 

c to compute good approximations of the probability of re-

quirements cost overrun using MCS. Among the selected five 

values of mode c, there are two boundary scenarios: highly 

optimistic scenarios, i.e., the one with the mode value equals 

to the lowest value a and highly pessimist scenario, i.e., the 

one with the mode value equals to the highest value b [7]. The 

other three values (a+
1

4
*(b-a), a+

1

2
*(b-a), a+

3

4
*(b-a)) rep-

resent the ‘in-between’ scenarios [6]. As discussed in [6], in 

highly optimistic scenarios, uncertainty in requirements im-

plementation cost is underestimated, while in highly pessi-

mist scenarios, such uncertainty is overestimated.  
3) Artificial Problems. In addition, to evaluate whether 

the fitness function defined in Section II.C really addresses 
our requirements prioritization problem even with a different 
number of requirements, we carefully defined 19 artificial 
problems. We created them with the increasing number of re-
quirements ranging from 100 to 1000 with an increment of 
50. Note that, these artificial problems were inspired based 
on the RALIC dataset to represent problems of varying com-
plexity. For each requirement, we randomly generated a 
value for the number of its dependent requirements and its 
estimated implementation cost value. Settings to the parame-
ters of the triangular distribution (i.e., a, b, and c) are the same 
as for the RALIC dataset. 

4) Search Algorithms and Parameter Settings: We used 
jMetal [16] for the implementation of NSGA-II and RS. The 
population size was set to 100 and the maximum number of 
evaluations was set to 25000. We used the suggested default 
parameters settings from [16] including a binary tournament 
for the selection of parents, the simulated binary crossover 

for recombination, and the polynomial mutation as the muta-
tion operator.  

B. Statistical Tests 

To address RQ1, the Wilcoxon signed-rank test and the 
Vargha and Delaney statistics were used, based on the guide-
lines of using statistical tests for randomized algorithms [19] 
to compare the performance of NSGA-II and RS. The Wil-
coxon signed-rank test with a significance level of 0.05 was 
used to calculate p-values for deciding whether there is a sig-
nificant difference between the pair of the search algorithms.   

The Vargha and Delaney statistics (Â12) was used to cal-
culate the effect size. Given the maximizing objectives and 

HV, Â12  is used to compare the probability of yielding a 

higher fitness value for two algorithms A and B. If Â12  is 

equal to 0.5, the two algorithms are equivalent. If Â12  is 
greater than 0.5, it means the first algorithm A has higher 
chances of obtaining a higher value than B. 

Moreover, to address RQ2 and RQ3, we choose the 
Spearman’s rank correlation coefficient (ρ) [20] to measure 
the correlation between metrics (objectives and HV) with 
mode c of the triangular distribution (RQ2) and with the num-
ber of requirements (RQ3), respectively. The value of ρ 
ranges from -1 to 1, i.e., there is a positive correlation if ρ is 
equal to 1 and a negative correlation when ρ is -1. A ρ close 
to 0 shows that there is no correlation between the two sets of 
data. We also report the significance of correlation using 
Prob>| 𝜌|, a value lower than 0.05 means significant correla-
tion.  

C. Experiment execution 

Each algorithm was run for 100 times (25000 generations 
each time) to account for random variation and we collected 
the Pareto front of the last generation. A Pareto front contains 
optimal solutions that are non-dominated to each other with 
respect to the objectives (Section II.C). Since we ran each al-
gorithm 100 times, we have 100 Pareto fronts that were used 
as the input for statistical analyses (Section III.B). We used a 
PC with Intel Core i7-3630 QM CPU 2.4 GHz with 8GB of 
RAM, running Windows 7 operating system. 

IV. RESULTS AND ANALYSIS 

A. Results for the RALIC Dataset 

In this section, we only report results for RQ1 and RQ2 
since we only have one set of requirements in RALIC. RQ3 
will be answered only for the artificial problems. 

1) RQ1: We compared the four objectives (IMP, DEP, 
COST, and PCO) and HV of NSGA-II and RS with the Wil-
coxon signed-rank test and the Vargha and Delaney test with 
different mode c values of the triangular distribution (TABLE 
I).  

From TABLE I, we can observe that NSGA-II performed 
significantly better than RS in terms of the four maximizing 

objectives (IMP, DEP, COST, and PCO) and HV, since Â12 
values are greater than 0.5 and p values are less than 0.05. 
Thus, we can conclude that NSGA-II achieved significantly 
better performance than RS for the RALIC Dataset in terms 

http://www0.cs.ucl.ac.uk/staff/S.Lim/requirements_and_cost.txt
http://www0.cs.ucl.ac.uk/staff/S.Lim/requirements_and_cost.txt


of the metrics (four objectives and HV).  

To illustrate how fast NSGA-II prioritizes these require-
ments, we randomly selected a solution from all generated 
solution for each algorithm (i.e., NSGA-II and RS) to calcu-
late AIPOFV𝑓𝑝. We also plotted AIPOFV𝑓𝑝 (defined in For-

mula (10) in Section III.A) in terms of prioritizing fp% of the 
total requirements, where fp = 10, 20, …100 (Fig. 1). From 
Fig. 1, we can observe that NSGA-II can prioritize require-
ments as quickly as possible since NSGA-II achieved the 
highest value of AIPOFV, e.g., the first 10% of the require-
ments in the prioritization sequence have the highest prioriti-
zation effectiveness, i.e., AIPOFV as compared to RS. Thus, 
we can conclude that NSGA-II can very quickly prioritize re-
quirements by placing the highest priority requirements ear-
lier in the prioritization sequence.   

2) RQ2: We compared the four objectives (IMP, DEP, 
COST, and PCO) and HV of NSGA-II under the five different 
values of mode c with the Wilcoxon signed-rank test and the 
Vargha and Delaney test (Table II).  

In terms of IMP, when mode c value is a, NSGA-II 
performed significantly worse than the cases when it 
takes the other four values. No significant differences can 
be observed in NSGA-II’s performance when mode c 
takes values other than a.  

In terms of DEP, when mode c value is a, NSGA-II 
achieved the best performance, followed by the case when 
mode c takes value a+1/4*(b-a). No significant differ-
ences among the other three values (i.e., a+1/2*(b-a), 
a+3/4*(b-a) and b) can be observed as shown in Table II.  

In terms of COST, when mode c value is a, NSGA-II 
achieved significantly worse performance than the other three 
values. No significant differences can be observed among 
these three mode c values, while NSGA-II achieved the best 
performance when mode c value is b.  

In terms of PCO, when mode c value is b, NSGA-II 
achieved better but not significantly better performance than 
the value a+3/4*(b-a), and achieved significantly better than 
mode c value being the other three values (i.e., a, a+1/4*(b-
a), and a+1/2*(b-a)). NSGA-II achieved no significantly dif-
ferent performance among these four values ((i.e., a, 
a+1/4*(b-a), a+1/2*(b-a) and a+3/4*(b-a)). Thus, we can 
conclude that there is no significant difference when mode c 
takes different values. In terms of HV, NSGA-II achieved the 
best performance when mode c takes the value a and there is 
no significant difference among the other four values.  

The mode c controls simulated cost values of a require-
ment, which consequently decides the probability of cost 
overrun, while requirements importance, dependency, and 
implementation cost remain unchanged. When mode c takes 
a smaller value, simulated scenarios are more optimistic and 
therefore the probability of requirements cost overrun is un-
derestimated to a greater extent. Table III shows the distribu-
tion of probability of cost overrun for 143 requirements in the 
RALIC set under different simulation scenarios (the mode c 
value being a, a+1/4*(b-a), a+1/2*(b-a), a+3/4*(b-a) or b). 
From Table III, we can see that with a higher value for mode 
c, requirements have a higher mean value (Mean in Table III ) 
and a smaller standard deviation for cost overrun probability 
(Std Dev in Table III). A smaller standard deviation indicates 
that the requirements cost overrun probabilities are clustered 
closely around the mean value. Based on Formula (7) of Sec-
tion II.C, higher values of the cost overrun probability lead to 
both the increase in the numerator and the denominator in 

TABLE II. RESULTS FOR THE WILCOXON SIGNED-RANK TEST AND THE VARGHA AND DELANEY TEST BETWEEN DIFFERENT MODE C VALUES AT THE 

SIGNIFICANCE LEVEL OF 0.05 FOR THE RALIC DATASET 

Pair of Mode c 
IMP DEP COST PCO HV 

A p A p A p A p A p 

a 

a+1/4*(b-a) 0.39  <0.05 0.71  <0.05 0.44  <0.05 0.48  0.72  0.73  <0.05 

a+1/2*(b-a) 0.39  <0.05 0.79  <0.05 0.39  <0.05 0.50  0.98  0.68  <0.05 

a+3/4*(b-a) 0.34  <0.05 0.79  <0.05 0.42  <0.05 0.46  0.07  0.78  <0.05 

b 0.38  <0.05 0.72  <0.05 0.33  <0.05 0.42  <0.05 0.69  <0.05 

a+1/4*(b-a) 

a+1/2*(b-a) 0.50  0.98  0.61  <0.05 0.44  0.17  0.52  0.64  0.48  0.61  

a+3/4*(b-a) 0.45  0.08  0.64  <0.05 0.48  0.93  0.48  0.44  0.55  0.32  

b 0.49  0.28  0.56  0.66  0.36  <0.05 0.44  <0.05 0.50  0.62  

a+1/2*(b-a) 
a+3/4*(b-a) 0.45  0.16  0.55  0.35  0.53  0.17  0.46  0.26  0.57  0.50  

b 0.49  0.58  0.47  0.15  0.41  0.15  0.42  <0.05 0.52  0.77  

a+3/4*(b-a) b 0.54  0.72  0.43  <0.05 0.40  <0.05 0.45  0.07  0.46  0.11  

*A: �̂�12, p: p-value. All p-values less than 0.05 are identified as bold. 

