
Simula Research Laboratory, Technical Report 2012-04 (Version 2) December 2015

A Practical Use Case Modeling Approach to Specify
Crosscutting Concerns: Industrial Applications

Tao Yue1, 2, Huihui Zhang3, Shaukat Ali1, Chao Liu3

1Simula Research Laboratory, Oslo, Norway
{Tao, Shuakt}@simula.no
2University of Oslo, Oslo, Norway

3Beihang University, Beijing, China
{zhhui, liuchao}@buaa.edu.cn

Abstract. Use case diagrams together with use case specifications are commonly
used to specify system requirements. To reduce imprecision, ambiguity, and in-
completeness in use case specifications, an approach with template and re-
striction rules is often recommended to achieve better understandability of use
cases and improves the quality of derived analysis models. However, when cross-
cutting concerns are modeled together with non-crosscutting concerns as use case
models, resulting use case models often result in cluttered diagrams and redun-
dant information in use case specifications. Therefore, the overall reusability of
the use case models is usually low. To cope with these, we extend a general use
case approach, named as RUCM, for modeling crosscutting concerns, along with
a weaver to automatically weave aspect use case models into their corresponding
base model to facilitate, e.g., automated requirements analysis. The extended
RUCM approach has been evaluated with three industrial applications from com-
munication, maritime and energy domains and aviation. We also compared the
modeling effort required to model three sets of crosscutting concerns from the
industrial applications, when using and not using the extended RUCM approach.
Results show that more than 80% of modeling effort can be saved.

Keywords: Use case modeling, Reuse, crosscutting concern, aspect-orientation.

1 Introduction

Use case models (UCMods) are a widely used means for specifying functional require-
ments of systems, which are generally text-based and contain ambiguity. To decrease
such ambiguity, previously we proposed the Restricted Use Case Modeling (RUCM)
methodology [18]. RUCM contains standard UML use case diagram notations, a use
case template and a set of restriction rules for textual Use Case Specifications (UCSs).

Use case modeling of communication and control systems poses special require-
ments such as specifying the communication medium and its various properties (e.g.,
packet loss). Behaviors related to such properties are often redundant across use cases
and if modeled directly with them can result in cluttered use case diagrams and redun-
dant UCS fragments, thus making them difficult to comprehend and reuse. However,
such behaviors are essential for specifying use cases, e.g., for robustness testing (the

need of one of our industrial partners) [5]. Therefore, it is required to capture sufficient
information in the UCMod such that this kind of analysis/testing can be facilitated. One
possible way of facilitating such analysis/testing is to transform UCMods specified us-
ing our approach into other software artifacts (e.g., standard UML state machines or
even aspect state machines [5]).

The motivation of specifying crosscutting concerns was driven by our existing pro-
ject at Cisco Norway1 to develop tools and techniques to support model-based robust-
ness testing. The need of the current work arose due to the difficulty of constructing
required UML state machines for them, which are used for supporting model-based
robustness testing. However, they are more familiar with writing textual use cases. Such
difficulty is by no means specific to Cisco Norway and is commonly observed in in-
dustry. Therefore, specifying crosscutting concerns at the requirements level and facil-
itating (automated) transition to required UML state machines or other artifacts are
considered an appropriate solution in practice.

Inspired by Aspect-Oriented Requirements Engineering (AORE) [12] and also
driven by needs of our industrial partners to deal with specifying crosscutting concerns,
we extend our RUCM approach to support modeling crosscutting concerns, named as
AspectRUCM. The AspectRUCM methodology comprises of the AspectRUCM profile
(extending UML use case diagram notations) and a set of guidelines (formalized as a
UML activity diagram) for applying the profile for specifying crosscutting behaviors.

Eliciting and identifying crosscutting behaviors or applying the AspectRUCM meth-
odology to support other requirements engineering activities (e.g., requirements verifi-
cation and validation) is not the focus of the paper. However, as the first step towards
supporting automated analysis or generation (e.g., test cases), we need a formalization
mechanism to model textual UCMods. We have already developed such a formalization
mechanism: a use case metamodel referred to as UCMeta, in our previous work [19].
Based on it, we present a weaver to automatically weave aspect UCMods specified
using AspectRUCM to their corresponding base UCMod.

Our work is evaluated with three industrial applications and results demonstrate that
AspectRUCM is applicable for real, industrial applications. We also evaluated model-
ing effort required when using AspectRUCM and not using AspectRUCM to model
three sets of crosscutting concerns of the three industrial applications. Results show that
more than 80% of modeling effort can be saved when using AspectRUCM.

The rest of the paper is organized as follows. In Section 2, we briefly discuss RUCM,
UCMeta, and the running example used to illustrate our approach. The AspectRUCM
methodology is discussed in Section 3. Section 4 presents the evaluation. Related work
is presented in Section 5. The paper is concluded in Section 6.

2 Background

We present the running example in Section 2.1. In Section 2.2, we introduce RUCM.
The metamodel of formalizing RUCM and AspectRUCM is presented in Section 2.3.

1 http://www.cisco.com/web/NO/index.html

2.1 Running Example

We used a subsystem of a Video Conferencing System (VCS) developed by Cisco,
Norway that has been previously used in our previous works [5]. Fig. 1 shows that the
VCS is responsible for sending/receiving multimedia streams, i.e., audio and video to
a number of other VCS (Endpoints). The core functionality of a typical VCS includes:
establishing/disconnecting audio/videoconferences and starting/stopping presentations
in addition to audio/videoconferences. The other Endpoints have the similar function-
ality.

Fig. 1. Use Case Diagram of VCS

We group use cases into two packages corresponding to VCS or EndPoint. Both
have the same set of use cases as they are equivalent communication end points. How-
ever, their implementations might be different, which form different products with the
same functionalities. In Fig. 1, we have defined associations between use cases, e.g.,
StartPresentation of VCS with StopPresentation of Endpoint with cardinality 0 to
many (*) on the StopPresentation side. This means when presentation is started on
VCS, it stops the presentation of any other endpoint, which is currently presenting.

