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Abstract. IDEA is a 64-bit block cipher with a 128-bit key designed
by J. Massey and X. Lai. At FSE 2002 a slightly modified version called
IDEA-X was attacked using multiplicative differentials. In this paper we
present a less modified version of IDEA we call IDEA-X/2, and an attack
on this cipher. This attack also works on IDEA-X, and improves on the
attack presented at FSE 2002.
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1 Introduction

The block cipher PES (Proposed Encryption Standard) was introduced at Eu-
rocrypt in 1990 [1]. When differential cryptanalysis [2] became known in 1991,
the algorithm was changed, and renamed to IPES (Improved PES). Later the
cipher has become known as IDEA (International Data Encryption Algorithm),
and is today used in many cryptographic components.

IDEA has been extensively cryptanalysed, but remains unbroken. We briefly
mention some of this work. In 1993 2.5 rounds of IDEA was attacked with
differential cryptanalysis [3]. At CRYPTO the same year, large classes of weak
keys due to the simple key schedule were presented [4]. At EUROCRYPT 1997, 3-
and 3.5-round versions of IDEA were broken using a differential-linear attack and
a truncated differential attack [5]. Larger classes of weak keys were demonstrated
at EUROCRYPT 1998 [6]. At FSE 1999 impossible differentials were used to
attack 4.5 rounds of IDEA [7], and at SAC 2002 attacks on IDEA for up to four
rounds were improved [8].

At FSE 2002 multiplicative differentials were used to attack a slightly modi-
fied version of IDEA called IDEA-X [9]. We show in this paper that there exists
a better attack for IDEA-X, and that this attack also works on a less modified
version of IDEA we have chosen to call IDEA-X/2 (read as “idea x half”).

The paper is organised as follows. In Section 2 we give a brief description of
IDEA and its variants, in Section 3 we build the differential characteristic used
to attack IDEA-X/2, in Section 4 we show how to find the subkeys used in the
output transformation, and we conclude in Section 5.

2 Description of IDEA

IDEA operates on blocks of 64 bits, using a 128-bit key. The cipher consists of
several applications of three group operations ⊕, � and �. Each operation joins
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together two words of 16 bits. The operation ⊕ is bitwise XOR, � is addition
modulo 216, and � is multiplication modulo 216 + 1, where the all-zero word
is treated as the element 216. IDEA has eight rounds, followed by an output
transformation. One round of IDEA and the output transformation is shown in
the figure below.
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Fig. 1. Structure of IDEA

The security of IDEA lies in the fact that no two of the three group operations
are compatible, in the sense that the distributive law does not hold. The designers
have also made sure that any two contiguous group operations in IDEA are never
the same.

Z
(r)
i is subkey i used in round r, where the output transformation counts

as the ninth round. Each subkey is a 16-bit word, and a total of 52 subkeys
are needed. They are generated as follows. The user selects a 128-bit master key,
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viewed as eight 16-bit words. The first 8 subkeys are taken as these 8 words, from
left to right. Then the master key is cyclically rotated 25 positions to the left, and
the resulting eight 16-bit words are taken as the next subkeys, and so on. The
order the subkeys are taken in is Z

(1)
1 , Z

(1)
2 , . . . , Z

(1)
6 , Z

(2)
1 , . . . , Z

(2)
6 , . . . , Z

(9)
4 .

2.1 IDEA-X and IDEA-X/2

In [9], a variant called IDEA-X is attacked. In IDEA-X, each � except for the
two in the output transformation is changed to an ⊕. The authors then show
that for 2112 of the keys there exists a multiplicative differential characteristic
over eight rounds that holds with probability 2−32.

In this paper we consider IDEA-X/2, where we only change half of the �’s
in one round to ⊕’s. In IDEA-X/2 only the �’s where Z

(r)
2 and Z

(r)
3 are inserted

are changed to ⊕’s, the MA-structure is left unchanged.

3 Building a Differential Characteristic

3.1 The Groups Z216 and GF(216 + 1)∗

The basis of our analysis comes from the fact that both Z216 and GF(216 + 1)∗

are cyclic groups, and therefore isomorphic (see [10]). Here we establish this
isomorphism as follows.

Let g0 be a primitive element of GF(216 + 1)∗, and define gi = g2
i−1 for

i = 1, . . . , 15. Then each element a in GF(216 + 1)∗ can be written uniquely as

a = gx15
15 � gx14

14 � · · · � gx0
0 ,

where each xi ∈ {0, 1}. For simpler notation we will write this as a = gx. Let φ
be the map from GF(216 + 1)∗ to Z216 defined by φ(a) = x, where a = gx. We
show that φ is an isomorphism.

The identity element of GF(216 + 1)∗ is 1, and the identity element of Z216

is 0. Since 1 = g0 we have φ(1) = 0.
Clearly, φ is one-to-one.
Let a = gx and b = gy be two elements of GF(216 + 1)∗. Then

a � b = gx15
15 � gy15

15 � · · · � gx0
0 � gy0

0 .

