
Towards More Relational Feature Models

ABSTRACT
Feature modeling is of paramount importance to capture
variabilities and commonalities within a software product
line. Nevertheless, current feature modeling notations are
limited, representing only propositional formulae over at-
tributed variables. This position paper advocates the ex-
tension of feature modeling formalisms with richer compu-
tational domains and relational operations.

In particular, it proposes to extend feature modeling with
finite and continuous domain variables, with first-order logic
quantifiers (∀, ∃), and with N-ary relations between features
attributes, and with so-called global constraints. In order to
extend the expressiveness while preserving automated anal-
ysis facilities, feature models could be semantically inter-
preted as first-order logic formulae (instead of propositional
logic formulae), including global and continuous dependency
between features. In simpler words, this paper emphasizes
the importance of having more relational feature models and
presents next-generation applications.

Categories and Subject Descriptors
D.2.8 [Software Engineering]:
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1. INTRODUCTION
This paper addresses the challenges imposed on Software

Product Line (SPL) engineering [7][22] when engineers have
to deal with heterogeneous concerns about modeling, expres-
siveness, documentation and automation. Roughly speak-
ing, software engineers face a dual challenge: increase the
expressiveness of feature modeling notations to deal with
the complexity of product representations, while keeping a
high degree of automation in the processing of their models.
To illustrate this dilemma, consider the following scenario:
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The product-line engineer: Øystein works for a Nor-
wegian company, called ELB, producing highly-configurable
software control systems for automated subsea oil&gas ex-
ploitation. He works as a product-line engineer for ELB,
meaning that he manages the variability and commonalities
of several similar products for various customers. To facil-
itate the communication with customers and product man-
agers, Øystein maintains a feature model (FM) representing
all the configurations of ELB control systems.

The customer: Following a productive meeting with Magne,
a new customer of ELB working for a famous shipyard com-
pany, Øystein has tried to configure a new variant of the
product line. However, during this process, he realized that
Magne asked him to consider an intricate situation: if the
control system embeds feature A, and if A is in mode 1, then
feature B needs to be excluded from the final product, while
if A is in mode 2, then feature C needs to be excluded! This
is problematic for Øystein as features in FM can only be
represented as binary-state variables ; the notion of multi-
ple modes is not available for features. Another request by
Magne is to configure a product with no more than 25 fea-
tures among a set of 57 features.

The product managers: Later on, Øystein talked to
Kjetil and Hoyvind, both product managers at ELB. Kjetil
said that including feature A in a product, whatever be its
mode, will automatically exclude similar mode for feature B
or feature C. Hoyvind, meanwhile, said that, in any case, a
product having both features B and C in the same mode is
impossible to develop. Øystein is now a bit confused on how
to capture these important pieces of information in his FM.
In addition, Hoyvind mentioned that feature E, representing
the voltage at the bounds of a subcomponent of the control
system, continuously depends on feature D, because this fea-
ture is linked to D through a physical formula. Øystein has
absolutely no idea on how to capture this dependency.

Issues in FM modeling: Now, Øystein has to return a
call to Magne, the customer, to explain the impossibility of
developing the requested variant, but he is totally confused.
He does not know what are the remaining options for deriv-
ing a feasible variant of the software product line? Are the
two distinct modes of feature A responsible for this impossi-
bility? Is the continuous dependency in between D and E the
cause of the unrealisable variant? Of course, due to limited
expressiveness of FM in general, the informations Øystein
gathered during the discussions cannot be encoded in the FM
and then it is useless to answer these questions. Magne, the
customer, starts to be irritated not having clear answers to
his requests. Moreover, Øystein is clueless about incorpo-



rating the second request of Magne that states that only 25
features be chosen for a subset of 57 features.

As illustrated by the above scenario, feature modeling is
of paramount importance for software product configuration
(or derivation), product-line knowledge documentation, ne-
gotiation among several professionals, product design opti-
mization and so on. For managing these tasks altogether,
one of the challenges in feature modeling is to come up with
a formalism having the appropriate degree of expressive-
ness. As the current underlying semantics of FM is based on
propositional logic, several restrictions prevent its usage in
many realistic contexts. Another important point to notice
is the tremendous importance of automated support analy-
sis of FM. In our view, this is a key element for a widespread
adoption of feature modeling.