2.2 RUCM

Though there exist many requirements specification techniques, these techniques are
either fully formal or fully informal [16]. Use case modeling is one of the most widely
applied and structured specification techniques, which nicely combines diagrammatic
and textual descriptions and offers an intuitive and precise foundation for requirements
specification. We have previously devised a methodology named as Restricted Use
Case Modeling (RUCM) [18] to reduce ambiguity and improve understanding of re-
quirements, and facilitate automated analysis. Table 1 is an example of UCS docu-
mented with an editor implemented the RUCM methodology. Use case Disconnect con-
tains one basic flow and two specific alternative flows. The two specific alternative
flows are used to branch from the basic flow under specific conditions. RUCM specifies
three different types of alternative flows. Specific and bounded flows indicate from

which step in which flow of reference they branch whereas a global flow can branch
from any step. For instance, the specific alternative flow in Table 1 branches from Ref-
erence Flow Step (RFS) 2 in the basic flow, and the condition for branching is the
negation of step 2 of the basic flow. Restrictions to natural language take the form of
keywords, such as VALIDATES THAT [18].

2.3 UCMeta

UCMeta is the intermediate model in aToucan [19], used to bridge the gap between a
textual UCMod and a UML analysis model (e.g., class and sequence diagrams). As a
result, we have two transformations: from the textual UCMod to the intermediate
model, and from the intermediate model to the analysis model. UCMeta can also be
considered as a way to formalize textual UCMods and therefore the formalized
UCMods can be used for automated analysis or test generation. Metamodel UCMeta
also complies with the restrictions and use case template of RUCM.

UCMeta is hierarchical and contains five packages: UML::UseCases, UCSTemplate,
SentencePatterns, SentenceSemantics, and SentenceStructure. UML::UseCases is a
package of UML 2 superstructure [2], which defines the key concepts used for model-
ing use cases such as actors and use cases. Package UCSTemplate not only models the
concepts of the use case template but also specifies three kinds of sentences: SimpleSen-
tence, ComplexSentence, and SpecialSentence. In linguistics, a SimpleSentence has one

Table 1. Use Case Disconnect (specified in the RUCM editor)

independent clause and no dependent clauses [8]: one Subject and one Predicate. UC-
Meta has four types of ComplexSentences: ConditionCheckSentence, Condition-
alSentence, IterativeSentence, and ParallelSentence, which correspond to four key-
words (i.e., VALIDATES THAT, IF-THEN-ELSE-ELSEIF-ENDIF, DO-UNTIL, and
MEANWHILE) that are specified in RUCM to model conditions, iterations, concur-
rency, and validations in UCS sentences. UCMeta also has four types of special sen-
tences to specify how flows in a use case or between use cases relate to each other.
They correspond to keywords RESUME STEP, ABORT, INCLUDE USE CASE, and
EXTENDED BY USE CASE.

3 The AspectRUCM Approach

This section presents
our AspectRUCM
approach. Section 3.1
presents the domain
model capturing
main aspect con-
cepts, Section 3.2
discusses the profile,
Section 3.3 defines
weaving directive in-
teraction overview
diagram, and model-
ling guidelines are
presented in Section
3.4. Our weaver is presented in Section 3.5. We used example of AdaptCallRate (Table
2) to explain the concepts.

3.1 Domain Model

A domain model for AspectRUCM is shown in Fig. 2. An aspect describes a crosscutting
concern, which in our context is a set of system requirements, which crosscuts another
set of system requirements describing the main functionalities of the system. A joinpoint
is a model element, which corresponds to a pointcut where an advice (e.g., use cases and
actors in a use case diagram, and additional steps of flows of events, preconditions and
postconditions in UCSs) might be applied. Theoretically, all model elements in UML
use case diagrams and constructs of UCSs are possible joinpoints. However, we only

define five types of joinpoints in
AspectRUCM: actors, use cases,
preconditions, postconditions, and steps of
flows of events, which are sufficient based
on our experience of evaluating
AspectRUCM with three industrial case
studies (Section 4.1). A pointcut selects Fig. 2. Domain Model

Table 2. Use Case AdaptCallRate (specified in the RUCM editor)

one or more joinpoints with similar properties. A model element (e.g., actor) can be
introduced in two different ways. It can be introduced to an aspect UCMod without being
connected to any pointcut and it can also be connected to a pointcut through another
model element.

3.2 AspectRUCM Profile

The profile diagram of AspectRUCM is provided in Fig. 3. An aspect describes a cross-
cutting concern and we specify stereotype «Aspect», which extends UML Package.
«Aspect» has two attributes: baseUCM specifying the comma separated name(s) of the
base UCMod(s), on which an aspect UCMod will be weaved, and the name of the aspect
itself. We use a package to group model elements including use cases and actors to
specify a crosscutting concern. For example, as shown in Fig. 4, package NetworkDeg-
radation stereotyped with «Aspect» contains use case AdaptCallRate, actor Timer, etc.
Another example is provided in Fig. 5, where the crosscutting concern Standby is mod-

eled as an aspect UCMod. The Standby behavior of the VCS becomes active when it is
idle for 5 minutes (a property of Timer). When any activity is performed by any actor
of the system while it is in Standby, the system becomes active. One benefit of using a
package to group model elements of an aspect UCMod, is that the model elements con-
tained in the package and without stereotypes (from the AspectRUCM profile) applied
are by default considered as elements newly introduced to the base UCMod. By not
explicitly stereotyping model elements in an aspect UCMod reduces modeling effort
(in terms of the reduced number of elements that could have stereotypes applied in-
stead) and therefore results in less cluttered use case diagrams.

As shown in Fig. 3 an aspect UCMod might have one or more pointcuts. We specify
two types of pointcuts in our profile: «UseCasePointcut» and «ActorPointcut», which
specialize the abstract stereotype «Pointcut».