 

TABLE I RESULTS FOR THE WILCOXON SIGNED-RANK TEST AND THE VARGHA AND 

DELANEY TEST AT THE SIGNIFICANCE LEVEL OF 0.05 FOR THE RALIC DATASET 

Pair of al-

gorithms 

Mode c IMP DEP COST PCO HV 

A p A p A p A p A p 

NSGA-II 
vs. RS 

a 0.61 <0.05 0.61 <0.05 0.52 <0.05 0.91 <0.05 0.58 <0.05 

a+1/4*(b-a) 0.58 <0.05 0.67 <0.05 0.59 <0.05 0.94 <0.05 0.75 <0.05 

a+1/2*(b-a) 0.59 <0.05 0.71 <0.05 0.62 <0.05 0.94 <0.05 0.84 <0.05 

a+3/4*(b-a) 0.59 <0.05 0.74 <0.05 0.63 <0.05 0.96 <0.05 0.90 <0.05 

b 0.64 <0.05 0.79 <0.05 0.68 <0.05 0.95 <0.05 0.89 <0.05 

*A: �̂�12, p: p-value. All p-values less than 0.05 are identified as bold. 

 

 

Fig. 1. Average Improvements of OFV for different percentages of the 

requirements in the prioritization sequence for the RALIC Dataset 
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Formula (7), but the numerator increases less than the denom-
inator. Meanwhile, a smaller standard deviation of cost over-
run probability means different solutions of requirement pri-
oritization have little differences in terms of PCO. This is the 
reason that NSGA-II didn’t achieve significantly different 
performance when mode c takes these five values, i.e., a, 
a+1/4*(b-a), a+1/2*(b-a), a+3/4*(b-a), and b.    

TABLE III DISTRIBUTION OF THE PROBABILITY OF REQUIREMENTS COST 

OVERRUN 

Mode c 
Probability of Cost Overrun 

Max Min Mean Std Dev 

a 0.6519 0.628 0.6401 0.0043 

a+1/4*(b-a) 0.8093 0.7912 0.7998 0.0038 
a+1/2*(b-a) 0.9275 0.912 0.9201 0.0029 

a+3/4*(b-a) 0.9469 0.9368 0.9426 0.0022 

b 0.9641 0.9535 0.9601 0.0019 

While importance, dependency, and implementation cost 

of requirements are not changed, the requirements have a 

higher probability of cost overrun and a small variation in 

cost overrun probability, NSGA-II tends to find solutions 

with better performance in IMP, COST, and PCO, but worse 

performance in DEP. Since HV reflects the convergence and 

diversity of a Pareto set and a larger standard deviation of cost 

overrun probability under mode c taking the value a has a 

strong role in guiding search when requirements importance, 

dependency, and implementation cost are not changed, 

NSGA-II achieved a better performance in the same genera-

tions (25,000 generations) under mode c taking the value a 

than the cases when mode c takes the other four values when 

taking HV into account. 

In addition, we calculated the Spearman’s rank correla-
tion of IMP, DEP, COST, PCO and HV with mode c (Table 
V). We can observe the same result with Table II, that is, the 
performance of IMP, COST, and PCO increases with the in-
crease of the value of mode c, since the Spearman’s ρ value 
is negative, while the performance of DEP and HV decreases 
with the increase of the value of mode c. However, IMP, 
COST, and PCO have very weak correlations with mode c, 
since absolute 𝜌 values are less than 0.2. In terms of DEP and 
HV, 𝜌 values are greater than 0.2 but less than 0.3. Therefore, 
we can observe relatively stronger correlations between DEP 
and mode c, and HV and mode c. Note that as discussed in 
[21, 22], the strength of the correlation of the value between 
0 and 0.2 means a very weak correlation and between 0.2 and 
0.4 means a weak correlation. That is, although when mode c 

takes different values, NSGA-II achieved different perfor-
mance in terms of IMP, DEP, COST, PCO and HV (Table II), 
there is no observable impact of mode c values on IMP, DEP, 
COST, PCO and HV based on the spearman’ rank correlation.  

TABLE V RESULTS OF THE SPEARMAN’S CORRELATION ANALYSIS OF 

METRICS WITH MODE C OF THE TRIANGULAR DISTRIBUTION –THE RALIC 

DATASET 

Algorithm Metrics 
mode c 

Spearman’s ρ Prob>|ρ| 

NSGA-II 

IMP 0.126 <.0001 

DEP -0.249 <.0001 

COST 0.164 <.0001 

PCO 0.163 <.0001 

HV -0.229 <.0001 

* Prob>| 𝜌| values lower than 0.05 are identified as bold. 

B. Results for the Artificial Problems 

1) RQ1: We developed 19 artificial problems with the 
number of requirements varying from 100 to 1000 with an 
increment of 50. To answer RQ1, we conducted the Wilcoxon 
signed-rank test and the Vargha and Delaney test to compare 
NSGA-II and RS in terms of IMP, DEP, COST, PCO, and 
HV for each problem. All the detailed results of each problem 
are provided in Apendix A. We summarize the results of the 
Vargha and Delaney statistic test (with or without the Wil-
coxon signed-rank test) for the 19 artificial problems in Table 
IV. From Table IV, we can observe that NSGA-II signifi-
cantly outperformed RS for all the 19 problems, in terms of 
the four objectives and HV. This implies that our prioritiza-
tion problem is complex and further justifies the use of search 
algorithms. 

To illustrate how fast NSGA-II prioritizes these require-
ments, we also plotted AIPOFV𝑓𝑝 in terms of prioritizing fp% 

of the total requirements, where fp = 10, 20, …100, for 19 
artificial problems (Fig. 2). From Fig. 2, we can observe that 
NSGA-II can prioritize requirements very quickly, as com-
pared to RS in terms of prioritizing highest priority require-
ments earlier in the prioritization sequence.  

2) RQ2: To answer RQ2, we compared the four objec-
tives (IMP, DEP, COST, and PCO) and HV of NSGA-II with 
different values of mode c using the Wilcoxon signed-rank 
test and the Vargha and Delaney test for 19 problems 
(Apendix B) and the results are summarized in Table VI. 

From Table VI, we can observe that, in term of IMP, COST, 
and PCO, NSGA-II achieved the worst performance when 
mode c takes the value a. As discussed in Section IV.A, mode 

TABLE IV. RESULTS OF THE VARGHA AND DELANEY STATISTICAL TEST BETWEEN DIFFERENT ALGORITHMS– 19 ARTIFICIAL PROBLEMS (WITHOUT/WITH THE 

WILCOXON SIGNED-RANK TEST) 

Pair of Algo-

rithms 
Mode c 

NSGA-II VS. RS 

IMP DEP COST PCO HV 

A>B A<B A=B A>B A<B A=B A>B A<B A=B A>B 
A<

B 
A=B A>B 

A<

B 
A=B 

NSGA-II 

vs.RS 

a 19/19 0/0 0/0 19/19 0/0 0/0 19/19 0/0 0/0 19/19 0/0 0/0 19/19 0/0 0/0 

a+1/4*(b-a) 19/19 0/0 0/0 19/19 0/0 0/0 19/19 0/0 0/0 19/19 0/0 0/0 19/19 0/0 0/0 

a+1/2*(b-a) 19/19 0/0 0/0 19/19 0/0 0/0 19/19 0/0 0/0 19/19 0/0 0/0 19/19 0/0 0/0 
a+3/4*(b-a) 19/19 0/0 0/0 19/19 0/0 0/0 19/19 0/0 0/0 19/19 0/0 0/0 19/19 0/0 0/0 

b 19/19 0/0 0/0 19/19 0/0 0/0 19/19 0/0 0/0 19/19 0/0 0/0 19/19 0/0 0/0 

 



c controls simulated cost values of a re-
quirement, which therefore decide the cost 
overrun probability. When mode c is a, sim-
ulated scenarios are with a smaller cost 
overrun probability and higher variation in 
the cost overrun probability. When looking 
into the other four values of mode c 
(a+1/4*(b-a), a+1/2*(b-a), a+3/4*(b-a)) 
and b), in terms of IMP, COST and PCO, 
NSGA-II achieved a better performance 
when mode c takes the value a+1/4*(b-a), 
orderly followed by a+1/2*(b-a), 
a+3/4*(b-a) and b. In terms of DEP, NSGA-II achieved the 
best performance when mode c takes the value of a, followed 
by a+1/4*(b-a), a+1/2*(b-a), a+1/4*(b-a) and b. In terms of 
HV, the performance of NSGA-II achieved the significantly 
better performance when the mode c value is a than the cases 
when the mode c value is from the other four values. For these 
four values the results are: 1) 12 out of 19 problems for 
a+1/4*(b-a), 2) 11 out of 19 problems for a+1/2*(b-a) or 
a+3/4*(b-a), 3) 10 out of 19 problems for b. NSGA-II has no 
significant differences for 17 out of 19 problems when mode 
c takes the value a+1/4*(b-a) or a+1/2*(b-a), for 16 out of 
19 problems when mode c is a+1/2*(b-a) or a+3/4*(b-a), 
and for 16 out of 19 problems when mode c is a+3/4*(b-a) 
or b. In conclusion, NSGA-II achieved a significantly better 
performance in terms of HV when mode c is a than the other 
four values and there is no significant difference in HV when 
mode c is one of these four values (a+1/4*(b-a), a+1/2*(b-
a), a+1/4*(b-a) and b).  