In this position paper, we address these limitations by
proposing a couple of extensions that are inspired from Con-
straint Programming (CP) [23]. The CP paradigm has brought
constraint expressiveness to a higher degree by gathering no-
tions from various domains, including Logic Programming,
Operational Research and Artificial Intelligence. In CP, fi-
nite and continuous domains are recognized as powerful com-
putational domains, overcoming limitations stemming from
the usage of a boolean domain. CP is also a convenient tool
to address complex mathematical and configuration prob-
lems, as a large body of efficient constraint solving tech-
niques is available. Using CP in the context of product con-
figuration [16] or feature modeling is not a new idea [6]. It
has been successfully applied to solve difficult product con-
figuration problems [11] and also to automatically analyse
SPLs [18, 19]. However, as already pointed out by others
[14], CP is not yet fully exploited in the context of feature
modeling. This paper advocates the extension of FM nota-
tions to facilitate design and automated analysis. In partic-
ular, the paper makes the following contributions:
- Several relational extensions of FMs are introduced. We
propose 1) finite domain and continuous domain variable en-
coding of features, 2) usage of N-ary and global constraints,
3) universal quantification over a feature to increase the ex-
pressive power of a FM. These extensions confer a competi-
tive advantage to a FM for variability modeling in SPLs ;
- Using CP to support the relational FM extensions allows
us to preserve the efficiency of automated FM analyses. For
each proposed extension, we carefully discuss automated
support and constraint solver usage. Note however that the
paper does neither provide any concrete syntax for the re-
lational extensions nor any specific recommendation for se-
lecting constraint solvers ;
- Two next-generation applications of these relational exten-
sions are discussed, opening perspectives for a wider adop-
tion of FM.

The paper is organized as follows: Sec.2 recalls the basic
principle of a FM and its semantics. Sec.3 introduces and
discusses several relational FM extensions. Finally, Sec.4
presents two next-generation applications.

2. FEATURE MODELING
Feature Model (FM) is a convenient graphical notation

to represent variability in SPLs [15] and highly-configurable
software systems [8], [10]. It is used to capture: (i) config-
urable software parameters (a.k.a. features) and (ii) depen-
dencies between the features. The underlying interpretation

Figure 1: Excerpt of a feature model for a video
conferencing software

(or semantics) of a FM is however based on propositional
logic [3]: A Feature Model is a propositional formula over a
set of features ; A feature is a boolean variable that repre-
sents a composition element or a configuration parameter ;
A product (or configuration) is a total assignment of fea-
tures from a FM. A feature is present within a product or
configuration iff its corresponding variable equals to 1 or
True ; A valid product is an assignment which satisfies the
propositional formula of a FM ; A constraint is a relation
between two or more features. We distinguish between two
types of constraints: A hierarchical constraint is a relation
among a father feature and its children features based on
the following operators And,Or,Xor,Opt,Card. A cross-
tree constraint is a binary relation among a pair of features
based on the operators Requires,Mutex. Fig.1 represents
a FM for Video-Conference Software (VCS) products, ex-
tracted from a real-world case study [19]. The model spec-
ifies that VCS supports calls, which can be either P2P or
Multisite calls, i.e., either 3x1024x576 max, 3x720p30 max
or 1080p30–720p60 max. Optionally, VCS supports 720p60
or 1080p30 premium resolution, or both. Configurations
with 3x720p30 max or 1080p30–720p60 max resolution must
have Premium resolution feature. For the FM shown in
Fig.1, the set of features [V CS,Call,Multisite, 3x1024x576max]
is a valid product, but [V CS,Call,Multisite, 3x720p30max]
is invalid, because the constraint between 3x720p30max and
Premium resolution features is not satisfied. Since its in-
troduction in 1990 [15], feature modeling has been adopted
in some industrial sectors, e.g., [9], and has been derived
into several dialects [24].

3. RELATIONAL FEATURE MODELS
This section introduces several extensions to increase ex-

pressiveness of FMs. Each subsection discusses the Pros/Cons
of a specific extension in terms of complexity and/or degree
of automation.