Fig. 3. Profile diagram of AspectRUCM

Use Case Pointcut. A use case pointcut selects one or more use cases of a system and
the flows of events of the UCSs of the selected use cases. This is realized via the com-
position association between stereotype «UseCasePointcut» and class UseCaseCutSeg-
ment, which is further associated to class FlowCutSegment (Fig. 3). Class Use-
CaseCutSegment specifies the system where a selected use case belongs to (attribute
system: String), a set of selected use cases (selectedUseCases : String), and the type of
the pointcut (enumeration PointcutType and attribute poincutType: PointcutType),
which can be selecting All, Subset, or One use case(s) of the system. As shown in Fig.
4, we apply «UseCasePointcut» to use case SelectedUseCases. The values of the attrib-
utes of the stereotype show that we select all the use cases of the VCS and EndPoint
systems. AdaptCallRate extends all the selected use cases and is triggered by Timer
periodically. The example in Fig. 5 shows that this aspect introduces two new use cases

(i.e., Standby and Exit-
Standby) by extending all
the use cases of the two
systems as indicated by
the values of the attributes
of «UseCasePointcut».
Use case Standby is trig-
gered by Timer and any
actor of the two systems
can trigger use case Exit-
Standby (via actor
pointcut SelectedActors,
Section 3.2).

As shown in Fig. 3,
UseCasePointcut should have at least one UseCaseCutSegment. A UseCaseCutSeg-
ment is composed of zero to many FlowCutSegments, which specify the selected steps
of the flows of events of a selected use case (selectedSteps : String), where Before,
After, or Around advice (adviceType : StepAdvice) should be applied. This part of the
pointcut should also indicate the type of the pointcut: selecting All, Subset, or One step
of a UCS, and the step sentence to be introduced through advice (adviceSpec : UCSAd-
viceSpecification). Note that it is possible that a UseCaseCutSegment does not contain
any FlowCutSegment when there is no need to get into the UCS level. When the
pointcut type of a UseCaseCutSegment or FlowCutSegment is PointcutType::All, then
there is no need to specify attribute selectedUseCases of metaclass UseCaseCutSeg-
ment or attribute selectedSteps of class FlowCutSegment. This constraint is formalized
as the OCL expression attached to metaclass UseCaseCutSegment (Fig. 3). For exam-
ple, as shown in Fig. 5, the use case pointcut SelectedUseCases consists of two Use-
CaseCutSegments: one is to select all the use cases of the VCS system and the other is
to select all the use cases of the EndPoint system. In these two UseCaseCutSegments,
no FlowCutSegment is specified.

Fig. 4. Aspect Use Case Diagram of Network Degradation

Fig. 5. Aspect use case diagram of Standby

If there is no UCS specified for a newly introduced use case in the aspect UCMod
or if the aspect UCMod does not need to get into the level of UCSs, the use case is
weaved into the base use case diagram through three different types of relationships of
use case diagrams: Extend, Include, Generalization, which are explicitly captured in
the use case diagram of the aspect UCMod. However, the use case pointcut should also
specify the steps of the selected use cases (via use case pointcut) where the newly in-
troduced use case should extend or be included. This is realized by FlowCutSegment
and UCSAdviceSpecification of UseCasePointcut. Attributes includeSpec and extend-
Spec of class UCSAdviceSpecification specify two sentences: INCLUDE USE CASE
<name of the newly introduced use case> and EXTENDED BY USE CASE <name of
the newly introduced use case>. During weaving, these two sentences should be added
before, after the selected steps of FlowCutSegment, or replace existing ones, through
Before, After or Around advice. For the cases when the selected use cases extend or are
included by a newly introduced use case in the aspect UCMod, the inclusion and ex-
tension points are however specified in the newly introduced use case and therefore no
extra information is required in the point cut specification.

We specify a special type of advice UseCaseSpecificationConditionAdvice, with two
sub-types: PreconditonAdvice and PostconditionAdvice, to introduce precondition and
postcondition sentences to the selected UCSs. The introduced sentences can be weaved
with the ones of the base UCSs in three different ways: AND, OR and XOR, which are
defined as the enumeration ConditionAdviceType as shown in Fig. 3. As shown in Fig.
4, the use case pointcut has one PreconditionAdvice with condition “The system should
be connected to network”. This precondition sentence should be weaved to the precon-
ditions of the UCSs of the use cases selected by the use case pointcut, via a conjunction,
which is indicated by assigning “AND” to attribute conditionAdviceType: Condition-
AdviceType of UseCaseSpecificationConditionAdvice.

Actor Pointcut. An actor pointcut selects one or more actors and consists of one or
more ActorPointcutSegments, which specify the system that the actor belongs to, the
selected actors, and the pointcut type. In Fig. 5, actor SelectedActors is stereotyped with

«ActorPointcut». The values of its attributes show that all the actors of the two systems
are selected. Same as for UseCaseSegment, if an ActorPointcutSegment has poincut-
Type as PointcutType::All, there is no need to specify selectedActors. Note that, there
are two types of actors: Primary and Secondary, as shown in enumeration ActorType,
which makes it easier to specify actor pointcut expressions. For instance, the actor
pointcut selects all the primary actors of the base UCMod (Fig. 5).

3.3 Definition of Weaving Directive Specification

Each crosscutting concern is specified as a separate aspect UCMod. Aspect UCMods
of multiple crosscutting concerns should be weaved into their corresponding base
UCMod in a specific order to ensure that the woven UCMod is correct. To achieve this,
an ordering must be defined and provided to the weaver as an input. However, UML
use case diagram does not provide such a capability. We therefore choose to use the
UML interaction overview diagram notations to specify such orderings, denoted as
weaving-directive interaction overview diagrams. One example is given in Fig. 6.