Though results in Table VI show that with different mode 

c values, NSGA-II had different performance, we can ob-

serve from the results of Vargha and Delaney statistics for 

each problem that Â12 values are close to 0.5, implying that, 

although the results are statistically significant, the difference 

with mode c being different values is not large. To further 

investigate the relationship between mode c and the perfor-

mance of NSGA-II, we also calculated the Spearman’s rank 

correlation of metrics (IMP, DEP, COST, PCO, and HV) with 

mode c for all solutions of the 19 artificial problems (left part 

of Table VII). From Table VII, we can observe similar results 

as the ones we observed with the RALIC dataset: the absolute 

𝜌 values are very close to 0 (less than 0.1 for IMP, COST, 

PCO and HV, and less than 0.12 for DEP). This means that a 

very weak correlation between the metrics and mode c was 

identified. This conforms to what we discussed in Section 

III.A: uncertainty in requirements implementation cost is un-

derestimated in highly optimistic scenarios (mode c with the 

value a) and the probability of cost overrun for each require-

ment is lower. With the increase in the mode c, the probability 

TABLE VII SPEARMAN’S CORRELATION ANALYSIS OF METRICS WITH MODE C OF THE TRIANGULAR 

DISTRIBUTION – THE 19 ARTIFICIAL PROBLEMS 

Algorithm Metric 
mode c the number of requirements 

Spearman’s ρ Prob>|ρ| Spearman’s ρ Prob>|ρ| 

NSGA-II 

IMP 0.089 <.0001 -0.475 <.0001 
DEP -0.117 <.0001 -0.533 <.0001 

COST 0.074 <.0001 -0.549 <.0001 

PCO 0.086 <.0001 -0.651 <.0001 

HV -0.054 <.0001 -0.921 <.0001 

* Prob>| 𝜌| values lower than 0.05 are identified as bold. 

 

 

a) Artificial Problems with Requirements from 100 

to 350 

 

b) Artificial Problems with Requirements from 400 

to 650 

 

c) Artificial Problems with Requirements from 700 

to 1000 

Fig. 2. Average Improvements of OFV with different percentages of the requirements in the prioritization sequences for the 19 artificial problems 

TABLE VI. RESULTS OF THE VARGHA AND DELANEY STATISTICAL TEST BETWEEN DIFFERENT MODE C VALUES FOR NSGA-II – THE 19 ARTIFICIAL 

PROBLEMS (WITHOUT/WITH THE WILCOXON SIGNED-RANK TEST) 

Pair of Mode c 
IMP DEP COST PCO HV 

A>B A<B A=B A>B A<B A=B A>B A<B A=B A>B A<B A=B A>B A<B A=B 

a 

a+1/4*(b-a) 0/0 19/17 0/2 15/14 4/4 0/1 1/0 18/17 0/2 0/0 19/18 0/1 18/12 1/1 0/6 

a+1/2*(b-a) 0/0 19/19 0/0 15/13 4/4 0/2 0/0 19/19 0/0 0/0 19/19 0/0 17/11 2/1 0/7 

a+3/4*(b-a) 0/0 19/19 0/0 14/13 5/5 0/1 0/0 19/19 0/0 0/0 19/19 0/0 17/11 2/0 0/8 
b 0/0 19/19 0/0 15/14 4/4 0/1 0/0 19/19 0/0 0/0 19/19 0/0 16/10 3/2 0/7 

a+1/4*(b-a) 

a+1/2*(b-a) 2/1 17/17 0/1 13/11 6/3 0/5 2/0 17/15 0/4 1/1 18/16 0/2 14/2 5/0 0/17 

a+3/4*(b-a) 3/2 16/16 0/1 16/14 3/3 0/2 0/0 19/16 0/3 1/1 18/17 0/1 14/4 5/0 0/15 
b 2/0 17/16 0/3 14/12 5/5 0/2 0/0 19/18 0/1 0/0 19/18 0/1 14/5 5/1 0/13 

a+1/2*(b-a) 
a+3/4*(b-a) 4/2 15/12 0/5 15/12 4/4 0/3 5/3 14/12 0/4 6/4 13/11 0/4 16/2 3/1 0/16 

b 4/1 15/11 0/7 13/12 6/6 0/1 1/1 18/17 0/1 1/1 18/15 0/3 11/5 8/0 0/14 

a+3/4*(b-a) b 8/4 11/8 0/7 11/9 8/8 0/2 8/4 11/9 0/6 5/4 14/11 0/4 10/2 9/1 0/16 
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of cost overrun for each requirement increases accordingly, 

while other attributes (i.e., importance, dependency, and im-

plementation cost) of requirements remain unchanged. Thus, 

we can conclude that NSGA-II is not impacted by the param-

eters of the triangular distribution.  
3) RQ3:  To answer RQ3, we calculated the Spearman’s 

rank correlation of the metrics (IMP, DEP, COST, PCO, and 
HV) with the number of requirements for all the solutions of 
the 19 artificial problems (right part of Table VII). As dis-
cussed in [22], the strength of the correlation for absolute val-
ues in [0.4, 0.59] means a moderate correlation, while that in 
[0.6, 0.79] means a strong correlation, and absolute values 
more than 0.8 mean a very strong correlation. For objectives 
(IMP, DEP, and COST), absolute 𝜌  values in [0.4, 0.59] 
means that the correlation between these three objectives and 
the number of requirements is moderate. In terms of PCO, 
absolute 𝜌 values greater than 0.6 mean the correlation be-
tween PCO and the number of requirements is strong. In 
terms of HV, absolute 𝜌 values greater than 0.9 mean the cor-
relation between HV and the number of requirements is very 
strong. Furthermore, 𝜌  values between the number of re-
quirements and all metrics are negative, which means that the 
performance of NSGA-II for these metrics decreases with the 
increase in the number of requirements. 

Since the number of requirements n represents the num-
ber of decision variables and n! represents the size of search 
space, the complexity of our search problem increases with 
the increase in the number of requirements. Taking HV into 
account, it decreases with the increase in the number of re-
quirements. That is, the performance of NSGA-II decreases 
with the increase in the number of requirements taking con-
vergence and diversity into account (HV). 

C. Discussion 

Based on the results for the RALIC data set and 19 artifi-
cial problems presented in Section IV.A and Section IV.B, 
we can conclude that: 1) NSGA-II achieved a significantly 
better performance than RS and can prioritize highest priority 
requirements earlier in the prioritization sequence; 2) metrics 
are independent of the mode c values of the triangular distri-
bution. There is a weak correlation between mode c of trian-
gular distribution and the metrics and mode c has little impact 
on the performance of NSGAII, and 3) the performance of 
NSGA-II (four objectives and HV) decreases with the in-
crease in the number of requirements.  

In our prioritization problem, we used requirements at-
tributes such as importance, dependency, implementation 
cost, and the probability of cost overrun to prioritize require-
ments. There are different ways to obtain values of these at-
tributes. For example, requirements are often classified into 
safety, functional, non-functional, or optional requirements. 
Based on such classification, the Importance value for each 
requirement can be calculated. Another way of obtaining Im-
portance values is by asking stakeholders to provide im-
portance as scores to requirements. Such a way is used in the 
RALIC dataset [13]. In terms of dependency, requirements 
engineers can analyze requirements and calculate the number 
of requirements that particular requirement is dependent on.  

Our approach can be applied in various situations. First, 
our approach can be used in the context that requirements’ 
implementation costs are provided by requirements engineers 
with an estimated value: the triangular distribution is used in 
MCS and the limit range of actual cost is [0.25,4] times of the 
estimated implementation cost based on the conclusion in [6]. 
Second, if historical data of real scenarios of a requirement 
implementation cost is available, we can extract the cost im-
plementation distribution from these historical data. We can 
still use MCS and the extracted cost probability distribution 
is used in MCS to generate the probability of cost overrun 
since MCS can successfully simulate a large number of sce-
narios with future requirements implementation costs. 

Our approach can be extended to other uncertainty-wise 
requirement optimization problems including uncertainty in 
other requirements attributes, such as the time required to 
implement a particular requirement. Based on our approach, 
MCS can also be used with a different probability distribution 
related to the uncertain attribute to simulate a large number 
of attribute values. In the future, we plan to conduct addi-
tional experiments to test different probability distributions. 

V. THREATS TO VALIDITY 

Our key threat to construct validity is related to simulating 
the uncertainty of requirements implementation cost. We 
used MCS to simulate uncertainty on requirements imple-
mentation cost based on its probability distribution, and then 
the probability of cost overrun is calculated. Note that in the 
literature, MCS has been successfully used to simulate a large 
number of scenarios with future requirements implementa-
tion costs [6, 7] when simulation scenarios are up to 10,000. 