3.1 From boolean to finite domains
In traditional FMs, a feature is associated with a two-state

variable: it can either be present or absent within a product.
This is an over-simplistic view of the reality where features
have various (but often discrete) states. We propose that
each feature is associated with a finite set of possible values,
called modes. These modes can advantageously be encoded



using a Finite Domain (FD) variable A, where A is associ-
ated a domain of possible modes modes(A) = {d1, . . . , dn}
where di ≥ 0. Note that, in a product, a feature can only be
assigned to a single mode. For example, mode d1 of feature
A is used in product P1, while mode d2 of the same feature
is used in product P2. Thus, cross-tree constraints can be
defined over mode values, e.g., A > 1 Requires B ≤ 1 mean-
ing that any mode strictly grater than 1 for A implies either
mode 1 for B or mode 0, interpreted as absence of B. This
usage of FD encoding of features is not really new and has
been reported in the literature, especially when automated
analysis on FM is required [5]. As a concrete example, the
Multisite feature of Fig.1 can be associated with a FD vari-
able, having mode value 1 equal to 3x1024x576 max, mode
value 2 equal to 3x720p30 max, and mode value 3 equal to
1080p30–720p60 max. Using this representation, both cross-
tree constraints can easily be encoded as Multisite > 1 Re-
quires Premium resolution = 1. One could object that
FD encoding is already possible in current purely boolean
FM, using a Xor node. However, using a Xor-node for
encoding subtrees with tens of leafs is not efficient and us-
ing a FD variable can considerably simplify the semantical
interpretation of FMs. Indeed, as the Xor operator is bi-
nary in boolean logic, it is required for any pair of leafs.
Thus, the number of Xor grows quadratically with the num-
ber of leafs in any boolean interpretation of FM. On the
contrary, using FD variables, a single domain membership
constraint is required in the semantical interpretation, e.g.,
A← Xor(A1, A2) ∧Xor(A1, A3) ∧Xor(A2, A3) is encoded
as A ∈ 1 . . . 3.

3.2 Featuring global constraints
Cross-tree constraints in FMs include binary constraints:

(A Requires B) and (A Mutex B). However, several ex-
tensions have already been proposed such as ternary rela-
tions or N-ary relations [26, 20]. For example, in SPLOT
[21], cross-tree constraints come as ternary relations over
booleans. There is no formal breakthrough to switch from
ternary to N-ary relations in boolean algebra. It means that
formal reasoning is independent from the arity of the initial
relations. In fact, this extension comes for free when using
an underlying SAT-solver or CP-solver to reason over FMs.
Nevertheless, we propose to go further by using non-fixed ar-
ity global constraints among finite domain variables. Since
two decades, researchers of the CP community have built
a rich catalog of global constraints to express various and
complex relations used for different applications. The most
recent version of the catalog contains more than 350 global
constraints [4]. Additionally, most CP solvers are incremen-
tal, meaning that adding a constraint provokes constraint
propagation, which is a process that pushes configuration
choices throughout the constraint system. If an assignment
is (partially) consistent, then other variable domains can
be shrunk, while if it is inconsistent, a backtracking pro-
cess removes it and undoes all the deductions. Constraint
propagation is particularly useful during interactive prod-
uct configuration as it enables early failure detection and
backtracking. When configuring a product, one can easily
evaluate the consequences of a configuration choice for other
features. For example, including features F1, F2 in a product
where Sum ctr([F1, F2, F3],≤, 2) is enforced, automatically
assigns 0 for F3.

3.3 Adding logical quantifiers
FMs are interpreted as propositional logic formulas: fea-

tures cannot be quantified. Extending FMs to first-order
logic formulas means that features can be existentially and
universally quantified. Basically, this extension enables sim-
ple expression of complex relations among feature modes.
Feature universal quantification is interesting to express in-
variants over SPLs and has already been drafted in the
Clafer language [2]. For example, expressing that for each
mode value of feature A, there exists a mode value of feature
B that satisfies a specific property P can easily be formu-
lated as: ∀d ∈ modes(A), ∃td ∈ modes(B), such that P
holds. Support for automatic reasoning over first-order for-
mulae is crucial when enriching the semantics of FMs. Re-
cently, tools, called as QCSP-solvers, have been developed to
support such reasoning in the context of finite domain con-
straint solving [12]. It becomes possible to solve efficiently
constraints such as ∃x∀y(x 6= y) =⇒ ∃z(z < x) ∧ (z < y).
QeCode1 is an available QCSP-solver showing reasonable
performances, provided that constraints stay simple. How-
ever, extending FM to high-order logics, enabling quantifica-
tion over operations among the features, would compromise
the efficiency of automated analyses.