UML interaction overview diagrams define interactions through a variant of Activity
Diagrams, in a way that promotes overview of the control flow [2]. Weaving-directive
interaction overview diagrams contain interaction uses representing and referencing to
all aspect UCMods, ordered using UML activity diagram’s flow control features such
as decision, join, and fork. Of course, UML activity diagrams can equally perform the
same functionality. Choosing UML interaction overview diagram notations instead of
activity diagram notations is simply because the former is simpler than the later since
interaction overview diagrams abstract away Messages and Lifelines and therefore the
approach would be easier to be accepted in practice.

A weaving-directive interaction over-
view diagram contains the following model
elements: 1) An initial activity node; 2) A set
of interaction uses, each of which refers to
an aspect UCMod; and 3) A set of control
flow edges that can be of any of the follow-
ing two types: a control flow edge from the
initial activity to an interaction use repre-
senting the first aspect UCMod to weave,
and a set of control flow edges connecting
interaction uses (e.g., decision, join and
fork) to show the order in which the interac-
tion uses (aspect UCMods) will be weaved
into the base UCMod.

3.4 Modeling guidelines

The AspectRUCM profile (Section 3.2) provides a notation to specify crosscutting con-
cerns as aspect UCMods (Section 2.3). Before applying AspectRUCM, crosscutting
concerns have to be first identified at the requirements level (activity A1), as shown in

Fig. 6. Example of Weaving-directive

Interaction Overview Diagram

Fig. 7. Different ap-
proaches (e.g., [15])
can be used for this
purpose. Our Aspec-
tRUCM approach can
be used in conjunc-
tion with these exist-
ing works. However,
we do not discuss this
further in this paper
as it is out of the
scope of this paper.

Core concerns of
the system are speci-
fied using RUCM
(activity A2), leading
to the creation of
Base UCMod. Fol-
lowed by A2, A3
specifies crosscutting
concerns using the
AspectRUCM pro-
file, which includes
sub-activities of cre-
ating a UML package
stereotyped with
«Aspect», then speci-
fying pointcut(s) and
creating other model elements of the use case diagram (e.g., actors, use cases), and
finally specifying UCSs of the introduced use cases in the aspect UCMod using the
RUCM template. The output of this activity is a set of Aspect UCMods created for each
identified crosscutting concern. Activity A4 specifies the weaving ordering and outputs
the weaving directive interaction overview diagram.

Aspect UCMods (from A3) are weaved into their corresponding Base UCMod (from
A2), based on the weaving ordering specified in the interaction overview diagram (from
A4), to automatically generate a woven UCMod (A5), which can be used to facilitate
automated analyses (A6) such as requirements analyses, automated creation of analysis
and design models, and automated derivation of test cases. It is sometimes more effec-
tive to perform various requirements analyses (e.g., identifying and managing conflicts
and tradeoffs among concerns [9]) based on the same woven UCMod, instead of sepa-
rate aspect UCMods and the base UCMod. Based on [19], automated transition from
the woven UCMod to different UML diagrams can be supported. If the derivation or
generation of downstream artifacts (e.g., test cases) relies on the transformation from
an AOM approach at the requirements level (e.g., AspectRUCM) to another AOM ap-
proach at the design or testing level (e.g., AspectSM [5]), there is no point to perform

Fig. 7. Guidelines for Applying AspectRUCM

weaving at the requirements level and hence activities A4, A5 and A6 are unnecessary.

3.5 Weaver

Aspect UCMods are weaved into their base UCMod by a weaver, which reads the base
and aspect UCMods and the weaving-directive interaction overview diagram, and pro-
duces a woven UCMod. The pseudo code of the weaving algorithm is provided in Ap-
pendix A, Fig. 8. We developed a weaver for AspectRUCM using Java to weave one
or more aspect UCMods into a base UCMod. Aspect UCMods are specified in Aspec-
tRUCM (Section 3.2). A base UCMod is modeled using RUCM.

Due to the reason that UCSs of both the base and the aspect UCMods are textual, all
of them have to be formalized such that weaving can be performed. Therefore, the
weaver has a formalization engine, which contains a set of transformation rules trans-
forming textual UCMods into instances of UCMeta (Section 2.3). The aspect UCMods
are formalized into instances of extended UCMeta with AspectRUCM while the base
UCMod is transformed into an instance of UCMeta. UCMeta and its extension are im-
plemented as an Ecore model, using Eclipse EMF [1]. We also use the Stanford Parser
[3] as a NL parser for the transformation of textual sentences in UCSs to instances of
UCMeta. The parser is written in Java and generates a syntactic parse tree for a sentence
and the sentence’s grammatical dependencies (e.g., subject, direct object). It is im-
portant to notice that it is not necessary to have the transformation from UML use case
diagrams (either with or without the AspectRUCM profile applied) to instances of the
UML::UseCases package of UCMeta (Section 2.3), as UCMeta directly imports the
UML::UseCases package and the AspectRUCM profile.

The weaver takes the formalized aspect and base UCMods and the weaving-directive
interaction overview diagram as inputs and generates a woven UCMod, which is an
instance of UCMeta. The weaver is fully automated. The automatically generated wo-
ven UCMod can be used as an input for further analysis (e.g., automated requirements
verification and validation) or generation (e.g., generating UML analysis models). Cur-
rently our approach and its weaver do not support modeling and weaving interactions
that may occur between different aspects and will be investigated in the future.

4 Evaluation

Section 4.1 presents the three case studies, Section 4.2 discusses how AspectRUCM
reduces modeling effort, and Section 4.3 summarizes evaluation results.

4.1 Industrial case studies

We used three case studies from the telecommunication domain, the maritime and en-
ergy sector and the aviation domain: VCS, Subsea Oil Production System (SOPS) and
Navigation System (NAS). Table 3 presents the characteristics of their UCMods.