Internal validity threats are related to internal factors of 
experiments that may impact the outcomes. A possible threat 
to internal validity is that we have experimented with only 
one configuration setting for the parameters of the algorithm, 
however, default configurations have proven to provide good 
results [23]. Another threat to internal validity is to use the 
triangular distribution to simulate uncertainty of require-
ments implementation cost. There are three parameters of the 
triangular distribution, the lower limit a, the upper limit b and 
mode c. The values of a and b are derived from the literature 
of requirements implementation cost [6]. We only investi-
gated five different values of mode c. However, results of our 
experiments show that different values of mode c have no 
significant impact on the performance of NSGA-II.  

In terms of external validity threat, we ran experiments on 
just one real case study with 143 requirements with 31 de-
pendency relations, in addition to the 19 artificial problems 
of varying complexity. Undoubtedly, more case studies are 
still needed. The most probable conclusion validity threat in 
experiments with randomized algorithms is due to random 
variations. To address it, we repeated experiments 100 times 
to reduce the possibility that the results were obtained by 
chance. 

VI. RELATED WORK 

Search Based Software Engineering (SBSE) techniques 
have already been applied to many problems throughout the 



software engineering lifecycle [24]. Harman also explains 
some of the ways how SBSE was applied to the construction 
of predictive models in [25]. SBSE has been applied for sup-
porting various requirements engineering activities including 
requirements selection and optimization (e.g.,[26, 27]), as-
signment (e.g., [28]) and prioritization (e.g., [2, 3]). In the 
field of requirements prioritization, different criteria have 
been considered such as business value, implementation cost, 
risk, and penalty. Researchers performed a systematic litera-
ture to identify and categorize prioritization criteria [29]. In 
our previous work, we proposed a search-based methodology 
for assigning requirements to various stakeholders to review 
by maximizing their familiarity to assigned requirements, 
meanwhile balancing the overall workload of each stake-
holder [4]. Based on the work in [4], a cost-effective require-
ments assignment methodology was proposed and presented 
in [30]. But the uncertainty of requirements implementation 
cost is however not taken into account. 

Uncertainty can hinder organizations in making strategic 
decisions due to, e.g., uncertain stakeholders’ goals and pri-
orities [31]. Here, uncertainty is defined as the lack of 
knowledge of the consequences of decision alternatives [31].  
Uncertainty in requirements has been studied in the context 
of dynamical adaptive systems in the presence of environ-
mental uncertainty [32, 33]. Researchers viewed self-adap-
tive systems as runtime entities that can be reasoned to un-
derstand the extent to which they are being satisfied and to 
support adapting decisions that can take advantage of the sys-
tems’ self-adaptive machinery [34].  

Other works focus on modeling and specifying uncer-
tainty in requirements. Salay et al. [35] proposed annotations 
for modeling uncertainty in requirements models. Famelis 
and Santosa [36] proposed to use colored Entity-Relation 
models for explicitly capturing the MAVO partiality, as well 
as Points of Uncertainty, a concept representing a specific de-
cision about which there is uncertainty. RELAX is a formal 
requirements specification language that relies on Fuzzy 
Branching Temporal Logic to specify the uncertain require-
ments in the self-adaptive system [37]. In [31], the U-RUCM 
methodology for explicitly specifying uncertainty as part of 
use case models was proposed, which is based on the general 
Restricted Use Case Modeling (RUCM) methodology [38, 
39].  

Some researchers work on the uncertainty in the areas of 
requirements optimization. Probabilistic sensitivity analysis 
is used to evaluate the impact of uncertainties in operational 
release planning and product release [40]. Letier et al. [7] pro-
posed a method allowing software architects to describe un-
certainty about the impact of alternatives on stakeholders’ 
goals and to calculate the consequences of uncertainty 
through MCS. Li et al. [9] adopted a search-based optimiza-
tion technique with MCS to address uncertainty and risk in 
the early stages of the software engineering and made explicit 
the trade-off between uncertainty/risk and traditional attrib-
utes of cost and revenue. Moreover, Li et al. [6] developed a 
decision support framework for NRP to manage algorithmic 
uncertainty and requirements uncertainty. Voola and Babu 
introduced requirements uncertainty into the basic prioritiza-

tion technique Numerical Assignment by means of probabil-
ity distribution [41] and assigned a rank to a requirement. In 
this paper, we, however, take uncertainty in requirement im-
plementation cost into consideration when prioritizing re-
quirements to be reviewed.  

VII. CONCLUSION AND FUTURE WORK 

This paper introduced uncertainty into the requirement 
prioritization and formulated four objectives for uncertainty-
wise requirements prioritization. The Monte-Carlo Simula-
tion was used to simulate a large number of scenarios and 
probability of requirements implementation cost overrun was 
calculated based on these simulated scenarios. We empiri-
cally evaluated NSGA-II together with RS using the RALIC 
dataset and 19 artificial problems in terms of solving our 
problem. Results showed that NSGA-II can solve the require-
ments prioritization problem with a significantly better per-
formance than RS, and can prioritize highest priority require-
ments earlier in a prioritization sequence. The performance 
of the algorithms is independent of the parameter settings of 
the triangular distribution used in MCS. The performance of 
both NSGA-II and RS, when measured with hypervolume in-
dicator (HV), decreases with the increase in the number of 
requirements. In the future, we will evaluate our approach 
with more case studies and different strategies for simulating 
uncertainties. We will also in the future consider investigat-
ing other uncertainty-wise requirement optimization prob-
lems. 
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Apendix A. RESULTS OF 19 ARTIFICIAL PROBLEMS FOR RQ1 

TABLE VIII RESULTS FOR THE WILCOXON SIGNED-RANK TEST AND THE VARGHA AND DELANEY TEST AT THE SIGNIFICANCE LEVEL OF 0.05 BETWEEN NSGA-
II AND RS FOR 19 ARTIFICIAL PROBLEMS 