If at least one of xi, yi is 0 then gxi
i � gyi

i = gxi+yi

i , with xi + yi ∈ {0, 1}. If
xi = yi = 1 we get g1

i � g1
i = g1

i+1 � g0
i , that is, we get a “carry”. Note that

g15 = −1, so if x15 = y15 = 1 we have g1
15 � g1

15 = g0
15, which means the carry is

shifted out of the computation.
From this we see that a � b = gx�y, showing that φ(a � b) = φ(a) � φ(b),

and that φ respects the group operations. This shows that φ is an isomorphism.
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Fig. 2. Isomorphic diagrams

3.2 Differential Properties of φ

In a cryptographic setting, we may regard φ as a 16-bit S-box. The above analysis
shows that a � b = φ−1(φ(a) � φ(b)). In other words, the two diagrams below
may be used interchangeably.

We have computed the S-box φ explicitly using g0 = 3 as a primitive element,
and checked its differential properties. In the first key-mixing layer in each round,
Z

(r)
1 and Z

(r)
4 are mixed with two of the words using �. Using the isomorphic

diagram above, we may first send the keys and the two words through φ, and
then combine using �. In the analysis of the differential properties we should
therefore let the output differences of φ be �, subtraction modulo 216.

We found that if we let the input differences to φ be differences with respect
to ⊕, then the following differential holds with probability 1/2:

δ⊕ = FFFDx
φ−→ δ� = 215.

The difference δ� is preserved through the key-addition. Through φ−1 we get the

reversed differential with probability 1/2: δ�
φ−1

−→ δ⊕. These may be combined

into the differential δ⊕
Z

(r)
j �−→ δ⊕ that, on the average over all keys Z

(r)
j , holds

with probability 1/4 (j ∈ {1, 4}). For each key Z
(r)
j , we have checked the exact

probability of this differential. The keys 1 and −1 are known to be weak under
�, the differential holds with probability 1 and 0.5, respectively. The smallest
probability that occurs (for the keys 3 and −3 with g0 = 3) is greater than
0.166.., and the probability lies in the range 0.23 − 0.27 for 216 − 22 of the
possible values for Z

(r)
j .

3.3 Differential Characteristic of IDEA-X/2

Let the 64-bit cipher block be denoted by (w1, w2, w3, w4), where each wi is a
16-bit word referred to as word i.
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All differences in the characteristic are with respect to ⊕, and we denote
δ = FFFDx. Let a pair of texts at the beginning of one round have difference
(δ, δ, δ, δ). Words 2 and 3 will have difference δ after XOR with Z

(r)
2 and Z

(r)
3 .

Each of the words 1 and 4 will have difference δ after multiplication with Z
(r)
1

and Z
(r)
4 with probability 1/4. Thus the difference after the key-mixing layer in

the beginning of the round is (δ, δ, δ, δ) with probability 2−4.
Since the differences in words 1 and 3 are the same and the differences in

words 2 and 4 are the same, the two input differences to the MA-structure
are both 0. Then the output differences of the MA-structure will be 0, so the
difference of the blocks after the XOR with the outputs from the MA-structure
will be (δ, δ, δ, δ). Since words 2 and 3 have equal differences the difference of the
blocks after the swap at the end of the round will also be (δ, δ, δ, δ).

This one-round characteristic may be concatenated with itself 8 times to form
the 8-round differential characteristic

(δ, δ, δ, δ) 8 rounds−→ (δ, δ, δ, δ)

that holds with probability (2−4)8 = 2−32.
The probability of this characteristic may be increased by a factor four as

follows. In the first round Z
(1)
1 and Z

(1)
4 are inserted using �. We look at the

alternative diagram for this operation, containing the S-boxes φ. Then we see
that the first application of φ is done to words 1 and 4 of the plaintext block,
before any key-material has been inserted. This means we can select the plaintext
pairs such that the words 1 and 4 will have difference δ� before φ(Z(1)

1 ) and
φ(Z(1)

4 ) are inserted, with probability 1. Then the probability of the characteristic
of the first round will be 2−2 instead of 2−4, and the overall probability of the
8-round characteristic will be 2−30.

4 Key Recovery

We select 232 pairs of plaintext with difference (δ, δ, δ, δ), and ask for the corre-
sponding ciphertexts. A pair of plaintexts that has followed the characteristic is
called a right pair, and a pair that has not followed the characteristic is called a
wrong pair. We expect to have 4 right pairs among the 232 pairs.

4.1 Filtering out Wrong Pairs

Let ci and c′
i be the i’th words of the ciphertexts in one pair. We compute what

values (if any) Z
(9)
2 and Z

(9)
3 may have to make this pair a right pair. If this pair

is a right pair we have (c2 � Z
(9)
2 ) ⊕ (c′

2 � Z
(9)
2 ) = δ. Two cases arise.