Table 3. Characteristics of Base and Aspect UCMods
System # of Base Use Case Total # of UCSs # of Aspect UCMods # of Actors

VCS 40 10 8 5
SOPS 65 12 6 9
NAS 46 11 7 9

VCS. VCS contains four systems/endpoints, which are of the same functionalities.
These functionalities are modeled as the same set of use cases. Each endpoint has 10
use cases; in total the whole system contains 40 use cases. The core functionality of the
systems manages the sending and receiving of multimedia streams. Audio and video
signals are sent through separate channels and there is also a possibility of transmitting
presentations in parallel with audio and video. Presentations can be sent by only one
conference participant at a time and all others receive it. Each of the video conference
system endpoint is operated by a human actor. A timer is needed to periodically initiate
the adaption of call rate. Based on our previous work with Cisco [5], the following eight
crosscutting concerns are specified using our aspect use case modeling approach:
1. Network Degradation: This crosscutting behavior is invoked whenever communica-

tion medium is experiencing different faulty situations in it such as duplicate and cor-
rupt packets in communication.

2. Standby: The Standby behavior of a VCS becomes active when it is idle for a specific
amount of time. When any activity is performed on the VCS while it is in Standby
mode, it becomes active.

3. Media Quality Recovery: An important robustness behavior of a VCS is to recover
from media (audio and video) quality loss. Whenever a VCS is in a video conference,
it checks audio/video quality after every certain time. If the quality is within the thresh-
old it continues the normal operation, otherwise it tries to recover audio/video quality.
If it successfully recovered the audio quality it continues its normal operation, other-
wise it restarts the VCS.

4. Do Not Disturb: Whenever the Do Not Disturb feature is on, a VCS ignores all incom-
ing calls. If VCS is already in a call, it will remain in the call, but ignores any new
incoming calls.

5. Synchronization Mismatch: Whenever there is a mismatch between audio and video,
the proprietary algorithms are invoked to reduce the mismatch between audio and
video.

6. Intelligent Packet Loss Recovery: Whenever, there is a packet loss in network during
a videoconference, an algorithm is invoked to deal with packet loss.

7. Echo Reduction: Whenever, there is an echo in an audio during a video conference or
an audio call, a VCS invokes echo reduction algorithms to deal with it.

8. Noise Cancellation: During a videoconference, a VCS may experience arbitrary noise,
which is cancelled by invoking certain algorithms.

SOPS. SOPSs are large-scale, integrated, distributed, and highly configurable sys-
tems of systems for managing exploitation of oil and gas production fields, with various
field layouts ranging from single satellite wells to large multiple sites (more than 50
wells). SOPS has four different types of systems, three of which are located above the
sea level and the other is located in subsea. These systems have distinct functionalities
and are connected through different types of communication media. Due to the reason
that we had no access to all the requirements of these systems, we were not able to
specify the UCSs of all the systems. Only 12 out of 65 representative use cases were

specified. We modeled the following six crosscutting concerns using AO-RUCM.
1. Operation Mode Exchange: It is possible to change the operation mode of a system

from Normal to Emulate. A system has different, but might overlapped, set of func-
tionalities for each operation mode.

2. Backup Communication: For safety critical systems such as SOPSs, when optical fibers
are installed, an electrical communication system between the topside and the subsea
shall be considered for an additional backup communication system. In principal, all
functionalities shall be available in the backup communication mode. However in the
situation with very limited bandwidth, some of these functionalities will not be usable
in the backup communication mode and they should be disabled.

3. Communication Timeout: Topside control systems frequently wait for responses from
subsea control systems. If the timeout expires, the request from the topside control sys-
tems to the subsea control systems is removed from the queue of unanswered requests.

4. Runtime Configuration: It is possible to configure some attributes of the control soft-
ware deployed to systems when they are configured and running.

5. Communication Bandwidth Limiting: Bandwidth limitation could be important if band-
width hungry and external Ethernet equipment is connected to control systems. The
necessity of bandwidth limitations depends on the bandwidth of the communication
infrastructure and whether slower secondary/backup communication lines are used.
Such a communication bandwidth limiting has directly impact on various functionali-
ties of multiple systems.

6. Data Update Mechanism Switch: Two different schemes for transferring data from sub-
sea systems to topside systems can be either dynamically switched from one to the
other according to the traffic status of communication links between topside and sub-
sea, or manually switched by operators through a topside control device. The switching
from one scheme to the other has impacts on various functionalities of the systems.

NAS. NAS [20] controls and guides an aircraft, based on control law computation
that takes data sampled from sensors as input and sends commands to actuators. NAS
has two operating modes: Auto mode and Manual mode and a pilot can switch the
modes during flight. To ensure safe operation, NAS is fault tolerant with a redundant
design. At the end of each clock cycle, redundant inputs from sensors are given to the
autopilot system and multiple computation methods produce redundant outputs to be
voted. There are many periodical tasks in the system and the system period is set as 20
milliseconds—the minimal one among the periods of all the tasks (with periods as
20ms, 40ms or 60ms). We specified the following seven crosscutting concerns using
AspectRUCM: System Synchronization, Flight Mode Exchange, Periodical Action,
Data Monitoring, Data Voting, Fault Handling, and Communication Timeout.

The first one is Start System and the second is Power-up Built-in Test (PUBIT) re-
sponsible for the built-in test when the system is powered on. Use case Handle Faults
is designed to tackle any unexpected error during the operation of the system. Sample
Data is responsible for obtaining all needed data via sensors.

1. System Synchronization: To achieve high reliability, NAS synchronizes two re-
dundant systems at each period to conduct specific taks.

2. Flight Mode Exchange: It is possible to change the operation mode of a system
from Auto to Manual. A system has different, but might overlapped, set of func-
tionalities for each operation mode.

3. Periodical Action: There are many periodical tasks are conducted in each pe-
riod, and some of them have the same extra requirements, for example, memory
resource, data accuracy.

4. Data Monitoring: Redundant inputs from sensors are given to the system,
therefore the system need to validate the data before using them.