Number of 

requirements  

Mode c IMP DEP COST PCO HV 

A p A p A p A p A p 

100 

a 0.86  <0.05 0.89  <0.05 0.86  <0.05 1.00  <0.05 1.00  <0.05 

a+1/4*(b-a) 0.88  <0.05 0.94  <0.05 0.91  <0.05 1.00  <0.05 1.00  <0.05 

a+1/2*(b-a) 0.88  <0.05 0.99  <0.05 0.93  <0.05 1.00  <0.05 1.00  <0.05 

a+3/4*(b-a) 0.90  <0.05 0.98  <0.05 0.92  <0.05 1.00  <0.05 1.00  <0.05 

b 0.94  <0.05 0.99  <0.05 0.92  <0.05 1.00  <0.05 1.00  <0.05 

150 

a 0.76  <0.05 0.78  <0.05 0.81  <0.05 0.99  <0.05 0.99  <0.05 

a+1/4*(b-a) 0.85  <0.05 0.92  <0.05 0.89  <0.05 1.00  <0.05 0.99  <0.05 

a+1/2*(b-a) 0.90  <0.05 0.94  <0.05 0.92  <0.05 0.99  <0.05 1.00  <0.05 

a+3/4*(b-a) 0.85  <0.05 0.95  <0.05 0.90  <0.05 1.00  <0.05 1.00  <0.05 

b 0.89  <0.05 0.97  <0.05 0.92  <0.05 1.00  <0.05 1.00  <0.05 

200 

a 0.70  <0.05 0.70  <0.05 0.83  <0.05 0.99  <0.05 0.98  <0.05 

a+1/4*(b-a) 0.74  <0.05 0.84  <0.05 0.84  <0.05 0.99  <0.05 1.00  <0.05 

a+1/2*(b-a) 0.77  <0.05 0.86  <0.05 0.86  <0.05 0.99  <0.05 1.00  <0.05 

a+3/4*(b-a) 0.75  <0.05 0.89  <0.05 0.87  <0.05 1.00  <0.05 1.00  <0.05 

b 0.83  <0.05 0.93  <0.05 0.89  <0.05 1.00  <0.05 1.00  <0.05 

250 

a 0.65  <0.05 0.72  <0.05 0.75  <0.05 0.97  <0.05 0.98  <0.05 

a+1/4*(b-a) 0.68  <0.05 0.80  <0.05 0.78  <0.05 0.99  <0.05 1.00  <0.05 

a+1/2*(b-a) 0.74  <0.05 0.84  <0.05 0.81  <0.05 0.99  <0.05 1.00  <0.05 

a+3/4*(b-a) 0.75  <0.05 0.87  <0.05 0.82  <0.05 0.99  <0.05 1.00  <0.05 

b 0.80  <0.05 0.91  <0.05 0.83  <0.05 0.99  <0.05 1.00  <0.05 

300 

a 0.51  <0.05 0.60  <0.05 0.71  <0.05 0.97  <0.05 0.80  <0.05 

a+1/4*(b-a) 0.54  <0.05 0.69  <0.05 0.74  <0.05 0.98  <0.05 0.91  <0.05 

a+1/2*(b-a) 0.59  <0.05 0.76  <0.05 0.78  <0.05 0.98  <0.05 0.98  <0.05 

a+3/4*(b-a) 0.64  <0.05 0.84  <0.05 0.79  <0.05 0.99  <0.05 1.00  <0.05 

b 0.63  <0.05 0.87  <0.05 0.78  <0.05 0.99  <0.05 0.99  <0.05 

350 

a 0.59  <0.05 0.72  <0.05 0.65  <0.05 0.98  <0.05 0.91  <0.05 

a+1/4*(b-a) 0.61  <0.05 0.83  <0.05 0.67  <0.05 0.99  <0.05 0.95  <0.05 

a+1/2*(b-a) 0.65  <0.05 0.89  <0.05 0.68  <0.05 0.99  <0.05 0.99  <0.05 

a+3/4*(b-a) 0.64  <0.05 0.86  <0.05 0.73  <0.05 1.00  <0.05 1.00  <0.05 

b 0.68  <0.05 0.88  <0.05 0.71  <0.05 0.99  <0.05 0.98  <0.05 

400 

a 0.73  <0.05 0.61  <0.05 0.68  <0.05 0.98  <0.05 0.96  <0.05 

a+1/4*(b-a) 0.77  <0.05 0.73  <0.05 0.69  <0.05 0.99  <0.05 0.98  <0.05 

a+1/2*(b-a) 0.78  <0.05 0.80  <0.05 0.73  <0.05 0.99  <0.05 1.00  <0.05 

a+3/4*(b-a) 0.82  <0.05 0.84  <0.05 0.70  <0.05 0.99  <0.05 1.00  <0.05 

b 0.81  <0.05 0.87  <0.05 0.75  <0.05 0.99  <0.05 1.00  <0.05 

450 

a 0.74  <0.05 0.59  <0.05 0.65  <0.05 0.99  <0.05 0.94  <0.05 

a+1/4*(b-a) 0.80  <0.05 0.76  <0.05 0.71  <0.05 0.99  <0.05 0.99  <0.05 

a+1/2*(b-a) 0.81  <0.05 0.81  <0.05 0.70  <0.05 0.99  <0.05 0.99  <0.05 

a+3/4*(b-a) 0.84  <0.05 0.87  <0.05 0.73  <0.05 0.99  <0.05 1.00  <0.05 

b 0.80  <0.05 0.87  <0.05 0.74  <0.05 0.99  <0.05 1.00  <0.05 

500 

a 0.62  <0.05 0.61  <0.05 0.55  <0.05 0.99  <0.05 0.72  <0.05 

a+1/4*(b-a) 0.66  <0.05 0.67  <0.05 0.60  <0.05 0.99  <0.05 0.84  <0.05 

a+1/2*(b-a) 0.70  <0.05 0.73  <0.05 0.60  <0.05 0.99  <0.05 0.95  <0.05 

a+3/4*(b-a) 0.71  <0.05 0.80  <0.05 0.63  <0.05 0.99  <0.05 0.96  <0.05 

b 0.70  <0.05 0.79  <0.05 0.64  <0.05 1.00  <0.05 0.96  <0.05 

550 

a 0.65  <0.05 0.69  <0.05 0.70  <0.05 0.99  <0.05 0.97  <0.05 

a+1/4*(b-a) 0.69  <0.05 0.68  <0.05 0.70  <0.05 0.99  <0.05 0.94  <0.05 

a+1/2*(b-a) 0.70  <0.05 0.79  <0.05 0.73  <0.05 0.99  <0.05 0.99  <0.05 

a+3/4*(b-a) 0.72  <0.05 0.83  <0.05 0.74  <0.05 0.99  <0.05 1.00  <0.05 

b 0.71  <0.05 0.88  <0.05 0.75  <0.05 1.00  <0.05 1.00  <0.05 

600 

a 0.60  <0.05 0.61  <0.05 0.58  <0.05 0.99  <0.05 0.69  <0.05 

a+1/4*(b-a) 0.61  <0.05 0.67  <0.05 0.59  <0.05 0.99  <0.05 0.85  <0.05 

a+1/2*(b-a) 0.66  <0.05 0.70  <0.05 0.66  <0.05 1.00  <0.05 0.89  <0.05 

a+3/4*(b-a) 0.67  <0.05 0.71  <0.05 0.64  <0.05 0.99  <0.05 0.94  <0.05 

b 0.64  <0.05 0.76  <0.05 0.68  <0.05 0.99  <0.05 0.96  <0.05 

650 

a 0.57  <0.05 0.70  <0.05 0.74  <0.05 0.98  <0.05 0.90  <0.05 

a+1/4*(b-a) 0.59  <0.05 0.81  <0.05 0.78  <0.05 0.98  <0.05 0.99  <0.05 

a+1/2*(b-a) 0.61  <0.05 0.86  <0.05 0.79  <0.05 0.99  <0.05 0.99  <0.05 

a+3/4*(b-a) 0.63  <0.05 0.84  <0.05 0.81  <0.05 0.99  <0.05 1.00  <0.05 

b 0.63  <0.05 0.85  <0.05 0.80  <0.05 0.99  <0.05 1.00  <0.05 

700 

a 0.60  <0.05 0.54  <0.05 0.52  <0.05 0.98  <0.05 0.54  <0.05 

a+1/4*(b-a) 0.63  <0.05 0.60  <0.05 0.53  <0.05 0.99  <0.05 0.75  <0.05 

a+1/2*(b-a) 0.66  <0.05 0.68  <0.05 0.55  <0.05 0.99  <0.05 0.92  <0.05 



a+3/4*(b-a) 0.69  <0.05 0.67  <0.05 0.58  <0.05 0.99  <0.05 0.88  <0.05 

b 0.66  <0.05 0.78  <0.05 0.62  <0.05 1.00  <0.05 0.91  <0.05 

750 

a 0.67  <0.05 0.52  <0.05 0.59  <0.05 0.97  <0.05 0.70  <0.05 

a+1/4*(b-a) 0.69  <0.05 0.60  <0.05 0.64  <0.05 0.98  <0.05 0.87  <0.05 

a+1/2*(b-a) 0.68  <0.05 0.77  <0.05 0.66  <0.05 0.98  <0.05 0.98  <0.05 

a+3/4*(b-a) 0.68  <0.05 0.81  <0.05 0.67  <0.05 0.99  <0.05 0.97  <0.05 

b 0.70  <0.05 0.83  <0.05 0.65  <0.05 0.98  <0.05 0.96  <0.05 

800 

a 0.62  <0.05 0.69  <0.05 0.61  <0.05 0.99  <0.05 0.83  <0.05 

a+1/4*(b-a) 0.62  <0.05 0.77  <0.05 0.62  <0.05 0.99  <0.05 0.95  <0.05 

a+1/2*(b-a) 0.63  <0.05 0.80  <0.05 0.66  <0.05 0.99  <0.05 0.94  <0.05 

a+3/4*(b-a) 0.65  <0.05 0.81  <0.05 0.69  <0.05 0.99  <0.05 0.97  <0.05 

b 0.66  <0.05 0.86  <0.05 0.68  <0.05 0.99  <0.05 0.97  <0.05 

850 

a 0.61  <0.05 0.65  <0.05 0.51  <0.05 0.97  <0.05 0.67  <0.05 

a+1/4*(b-a) 0.66  <0.05 0.78  <0.05 0.54  <0.05 0.98  <0.05 0.88  <0.05 

a+1/2*(b-a) 0.66  <0.05 0.78  <0.05 0.54  <0.05 0.98  <0.05 0.87  <0.05 

a+3/4*(b-a) 0.66  <0.05 0.74  <0.05 0.56  <0.05 0.98  <0.05 0.88  <0.05 

b 0.66  <0.05 0.77  <0.05 0.56  <0.05 0.98  <0.05 0.93  <0.05 

900 

a 0.68  <0.05 0.70  <0.05 0.55  <0.05 0.99  <0.05 0.94  <0.05 

a+1/4*(b-a) 0.71  <0.05 0.70  <0.05 0.57  <0.05 0.99  <0.05 0.91  <0.05 

a+1/2*(b-a) 0.72  <0.05 0.82  <0.05 0.59  <0.05 0.99  <0.05 0.98  <0.05 

a+3/4*(b-a) 0.76  <0.05 0.82  <0.05 0.60  <0.05 0.99  <0.05 0.99  <0.05 

b 0.75  <0.05 0.87  <0.05 0.62  <0.05 0.99  <0.05 0.99  <0.05 

950 

a 0.75  <0.05 0.62  <0.05 0.63  <0.05 0.99  <0.05 0.94  <0.05 

a+1/4*(b-a) 0.76  <0.05 0.63  <0.05 0.69  <0.05 0.99  <0.05 0.98  <0.05 

a+1/2*(b-a) 0.78  <0.05 0.73  <0.05 0.69  <0.05 0.99  <0.05 0.99  <0.05 

a+3/4*(b-a) 0.80  <0.05 0.77  <0.05 0.68  <0.05 0.99  <0.05 1.00  <0.05 

b 0.80  <0.05 0.81  <0.05 0.70  <0.05 0.99  <0.05 1.00  <0.05 

1000 

a 0.63  <0.05 0.70  <0.05 0.75  <0.05 0.99  <0.05 0.98  <0.05 

a+1/4*(b-a) 0.66  <0.05 0.73  <0.05 0.76  <0.05 0.99  <0.05 0.99  <0.05 

a+1/2*(b-a) 0.68  <0.05 0.83  <0.05 0.79  <0.05 1.00  <0.05 1.00  <0.05 

a+3/4*(b-a) 0.70  <0.05 0.86  <0.05 0.79  <0.05 1.00  <0.05 1.00  <0.05 

b 0.69  <0.05 0.89  <0.05 0.80  <0.05 1.00  <0.05 1.00  <0.05 

 

*A: �̂�12, p: p-value. All p-values less than 0.05 are identified as bold. 