3.4 Continuous domains and dependencies
Using continuous variables in product configuration is well

known [27]. Even if discretization of continuous variables is
often possible (e.g., considering that a voltage takes a value
in only N possibilities {v1, . . . , vN}), introducing continuous
variable increases the expressive power of a FM. Indeed, very
often, discrete values are not available at product configu-
ration time because they depend on other components, not
yet available. In addition, physical variables in systems are
known with tolerance ranges, coming from the specifications
of electronic components, that cannot be handled accurately
with discretized values. Finally, configuration variables may
only take values resulting from complex mathematical com-
putations. As a consequence, these values cannot be rep-
resented using pre-selected discrete values. For example,
consider the relation y2−x ≤ 0 and the value 0.1 for x. The
domain of y can only be represented as a range of possi-
ble real values, i.e., [−0.01, 0.01]. Any discretization of this
range would inaccurately represent the relation. Most of the
physical variables of a system are linked together with con-
tinuous relations (e.g., Ohm law for electronic components),
but representing them with non-discrete variables in FMs for
SPL is questionable. One can argue that physical entities
may not correspond to configurable software parameters.
We believe however that introducing continuous variables
for configuring a product could open FMs to a wider range
of applications. As a simple example, consider the design
of a cylindrical vessel defined by two continuous variables:
height and radius. The volume of the vessel could be main-
tained in a FM by the constraint V = π× radius2×height.
Even if height and radius are sufficient to configure the
vessel and could thus be discretized, a final user may want
to configure the vessel through its volume instead of these
two variables. Usually, physical variables take their values
in pre-defined ranges, for which it is interesting to estimate
the extreme values (e.g., what is the maximal vessel volume
that can be computed). So, capturing the continuous rela-

1www.univ-orleans.fr/lifo/software/qecode/QeCode.html



tion between these variables, that are reflected in a FM by
feature variables, is interesting for configuration purposes.
This proposition would be meaningless without the support
of operational constraint solvers over continuous domains.
Fortunately, solvers such as Interlog [17], IBM Ilog-Labs CP-
Optimizer or RealPaver [13] are available for that purpose.

4. NEXT-GENERATION APPLICATIONS
Extending feature modeling is interesting iff the evidences

of its benefits can be shown in practice.

4.1 Context-aware sensor fusion
Raw data from sensors and user interaction come in vari-

able frequencies, from finite/continuous domains, and have
different domain types such as strings, reals, and integers.
A fusion of the signals received at an instant needs to be
modelled and analyzed to accurately define a context. For
instance, in [1], FMs are used to represent environmental
contexts with features such as luminosity. A context config-
uration is mapped to the configuration of a vision system.
The choice of RGB camera or infra-red camera is based on
detected luminosity, which is a variable with a continuous
domain. However, a FM is severely limited by the boolean
nature of feature variables, easily giving a rise to an expo-
nentially growing context FM. We believe that extending
FMs with continuous domain variables could simplify the
modeling of sensor fusion applications.

4.2 Filtering in big data
The explosion of data from business processes, social net-

works, and scientific instruments presents both the boon of
data and the bane of processing it. Often big data contains
numerous redundancies or even faulty data due to measure-
ment errors. Therefore, there is a necessity to select data
records in a controlled manner. Relational FMs can be used
to model a filter for a large number of multivariate data
records in a database. Data records that are a valid config-
uration of a relational FM can be selected for further pro-
cessing. A relational FM can be seen as filter for selecting
correct and representative data records in Big Data. In [25],
FMs are used to model variation in data-intensive systems:
160 currencies and 900 different types of taxes are modeled
as features. There are thousands of pairwise interactions be-
tween these two sets of features. Representing such a large
variation of a data field as a set of boolean features in a
graphical FM is highly unreadable. Therefore, a paradigm
shift in the standard for feature modelling is needed.

5. CONCLUSIONS
Relational FMs are promising for opening new applica-

tions and research directions. For us, CP can drive such
extensions through FD and continuous domains extensions,
global constraints, and logical quantification, because they
preserve automated analyses capabilities over FMs.
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