5. Data Voting: The system is a redundant system and it means for each input/out-
put data the system have different copies, therefore they system should vote the
best one to use.

6. Fault Handling: It is responsible for capturing different exceptional events dur-
ing the normal execution.

7. Communication Timeout: As two redundant systems need to conduct synchro-
nous tasks, they should make sure the communication is conducted timely.

 Notice that both VCS and SOPS have eight common network abnormal use cases
since both of these systems employ the same type of Ethernet communication medium.
VCS has two extra abnormal use cases, which are specific to video conferencing pro-
tocols, i.e., H323 and SIP.

4.2 AspectRUCM Evaluation

One way of evaluating if AspectRUCM reduces modeling effort is to estimate modeling
effort through a surrogate measure such as the number of modeling elements required
to be modeled. This number can then be compared in aspect UCMods and RUCM
UCMods when modeling crosscutting concerns. Table 4 summarizes the modeling
tasks involved when using and not using AspectRUCM for modeling three sets of cross-
cutting concerns from the three case studies. Note that we do not count modeling effort
required to specify UCSs and the effort evaluation is at the level of use case diagrams.

For the VCS case study, we have eight crosscutting concerns, which are described
in Section 4.1. When we used AspectRUCM to model these eight crosscutting con-
cerns, we significantly reduced modeling effort for modeling relationships between use
cases (95% (=420/440) on average, see Table 4). In other words, for all the eight cross-
cutting concerns together, we modeled 20 relationships when using AspectRUCM,
whereas we need to model 440 relationships without using AspectRUCM. In terms of
actors, using AspectRUCM we modeled 10 actors in all eight crosscutting concerns,
whereas we modeled 8 actors without using AspectRUCM. For use cases, we modeled
19 use cases using AspectRUCM for all eight crosscutting concerns together, whereas
we modeled 11 use cases when not using AspectRUCM. Considering that modeling
effort for an actor, use case, and a relationship is roughly equal, for all eight crosscutting
concerns together, we modeled 459 modeling elements without using AspectRUCM,
whereas with AspectRUCM we modeled only 49 modeling elements. This means on
average we saved 89% of modeling effort in our industrial case study.

Using AspectRUCM, we also needed to model pointcuts for all crosscutting con-
cerns. In total, we modeled 10 pointcuts (Table 4) for VCS and modeling these
pointcuts is the additional modeling effort required in AspectRUCM. In conclusion,
modeling 10 pointcuts can save us modeling 410 modeling elements. We assume that
the modeling effort of 10 pointcuts is less than modeling 410 modeling elements and

thus modeling effort using AspectRUCM can be reduced. For SOPS/NAS, we modeled
6/7 crosscutting concerns. Similar to VCS, as one can observe from Table 4, using
AspectRUCM significantly reduced the modeling effort equivalent to 80%/82%.

Table 4. Evaluation Results of the Three Case Studies
Case
Study

Cross-
cutting
con-
cerns

Using AspectRUCM Without AspectRUCM Effort
saved
(%)

UCs Actors Rels Pointcut To-
tal

UCs Ac-
tors

Rels To-
tal

VCS 1 2 1 2 1 6 1 1 40 42 86%
2 3 2 4 2 11 2 1 80 83 87%
3 3 1 2 1 7 2 1 80 83 92%
4 3 2 4 1 10 2 1 80 83 88%
5 2 1 2 1 6 1 1 40 42 86%
6 2 1 2 1 6 1 1 40 42 86%
7 2 1 2 1 6 1 1 40 42 86%
8 2 1 2 1 6 1 1 40 42 86%
Total 19 10 20 9 58 11 8 440 459 87%

SOPS 1 3 1 4 1 9 2 1 78 81 89%
2 3 2 6 2 13 2 1 56 59 78%
3 2 1 2 1 6 1 1 48 50 88%
4 2 1 2 1 6 1 1 12 14 57%
5 3 2 6 2 13 2 1 47 50 74%
6 3 1 4 1 9 2 0 25 27 67%
Total 16 8 24 8 56 10 5 266 281 80%

NAS 1 2 2 4 1 9 1 2 42 45 80%
2 2 1 2 1 6 1 1 14 16 62%
3 5 3 6 2 16 3 3 74 80 80%
4 2 3 2 1 8 1 2 48 51 84%
5 2 3 2 1 8 1 2 50 53 85%
6 3 1 2 1 7 2 1 46 49 86%
7 3 3 4 2 12 2 3 62 67 82%
Total 19 16 22 9 66 11 14 336 361 82%

Overall, results on the three industrial case studies seem to suggest that the modeling
effort can be significantly reduced when using AspectRUCM for modeling crosscutting
concerns. Since using AspectRUCM requires the modeling of use case pointcuts and
actor pointcuts with the «UseCasePointcut» and «ActorUseCasePoint» stereotypes,
there will only be a benefit if modeling, more than 80% additional relationships on a
UCMod is more time-consuming than modeling few pointcuts. Though this seems to
be likely, it would need to be confirmed via controlled experiments involving human
designers to determine the actual percentage of modeling effort saved when using
AspectRUCM. In addition, modeling crosscutting concerns as aspect UCMods keeps
the base UCMod less cluttered; hence, they are easier to read and maintain, and support
reuse, as crosscutting concerns are modeled separately from the base ones.

4.3 Empirical Evaluation of RUCM

AspectRUCM extends use case diagrams, but has no extensions to the RUCM template
and no new restrictions introduced. Hence, in terms of describing UCSs, AspectRUCM
should be exactly the same as RUCM. In our previous work [18], we have conducted
two controlled experiments to evaluate RUCM in terms of its applicability and impact
on the quality of manually derived UML analysis models. Experiment results [18] show
that RUCM is easy to apply and RUCM results into significant improvements over

traditional approaches in terms of the quality of derived class and sequence diagrams.
These two controlled experiments particularly focus on the evaluation of the RUCM
template and the restriction rules; therefore we can conclude that the evaluation results
for RUCM are also applicable to AspectRUCM.