Apendix B. RESULTS OF 19 ARTIFICIAL PROBLEMS FOR RQ2 

TABLE IX. RESULTS FOR THE WILCOXON SIGNED-RANK TEST AND THE VARGHA AND DELANEY TEST BETWEEN DIFFERENT MODE C VALUES AT THE SIGNIFICANCE 

LEVEL OF 0.05 FOR THE RALIC DATASET 

Number of re-
quirements 

Pair of Mode c 
IMP DEP COST PCO HV 

A p A p A p A p A p 

100 

a 

a+1/4*(b-a) 0.42  <0.05 0.47  <0.05 0.42  <0.05 0.41  <0.05 0.52  0.97  

a+1/2*(b-a) 0.42  <0.05 0.48  <0.05 0.43  <0.05 0.45  <0.05 0.49  0.88  

a+3/4*(b-a) 0.40  <0.05 0.45  <0.05 0.40  <0.05 0.40  <0.05 0.51  0.86  

b 0.39  <0.05 0.45  <0.05 0.40  <0.05 0.40  <0.05 0.46  0.29  

a+1/4*(b-a) 

a+1/2*(b-a) 0.497  <0.05 0.49  1.0 0.51  0.25  0.52  <0.05 0.48  1.00  

a+3/4*(b-a) 0.48  <0.05 0.47  <0.05 0.46  <0.05 0.47  <0.05 0.50  0.89  

b 0.46  <0.05 0.47  <0.05 0.47  <0.05 0.46  <0.05 0.45  0.30  

a+1/2*(b-a) 
a+3/4*(b-a) 0.49  <0.05 0.47  <0.05 0.46  <0.05 0.45  <0.05 0.51  0.92  

b 0.46  <0.05 0.47  <0.05 0.46  <0.05 0.44  <0.05 0.47  0.33  

a+3/4*(b-a) b 0.46  <0.05 0.47  <0.05 0.46  <0.05 0.47  <0.05 0.45  0.44  

150 

a 

a+1/4*(b-a) 0.38  <0.05 0.40  <0.05 0.36  <0.05 0.38  <0.05 0.43  <0.05 

a+1/2*(b-a) 0.33  <0.05 0.38  <0.05 0.32  <0.05 0.34  <0.05 0.37  <0.05 

a+3/4*(b-a) 0.40  <0.05 0.45  <0.05 0.36  <0.05 0.40  <0.05 0.46  0.26  

b 0.30  <0.05 0.36  <0.05 0.28  <0.05 0.29  <0.05 0.40  <0.05 

a+1/4*(b-a) 

a+1/2*(b-a) 0.44  <0.05 0.48  <0.05 0.44  <0.05 0.45  <0.05 0.44  0.13  

a+3/4*(b-a) 0.51  <0.05 0.55  <0.05 0.48  0.26  0.52  <0.05 0.52  0.31  

b 0.41  <0.05 0.47  <0.05 0.40  <0.05 0.42  <0.05 0.46  0.50  

a+1/2*(b-a) 
a+3/4*(b-a) 0.60  <0.05 0.59  <0.05 0.57  <0.05 0.59  <0.05 0.59  <0.05 

b 0.49  0.08 0.52  <0.05 0.48  <0.05 0.48  0.73 0.53  0.39  

a+3/4*(b-a) b 0.37  <0.05 0.41  <0.05 0.40  <0.05 0.38  <0.05 0.44  0.09  

200 

a 

a+1/4*(b-a) 0.46  <0.05 0.45  <0.05 0.46  <0.05 0.45  <0.05 0.51  0.20  

a+1/2*(b-a) 0.42  <0.05 0.48  <0.05 0.42  <0.05 0.40  <0.05 0.50  0.39  

a+3/4*(b-a) 0.44  <0.05 0.505  0.52 0.43  <0.05 0.40  <0.05 0.51  0.55  

b 0.31  <0.05 0.41  <0.05 0.32  <0.05 0.31  <0.05 0.40  <0.05 

a+1/4*(b-a) 
a+1/2*(b-a) 0.44  <0.05 0.52  0.10 0.46  <0.05 0.45  <0.05 0.51  0.91  

a+3/4*(b-a) 0.47  <0.05 0.55  <0.05 0.46  <0.05 0.45  <0.05 0.52  0.72  
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b 0.33  <0.05 0.46  <0.05 0.36  <0.05 0.36  <0.05 0.41  <0.05 

a+1/2*(b-a) 
a+3/4*(b-a) 0.52  <0.05 0.53  <0.05 0.51  <0.05 0.50  <0.05 0.51  0.92  

b 0.37  <0.05 0.44  <0.05 0.40  <0.05 0.41  <0.05 0.41  0.06  

a+3/4*(b-a) b 0.35  <0.05 0.40  <0.05 0.37  <0.05 0.38  <0.05 0.40  <0.05 

250 

a 

a+1/4*(b-a) 0.43  <0.05 0.55  <0.05 0.46  <0.05 0.45  <0.05 0.58  0.25  

a+1/2*(b-a) 0.37  <0.05 0.60  <0.05 0.42  <0.05 0.43  <0.05 0.57  0.35  

a+3/4*(b-a) 0.36  <0.05 0.60  <0.05 0.38  <0.05 0.39  <0.05 0.53  0.33  

b 0.30  <0.05 0.56  <0.05 0.37  <0.05 0.34  <0.05 0.51  0.48  

a+1/4*(b-a) 

a+1/2*(b-a) 0.45  <0.05 0.56  <0.05 0.47  <0.05 0.48  <0.05 0.50  0.83  

a+3/4*(b-a) 0.43  <0.05 0.57  <0.05 0.44  <0.05 0.45  <0.05 0.47  0.07  

b 0.38  <0.05 0.52  0.46 0.43  <0.05 0.40  <0.05 0.48  0.20  

a+1/2*(b-a) 
a+3/4*(b-a) 0.49  <0.05 0.53  <0.05 0.48  <0.05 0.47  <0.05 0.47  0.27  

b 0.43  <0.05 0.48  <0.05 0.47  <0.05 0.43  <0.05 0.48  0.55  

a+3/4*(b-a) b 0.45  <0.05 0.45  <0.05 0.49  0.15  0.45  <0.05 0.52  0.58  

300 

a 

a+1/4*(b-a) 0.43  <0.05 0.52  <0.05 0.45  <0.05 0.44  <0.05 0.53  0.85  

a+1/2*(b-a) 0.39  <0.05 0.54  <0.05 0.40  <0.05 0.40  <0.05 0.59  0.42  

a+3/4*(b-a) 0.33  <0.05 0.48  <0.05 0.36  <0.05 0.33  <0.05 0.46  0.05  

b 0.35  <0.05 0.48  <0.05 0.39  <0.05 0.34  <0.05 0.54  0.98  

a+1/4*(b-a) 

a+1/2*(b-a) 0.45  <0.05 0.52  <0.05 0.47  <0.05 0.46  <0.05 0.56  0.46  

a+3/4*(b-a) 0.38  <0.05 0.46  <0.05 0.43  <0.05 0.38  <0.05 0.44  0.10  

b 0.41  <0.05 0.46  <0.05 0.46  <0.05 0.40  <0.05 0.52  0.66  

a+1/2*(b-a) 
a+3/4*(b-a) 0.42  <0.05 0.42  <0.05 0.45  <0.05 0.41  <0.05 0.40  <0.05 

b 0.45  <0.05 0.42  <0.05 0.48  <0.05 0.43  <0.05 0.46  0.39  

a+3/4*(b-a) b 0.53  0.06 0.50  0.08 0.53  <0.05 0.52  0.95 0.56  0.10  

350 

a 

a+1/4*(b-a) 0.47  <0.05 0.56  <0.05 0.48  <0.05 0.45  <0.05 0.66  <0.05 

a+1/2*(b-a) 0.44  <0.05 0.60  <0.05 0.45  <0.05 0.44  <0.05 0.68  <0.05 

a+3/4*(b-a) 0.44  <0.05 0.66  <0.05 0.40  <0.05 0.41  <0.05 0.72  <0.05 

b 0.41  <0.05 0.67  <0.05 0.41  <0.05 0.40  <0.05 0.63  0.07  

a+1/4*(b-a) 

a+1/2*(b-a) 0.48  <0.05 0.55  <0.05 0.47  <0.05 0.49  0.09 0.52  0.65  

a+3/4*(b-a) 0.48  <0.05 0.62  <0.05 0.42  <0.05 0.46  <0.05 0.56  0.16  

b 0.44  <0.05 0.66  <0.05 0.43  <0.05 0.46  <0.05 0.51  0.78  

a+1/2*(b-a) 
a+3/4*(b-a) 0.49  0.58 0.57  <0.05 0.46  <0.05 0.47  <0.05 0.53  0.26  

b 0.46  <0.05 0.61  <0.05 0.46  <0.05 0.46  <0.05 0.48  0.62  

a+3/4*(b-a) b 0.46  <0.05 0.54  <0.05 0.503 0.79 0.49  <0.05 0.46  0.33  

400 

a 

a+1/4*(b-a) 0.45  <0.05 0.51  0.35 0.48  <0.05 0.46  <0.05 0.59  0.38  

a+1/2*(b-a) 0.41  <0.05 0.51  0.46 0.43  <0.05 0.41  <0.05 0.53  0.94  

a+3/4*(b-a) 0.40  <0.05 0.53  <0.05 0.45  <0.05 0.41  <0.05 0.56  0.67  

b 0.37  <0.05 0.51  0.65 0.40  <0.05 0.35  <0.05 0.60  0.25  

a+1/4*(b-a) 

a+1/2*(b-a) 0.47  <0.05 0.50  0.30 0.46  <0.05 0.45  <0.05 0.46  0.56  

a+3/4*(b-a) 0.45  <0.05 0.53  <0.05 0.49  0.20 0.45  <0.05 0.50  0.87  

b 0.44  <0.05 0.51  <0.05 0.44  <0.05 0.41  <0.05 0.53  0.92  

a+1/2*(b-a) 
a+3/4*(b-a) 0.49  0.10 0.53  <0.05 0.53  <0.05 0.50  0.30 0.53  0.51  

b 0.47  <0.05 0.51  0.10 0.47  <0.05 0.45  <0.05 0.56  0.38  

a+3/4*(b-a) b 0.47  <0.05 0.48  <0.05 0.45  <0.05 0.44  <0.05 0.52  0.66  

450 

a 

a+1/4*(b-a) 0.44  <0.05 0.47  <0.05 0.43  <0.05 0.44  <0.05 0.53  0.69  

a+1/2*(b-a) 0.41  <0.05 0.51  0.15 0.43  <0.05 0.43  <0.05 0.56  0.32  

a+3/4*(b-a) 0.38  <0.05 0.49  <0.05 0.39  <0.05 0.38  <0.05 0.57  0.66  

b 0.43  <0.05 0.54  <0.05 0.40  <0.05 0.43  <0.05 0.58  0.30  

a+1/4*(b-a) 

a+1/2*(b-a) 0.48  <0.05 0.54  <0.05 0.49  0.44 0.49  <0.05 0.53  0.64  

a+3/4*(b-a) 0.44  <0.05 0.52  0.07 0.46  <0.05 0.44  <0.05 0.55  0.40  

b 0.49  0.07 0.57  <0.05 0.46  <0.05 0.49  0.09 0.57  0.24  

a+1/2*(b-a) 
a+3/4*(b-a) 0.46  <0.05 0.48  <0.05 0.46  <0.05 0.45  <0.05 0.51  0.94  

b 0.51  <0.05 0.53  <0.05 0.47  <0.05 0.50  0.88  0.54  0.74  

a+3/4*(b-a) b 0.55  <0.05 0.55  <0.05 0.51  <0.05 0.55  <0.05 0.53  0.21  

500 

 

a 

a+1/4*(b-a) 0.47  <0.05 0.60  <0.05 0.46  <0.05 0.46  <0.05 0.67  <0.05 

a+1/2*(b-a) 0.43  <0.05 0.62  <0.05 0.45  <0.05 0.43  <0.05 0.67  <0.05 

a+3/4*(b-a) 0.40  <0.05 0.60  <0.05 0.41  <0.05 0.38  <0.05 0.67  <0.05 

b 0.44  <0.05 0.66  <0.05 0.42  <0.05 0.42  <0.05 0.62  0.12  

a+1/4*(b-a) 

a+1/2*(b-a) 0.46  <0.05 0.55  <0.05 0.48  <0.05 0.47  <0.05 0.51  0.74  

a+3/4*(b-a) 0.43  <0.05 0.52  <0.05 0.45  <0.05 0.42  <0.05 0.52  0.89  

b 0.47  <0.05 0.60  <0.05 0.45  <0.05 0.47  <0.05 0.49  0.44  

a+1/2*(b-a) 
a+3/4*(b-a) 0.47  <0.05 0.48  <0.05 0.46  <0.05 0.45  <0.05 0.50  0.92  

b 0.51  0.26 0.55  <0.05 0.47  <0.05 0.50  0.27  0.48  0.72  

a+3/4*(b-a) b 0.53  <0.05 0.57  <0.05 0.51  0.44 0.55  <0.05 0.48  0.90  

550 a 
a+1/4*(b-a) 0.47  <0.05 0.66  <0.05 0.49  <0.05 0.45  <0.05 0.73  <0.05 

a+1/2*(b-a) 0.44  <0.05 0.68  <0.05 0.45  <0.05 0.41  <0.05 0.77  <0.05 



a+3/4*(b-a) 0.42  <0.05 0.70  <0.05 0.44  <0.05 0.43  <0.05 0.79  <0.05 

b 0.43  <0.05 0.67  <0.05 0.41  <0.05 0.39  <0.05 0.74  <0.05 

a+1/4*(b-a) 

a+1/2*(b-a) 0.47  <0.05 0.54  <0.05 0.47  <0.05 0.46  <0.05 0.57  0.24  

a+3/4*(b-a) 0.45  <0.05 0.54  <0.05 0.47  <0.05 0.48  <0.05 0.58  0.06  

b 0.46  <0.05 0.52  <0.05 0.43  <0.05 0.44  <0.05 0.56  0.49  

a+1/2*(b-a) 
a+3/4*(b-a) 0.48  <0.05 0.502  0.08 0.49  0.79 0.52  <0.05 0.51  0.38  

b 0.49  <0.05 0.48  <0.05 0.46  <0.05 0.48  <0.05 0.49  0.93  

a+3/4*(b-a) b 0.502  0.05 0.48  <0.05 0.46  <0.05 0.47  <0.05 0.48  0.44  

600 
 

a 

a+1/4*(b-a) 0.50  0.82 0.59  <0.05 0.49  <0.05 0.48  <0.05 0.67  <0.05 

a+1/2*(b-a) 0.44  <0.05 0.66  <0.05 0.42  <0.05 0.41  <0.05 0.71  <0.05 

a+3/4*(b-a) 0.41  <0.05 0.66  <0.05 0.40  <0.05 0.41  <0.05 0.70  <0.05 

b 0.45  <0.05 0.69  <0.05 0.40  <0.05 0.40  <0.05 0.82  <0.05 

a+1/4*(b-a) 

a+1/2*(b-a) 0.45  <0.05 0.60  <0.05 0.43  <0.05 0.43  <0.05 0.56  0.18  

a+3/4*(b-a) 0.42  <0.05 0.60  <0.05 0.42  <0.05 0.43  <0.05 0.57  0.74  

b 0.46  <0.05 0.63  <0.05 0.41  <0.05 0.42  <0.05 0.70  <0.05 

a+1/2*(b-a) 
a+3/4*(b-a) 0.47  <0.05 0.51  0.05 0.48  <0.05 0.50  0.12 0.51  0.81  

b 0.51  0.05 0.54  <0.05 0.48  <0.05 0.49  <0.05 0.62  <0.05 

a+3/4*(b-a) b 0.54  <0.05 0.53  <0.05 0.50  0.65  0.50  0.89 0.60  <0.05 

650 

 

a 

a+1/4*(b-a) 0.49  <0.05 0.56  <0.05 0.46  <0.05 0.45  <0.05 0.61  <0.05 

a+1/2*(b-a) 0.45  <0.05 0.60  <0.05 0.43  <0.05 0.39  <0.05 0.68  <0.05 

a+3/4*(b-a) 0.43  <0.05 0.67  <0.05 0.42  <0.05 0.41  <0.05 0.72  <0.05 

b 0.44  <0.05 0.72  <0.05 0.43  <0.05 0.39  <0.05 0.80  <0.05 

a+1/4*(b-a) 

a+1/2*(b-a) 0.48  <0.05 0.55  <0.05 0.47  <0.05 0.42  <0.05 0.60  0.14  

a+3/4*(b-a) 0.45  <0.05 0.64  <0.05 0.45  <0.05 0.44  <0.05 0.64  <0.05 

b 0.46  <0.05 0.69  <0.05 0.47  <0.05 0.43  <0.05 0.74  <0.05 

a+1/2*(b-a) 
a+3/4*(b-a) 0.48  <0.05 0.60  <0.05 0.48  <0.05 0.52  <0.05 0.54  0.35  

b 0.49  <0.05 0.66  <0.05 0.50  0.90  0.50  <0.05 0.61  <0.05 

a+3/4*(b-a) b 0.51  0.34 0.56  <0.05 0.52  <0.05 0.49  0.52  0.58  0.05  

700 

 

a 

a+1/4*(b-a) 0.48  <0.05 0.56  <0.05 0.48  <0.05 0.46  <0.05 0.74  <0.05 

a+1/2*(b-a) 0.43  <0.05 0.59  <0.05 0.47  <0.05 0.43  <0.05 0.74  <0.05 

a+3/4*(b-a) 0.41  <0.05 0.59  <0.05 0.45  <0.05 0.41  <0.05 0.71  <0.05 

b 0.43  <0.05 0.56  <0.05 0.39  <0.05 0.39  <0.05 0.71  <0.05 

a+1/4*(b-a) 