However, as discussed in Section 3.2, the AspectRUCM profile is introduced to ex-
tend the UML use case diagram notations and it should be evaluated to test its applica-
bility and other benefits similar to other aspect-oriented modeling approaches such as
enhanced separation of concerns, improved maintainability, reusability and under-
standability. In the future, we plan to conduct empirical studies for further evaluation.

5 Related Work

It is a common practice to follow a template to structure UCSs, thereby helping their
reading and reviewing. Various templates (e.g., [6]) have been suggested to satisfy dif-
ferent application contexts and purposes. These templates share common fields such
as: use case name, brief overall description, precondition, postcondition, basic flow,
and alternative flows. The systematic review [17] we conducted to examine literature
that transform textual requirements into analysis models revealed that six approaches
require use cases (e.g., [14]). RUCM was built on the state of art.

An aspect-oriented use case modeling approach was proposed in [7] to connect ad-
vice use cases to base ones through a relationship stereotyped with a newly proposed
stereotype «Aspect». A grammar is proposed to specify pointcut expressions based on
wildcards in steps of flows of events of use cases. Four types of advices are specified:
before, after, around, and concurrent. The approach does not directly introduce aspect
to use case diagrams and therefore there is no graphical notation reused from use case
diagrams or newly introduced. Aspect use cases are weaved with their corresponding
base use cases into a petri net model, which is used as an input for further analysis. We
however extend UML use case diagrams by reusing their inherent graphical notations
with limited extensions via UML stereotypes.

Jacboson and Ng proposed an aspect-oriented use case modeling approach [10], by
extending the meaning of extension points as joint points. With it, the base model has
to be modified by inserting textual sentences of extension points directly to the UCSs
of the Pointcut use cases of the base UCMod. If there are more than one Pointcut use
cases (most probably the case in the context of AOM), more than one places of the
UCSs of these Pointcut use cases have to be modified. This implies that this approach
does not really separate aspects from their base. In addition, the approach has only one
type of Advice: the extension behavior specified in an aspect use case as the whole.

Sillito et al [13] proposed a textual aspect language called AspectU, to support mod-
ularization of crosscutting concerns in UCMods. AspectU aspects are then transformed
into AspectJ implementation. AspectU is purely textual and very similar to program-
ming languages. However, AspectRUCM largely relies on the inherent graphical nota-
tions of UML use case diagrams. Therefore, in terms of usability, AspectRUCM should
be easier to understand and apply for engineers, especially requirements engineers.

Mussbacher et al. [11] proposed an aspect-oriented requirements modeling approach

with use case maps. In this approach, advice and pointcut are both captured using the
use case map inherit graphical notations. Several works on adding aspect concepts to
goal models (e.g., [4]) have been also proposed. Other aspect oriented modeling ap-
proaches (e.g., [5]) have been proposed at different levels of abstraction of a software
development lifecycle than UCMods.

6 Conclusion

Use case modeling is one of the most common practices for capturing functional re-
quirements. However, use case specifications (UCSs) are essentially textual documents
and therefore ambiguity is inevitably introduced. We proposed a general use case mod-
eling approach, referred as RUCM [18], which has been empirically evaluated to be
easy to apply. In this paper, we proposed an extension of RUCM, named as Aspec-
tRUCM, to systematically model crosscutting concerns at the level of use case models
to alleviate its complexity especially for large-scale systems. AspectRUCM uses a
UML profile to support the modeling of crosscutting concerns as aspects in use case
diagrams and UCSs. Modeling crosscutting concerns is mandatory for networked ap-
plications since use case modeling of such systems entails the need to specify non-
functional properties such as robustness behavior. Moreover, we performed and re-
ported on three industrial case studies, which suggest that using AspectRUCM results
in reducing on average more than 80% modeling effort.

Appendix A

As shown in Fig. 8, the algorithm first handles all use case pointcuts (Step 1) and then
processes all actor pointcuts (Step 2) of an aspect UCMod. For each use case pointcut,
the algorithm starts from identifying selected use cases specified in the pointcut expres-
sion by querying the base UCMod (Step 1-A), identifies model elements of the aspect
UCMod that are newly introduced to the base UCMod (Step 1-B), and adds and con-
nects these model elements to the selected use cases of the base UCMod (Steps 1-C and
1-D). The sub-steps of Step 1-E modify UCSs of the selected use cases according to
their relationships with the newly-introduced use cases, which are clearly specified in
the aspect UCMod. For each actor pointcut, the algorithm starts from identifying se-
lected actors specified in the pointcut expression by querying the base UCMod (Step 2-
A) and connects each selected actor to the newly-added use case (Step 2-B). Step 2-C
handles the modification of UCSs.

Simula Research Laboratory, Technical Report 2012-04 (Version 2) December 2015

WeaveUseCaseModel (b : UseCaseModel, a : UseCaseModel, w : UseCaseModel)
Inputs:

b: A formalized base UCMod, which is an instance of UCMeta
a: A formalized aspect UCMod, which is an instance of UCMeta extended with the

AO-RUCM profile
Output: w: A woven UCMod, which is an instance of UCMeta
Algorithm:
1. For each use case uc stereotyped with «UseCasePointcut» in b, do

A. Query the base UCMod b, based on the values of the attributes of «Use-
CasePointcut» and obtain a collection of use cases SelectedUCs.

B. Query the aspect UCMod a, obtain a collection of model elements meles (either
use cases or actors) that are not stereotyped with «UseCasePoincut» or «Actor-
Pointcut» but are directly or indirectly connected to use case uc.

C. Add meles to the woven UCMod and link them to each of SelectedUCs through
the associations specified in the aspect UCMod a.

D. If uc contains an instance of UseCaseSpecificationConditionAdvice, then intro-
duce PreconditionAdvice and/or PostconditonAdvice to each of SelectedUCs,
according to the specification of the advices.