a+1/2*(b-a) 0.45  <0.05 0.54  <0.05 0.49  <0.05 0.46  <0.05 0.51  0.61  

a+3/4*(b-a) 0.42  <0.05 0.55  <0.05 0.46  <0.05 0.44  <0.05 0.54  0.75  

b 0.45  <0.05 0.51  0.20 0.40  <0.05 0.42  <0.05 0.53  0.85  

a+1/2*(b-a) 
a+3/4*(b-a) 0.48  <0.05 0.53  <0.05 0.47  <0.05 0.48  <0.05 0.53  0.98  

b 0.497  0.30 0.47  <0.05 0.41  <0.05 0.46  <0.05 0.52  0.97  

a+3/4*(b-a) b 0.52  <0.05 0.44  <0.05 0.44  <0.05 0.48  <0.05 0.49  1.00  

750 

a 

a+1/4*(b-a) 0.47  <0.05 0.55  <0.05 0.45  <0.05 0.45  <0.05 0.65  <0.05 

a+1/2*(b-a) 0.46  <0.05 0.49  <0.05 0.43  <0.05 0.42  <0.05 0.61  0.07  

a+3/4*(b-a) 0.47  <0.05 0.50  <0.05 0.41  <0.05 0.38  <0.05 0.62  0.08  

b 0.46  <0.05 0.54  <0.05 0.44  <0.05 0.38  <0.05 0.71  <0.05 

a+1/4*(b-a) 

a+1/2*(b-a) 0.504 0.59  0.43  <0.05 0.48  <0.05 0.47  <0.05 0.47  0.58  

a+3/4*(b-a) 0.51  0.89  0.44  <0.05 0.46  <0.05 0.44  <0.05 0.48  0.39  

b 0.51  0.36  0.49  <0.05 0.49  0.50 0.44  <0.05 0.56  0.31  

a+1/2*(b-a) 
a+3/4*(b-a) 0.498  0.53  0.51  0.26 0.48  <0.05 0.47  <0.05 0.52  0.96  

b 0.499 0.47  0.57  <0.05 0.52  <0.05 0.47  <0.05 0.60  <0.05 

a+3/4*(b-a) b 0.499 0.92 0.56  <0.05 0.54  <0.05 0.50  <0.05 0.57  0.08  

800 
 

a 

a+1/4*(b-a) 0.50  0.32 0.60  <0.05 0.50  0.67 0.49  0.39  0.67  <0.05 

a+1/2*(b-a) 0.48  <0.05 0.68  <0.05 0.47  <0.05 0.44  <0.05 0.79  <0.05 

a+3/4*(b-a) 0.46  <0.05 0.70  <0.05 0.43  <0.05 0.40  <0.05 0.77  <0.05 

b 0.45  <0.05 0.72  <0.05 0.45  <0.05 0.41  <0.05 0.77  <0.05 

a+1/4*(b-a) 

a+1/2*(b-a) 0.48  <0.05 0.61  <0.05 0.47  <0.05 0.44  <0.05 0.67  <0.05 

a+3/4*(b-a) 0.46  <0.05 0.62  <0.05 0.43  <0.05 0.41  <0.05 0.65  <0.05 

b 0.45  <0.05 0.66  <0.05 0.44  <0.05 0.42  <0.05 0.65  <0.05 

a+1/2*(b-a) 
a+3/4*(b-a) 0.48  <0.05 0.52  <0.05 0.47  <0.05 0.46  <0.05 0.49  0.98  

b 0.46  <0.05 0.55  <0.05 0.47  <0.05 0.48  <0.05 0.48  0.84  

a+3/4*(b-a) b 0.49  0.07 0.54  <0.05 0.51  0.11 0.51  <0.05 0.50  0.97  

850 

a 

a+1/4*(b-a) 0.45  <0.05 0.53  <0.05 0.46  <0.05 0.46  <0.05 0.65  <0.05 

a+1/2*(b-a) 0.45  <0.05 0.65  <0.05 0.46  <0.05 0.44  <0.05 0.79  <0.05 

a+3/4*(b-a) 0.46  <0.05 0.72  <0.05 0.43  <0.05 0.44  <0.05 0.87  <0.05 

b 0.45  <0.05 0.73  <0.05 0.44  <0.05 0.43  <0.05 0.84  <0.05 

a+1/4*(b-a) 

a+1/2*(b-a) 0.51  <0.05 0.64  <0.05 0.50  0.77  0.49  0.68 0.65  <0.05 

a+3/4*(b-a) 0.52  <0.05 0.72  <0.05 0.47  <0.05 0.49  0.11 0.76  <0.05 

b 0.501 0.26  0.72  <0.05 0.47  <0.05 0.46  <0.05 0.74  <0.05 

a+1/2*(b-a) 
a+3/4*(b-a) 0.51  0.16  0.61  <0.05 0.47  <0.05 0.50  0.88 0.61  <0.05 

b 0.49  0.07  0.61  <0.05 0.47  <0.05 0.47  <0.05 0.60  <0.05 



 16 

a+3/4*(b-a) b 0.48  <0.05 0.51  0.31 0.50  0.89 0.48  <0.05 0.50  1.00  

900 

a 

a+1/4*(b-a) 0.47  <0.05 0.65  <0.05 0.50  0.50 0.47  <0.05 0.80  <0.05 

a+1/2*(b-a) 0.45  <0.05 0.67  <0.05 0.46  <0.05 0.43  <0.05 0.83  <0.05 

a+3/4*(b-a) 0.41  <0.05 0.71  <0.05 0.45  <0.05 0.43  <0.05 0.85  <0.05 

b 0.41  <0.05 0.70  <0.05 0.44  <0.05 0.39  <0.05 0.83  <0.05 

a+1/4*(b-a) 

a+1/2*(b-a) 0.48  <0.05 0.497  0.33 0.46  <0.05 0.46  <0.05 0.57  0.17  

a+3/4*(b-a) 0.44  <0.05 0.55  <0.05 0.45  <0.05 0.46  <0.05 0.60  <0.05 

b 0.43  <0.05 0.54  <0.05 0.44  <0.05 0.41  <0.05 0.60  0.09  

a+1/2*(b-a) 
a+3/4*(b-a) 0.46  <0.05 0.56  <0.05 0.50  0.43 0.50  0.21 0.53  0.27  

b 0.45  <0.05 0.56  <0.05 0.48  <0.05 0.46  <0.05 0.53  0.35  

a+3/4*(b-a) b 0.49  <0.05 0.49  <0.05 0.48  <0.05 0.45  <0.05 0.51  0.92  

950 

a 

a+1/4*(b-a) 0.48  <0.05 0.61  <0.05 0.44  <0.05 0.47  <0.05 0.69  <0.05 

a+1/2*(b-a) 0.46  <0.05 0.60  <0.05 0.44  <0.05 0.45  <0.05 0.74  <0.05 

a+3/4*(b-a) 0.44  <0.05 0.63  <0.05 0.44  <0.05 0.43  <0.05 0.78  <0.05 

b 0.44  <0.05 0.63  <0.05 0.41  <0.05 0.43  <0.05 0.74  <0.05 

a+1/4*(b-a) 

a+1/2*(b-a) 0.48  <0.05 0.48  <0.05 0.50  0.94  0.48  <0.05 0.54  0.32  

a+3/4*(b-a) 0.45  <0.05 0.51  0.93 0.50  0.16  0.46  <0.05 0.60  0.05  

b 0.46  <0.05 0.52  <0.05 0.47  <0.05 0.46  <0.05 0.58  0.15  

a+1/2*(b-a) 
a+3/4*(b-a) 0.48  <0.05 0.53  <0.05 0.50  0.54 0.48  <0.05 0.57  0.26  

b 0.47  <0.05 0.54  <0.05 0.47  <0.05 0.48  <0.05 0.55  0.27  

a+3/4*(b-a) b 0.50  0.22 0.51  <0.05 0.46  <0.05 0.50  0.28 0.49  0.51  

1000 

a 

a+1/4*(b-a) 0.48  <0.05 0.62  <0.05 0.49  <0.05 0.46  <0.05 0.79  <0.05 

a+1/2*(b-a) 0.43  <0.05 0.63  <0.05 0.44  <0.05 0.44  <0.05 0.77  <0.05 

a+3/4*(b-a) 0.42  <0.05 0.65  <0.05 0.46  <0.05 0.42  <0.05 0.81  <0.05 

b 0.42  <0.05 0.67  <0.05 0.42  <0.05 0.38  <0.05 0.85  <0.05 

a+1/4*(b-a) 

a+1/2*(b-a) 0.45  <0.05 0.51  0.15 0.46  <0.05 0.48  <0.05 0.53  0.44  

a+3/4*(b-a) 0.45  <0.05 0.54  <0.05 0.46  <0.05 0.47  <0.05 0.58  0.10  

b 0.45  <0.05 0.57  <0.05 0.42  <0.05 0.43  <0.05 0.70  <0.05 

a+1/2*(b-a) 
a+3/4*(b-a) 0.498  0.40 0.53  <0.05 0.51  0.23 0.48  <0.05 0.55  0.33  

b 0.503 0.98 0.57  <0.05 0.47  <0.05 0.45  <0.05 0.66  <0.05 

a+3/4*(b-a) b 0.505 0.59  <0.05 0.46  <0.05 0.46  <0.05 0.63  <0.05 

*A: �̂�12, p: p-value. All p-values less than 0.05 are identified as bold. 

 