E. For each selected use case suc of SelectedUCs, do
a. For each use case auc of meles, do

i. If auc extends suc as specified in the aspect UCMod a, update the UCS
of suc by
a) Adding auc to the field of ‘Extending Use Case’, and
b) Adding a sentence EXTENDED BY USE CASE <name of the

auc> Before, After, or Around the selected steps specified in
FlowCutSegment contained in «UseCasePointcut».

ii. If suc extends auc, update the UCS of auc by
a) Adding suc to the field of ‘Extending Use Case’, and
b) Adding a sentence EXTENDED BY USE CASE <name of the suc>

Before, After, or Around the selected steps specified in FlowCutSeg-
ment contained in «UseCasePointcut».

iii. If auc includes suc, update the UCS of auc by
a) Adding suc to the field of ‘Included Use Case’ and
b) Adding a sentence INCLUDE USE CASE <name of the auc> Before,

After, or Around the selected steps specified in FlowCutSegment con-
tained in «UseCasePointcut».

iv. If suc includes auc, update the UCS of suc by
a) Adding auc to the field of ‘Included Use Case’ and
b) Adding a sentence INCLUDE USE CASE <name of the suc> Before,

After, or Around the selected steps specified in FlowCutSegment con-
tained in «UseCasePointcut».

v. If auc specializes suc, update the UCS of suc by adding auc to the field
of ‘Specialized Use Case’.

vi. If suc specializes auc, update the UCS of auc by adding suc to the field
of ‘Specialized Use Case’.

2. For each actor acr stereotyped with «ActorPointcut» in b, do
A. Query the base UCMod b, based on the values of the attributes of«Actor-

Pointcut» and obtain a collection of actors SelectedActors.
B. Connect each selected actor to the newly-added use cases to the woven UCMod

according to what is specified in the aspect use case diagram.
C. For each actor of SelectedActors, do

a. If the actor is a primary actor, according to the information contained in the
ActorPointcutSegment of «ActorPointcut», add this actor to the field of
‘Primary Actor’ of the UCSs of the use cases that are connected to the actor
as specified in the aspect use case diagram.

b. If the actor is a secondary actor, according to the information contained in
the Actor-PointcutSegment of «ActorPointcut», add this actor to the field
of ‘Secondary Actor’ of the UCSs of the use cases that are connected to the
actor as specified in the aspect use case diagram.

Fig. 8. Weaving algorithm

References

1. Eclipse EMF. https://eclipse.org/modeling/emf/
2. OMG. UML2.2. http://www.omg.org/spec/UML/2.2/Infrastructure/PDF/
3. The Stanford Parser version 1.6. http://nlp.stanford.edu/software/lex-parser.shtml
4. Alencar, F., Moreira, A., Castro, J., Silva, C., Mylopoulos, J.: Using Aspects to

Simplify iModels. In: Requirements Engineering, 14th IEEE International
Conference, pp. 335-336. IEEE, Minneapolis/St. Paul, MN (2006)

5. Ali, S., Briand, L.C., Hemmati, H.: Modeling robustness behavior using aspect-
oriented modeling to support robustness testing of industrial systems. Software &
Systems Modeling. 11 (4), 633-670 (2012)

6. Alistair, C.: Writing effective use cases. Addison-Wesley (2001)
7. Anthonysamy, P., Somé, S.S.: Aspect-oriented use case modeling for software

product lines. In: EA-AOSD'08, pp. 5. ACM (2008)
8. Brown, E.K., Brown, K., Miller, J.: Syntax: a linguistic introduction to sentence

structure. Psychology Press (1991)
9. Chitchyan, R., Rashid, A., Rayson, P., Waters, R.: Semantics-based composition for

aspect-oriented requirements engineering. In: Proceedings of the 6th international
conference on Aspect-oriented software development, pp. 36-48. ACM (2007)

10. Jacobson, I., Ng, P.-W.: Aspect-oriented software development with use cases
(addison-wesley object technology series). Addison-Wesley Professional (2004)

11. Mussbacher, G., Amyot, D., Weiss, M.: Visualizing Aspect-Oriented Requirements
Scenarios with Use Case Maps. In: REV'06. IEEE (2006)

12. Sampaio, A., Rashid, A., Chitchyan, R., Rayson, P.: EA-Miner: towards automation
in aspect-oriented requirements engineering Transactions on aspect-oriented
software development III. pp. 4-39 Springer (2007)

13. Sillito, J., Dutchyn, C., Eisenberg, A.D., De Volder, K.: Use case level pointcuts.
In: Odersky, M. (Ed.) ECOOP 2004–Object-Oriented Programming. LNCS. vol.
3086. pp. 246-268 Springer (2004)

14. Somé, S.S.: Supporting use case based requirements engineering. Information and
Software Technology. 48 (1), 43-58 (2006)

15. Sousa, G., Soares, S., Borba, P., Castro, J.: Separation of crosscutting concerns from
requirements to design: Adapting the use case driven approach. In: Early Aspects,
pp. 93-102 (2004)

16. Van Lamsweerde, A.: Requirements engineering: from system goals to UML
models to software specifications. Wiley (2009)

17. Yue, T., Briand, L.C., Labiche, Y.: A systematic review of transformation
approaches between user requirements and analysis models. Requirements
Engineering. 16 (2), 75-99 (2011)

18. Yue, T., Briand, L.C., Labiche, Y.: Facilitating the transition from use case models
to analysis models: Approach and experiments. TOSEM. 22 (1), No. 5 (2013)

19. Yue, T., Briand, L.C., Labiche, Y.: aToucan: An Automated Framework to Derive
UML Analysis Models from Use Case Models. TOSEM. 24 (3), No. 13 (2015)

20. Zhang, H., Yue, T., Ali, S., Liu, C.: Facilitating Requirements Inspection with
Search-Based Selection of Diverse Use Case Scenarios. In: BICT 2015 (In Press)