Case 1: The second least significant bits of (c2�Z
(9)
2 ) and (c′

2�Z
(9)
2 ) are both

0. Since (c2 �Z
(9)
2 ) and (c′

2 �Z
(9)
2 ) are otherwise bitwise complementary to each

other, we have (c2 �Z
(9)
2 )� (c′

2 �Z
(9)
2 ) = 216 −3. This yields 2Z

(9)
2 = 3� c2 � c′

2,
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which is possible only if exactly one of c2 and c′
2 is odd. In that case we get

Z
(9)
2 = (3 � c2 � c′

2) >> 1 or Z
(9)
2 = ((3 � c2 � c′

2) >> 1) � 215.
Case 2: The second least significant bits of (c2 � Z

(9)
2 ) and (c′

2 � Z
(9)
2 ) are

both 1. In this case we have (c2 � Z
(9)
2 ) � (c′

2 � Z
(9)
2 ) = 1. This gives 2Z

(9)
2 =

216 −1�c2 �c′
2, again only possible when exactly one of c2 and c′

2 is odd. In that
case we get Z

(9)
2 = (216−1�c2�c′

2) >> 1 or Z
(9)
2 = ((216−1�c2�c′

2) >> 1)�215.
When exactly one of c2 and c′

2 is odd, we don’t know if we are in case 1 or
2, so four values of Z

(9)
2 will be suggested.

The reasoning above also applies to c3 and c′
3, so when exactly one of c3 and

c′
3 is odd, we will get four values of Z

(9)
3 suggested.

The probability that, in a random pair, exactly one of c2 and c′
2 is odd, and

exactly one of c3 and c′
3 is odd is 1/4. When we filter on this condition about

230 of the pairs will remain.
Next we focus on the words c1 and c′

1 in a pair. For the multiplication with
Z

(9)
1 we use the alternative diagram containing the S-boxes φ and φ−1. We have

examined how the 216 pairs with input difference δ behave through φ. It turns out
that 215 pairs get output difference 215 (with respect to �), and that there are
215 other possible output differences, each with a unique pair producing it. Now
we go backwards through the last φ−1 and look at the difference φ(c1) � φ(c′

1).
If this difference is not one of the possible output differences of φ receiving input
difference δ, we can throw away this pair as a wrong pair. When φ receives input
difference δ there are 215 + 1 possible output differences, so this happens with
probability 1/2.

The same reasoning applies for c4 and c′
4, so the probability of both words 1

and 4 surviving this test is 1/4. After performing this test we expect to be left
with 228 pairs, each one with the possibility of being a right pair.

4.2 Finding the Subkey (Z(9)
1 , Z

(9)
2 , Z

(9)
3 , Z

(9)
4 )

Each of the remaining pairs has at least one subkey that would make it a possible
right pair. For each pair, these subkeys are suggested as the right subkeys. The
correct subkey is suggested for each right pair, and all wrong keys are suggested
more or less at random. We proceed to count how many keys each pair suggests.

Each pair suggests 4 values of Z
(9)
2 and 4 values of Z

(9)
3 . These values can

be combined in 16 different ways to produce a possible (Z(9)
2 , Z

(9)
3 )-value for the

subkey. By examining the key schedule, we find that Z
(9)
2 and Z

(9)
3 completely

determine Z
(1)
4 . Letting p4 and p′

4 be the fourth words of the plaintexts in one
pair, we check for each of the 16 values of Z

(1)
4 if (p4 �Z

(1)
4 )⊕ (p′

4 �Z
(1)
4 ) = δ. If

this doesn’t hold, and the pair we are examining is a right pair, then the value
of Z

(1)
4 (and hence (Z(9)

2 , Z
(9)
3 )) must be wrong and can be discarded. Because

of the special way we have chosen p4 and p′
4 (we have φ(p4) � φ(p′

4) = 215 with
probability 1), the probability of passing this test is 1/2, so we expect that 8 of
the initial 16 possible (Z(9)

2 , Z
(9)
3 )-values remain.
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The number of (Z(9)
1 , Z

(9)
4 )-values suggested for one pair depends on whether

φ(c1)�φ(c′
1) or φ(c4)�φ(c′

4) is 215. Whenever φ(c1)�φ(c′
1) = 215, this pair will

suggest 215 values of Z
(9)
1 .

When φ(c1) � φ(c′
1) �= 215 we will get exactly one value of Z

(9)
1 suggested,

likewise for Z
(9)
4 . We expect to have four right pairs, each with difference δ in

words 1 and 4 just before φ in the output transformation. The probability of
getting difference 215 after φ is 1/2 for each word, so we expect that one of
the right pairs will suggest 215 values for both Z

(9)
1 and Z

(9)
4 , a total of 230

values for (Z(9)
1 , Z

(9)
4 ). The probability that a random pair after filtering has

φ(c1) � φ(c′
1) = φ(c4) � φ(c′

4) = 215 is 2−30, so we don’t expect any other pairs
to have this property, since we are left with only 228 pairs.

The probability that a random pair after filtering has φ(c1) � φ(c′
1) = 215 is

2−15, so we expect to find 213 pairs with this property. These pairs will suggest
215 values for Z

(9)
1 and one value for Z

(9)
4 each. The same goes for the fourth

word, we expect 213 pairs suggesting one value for Z
(9)
1 and 215 values for Z

(9)
4 .

All other pairs will suggest exactly one value for (Z(9)
1 , Z

(9)
4 ).

Each of the values suggested from one pair for (Z(9)
1 , Z

(9)
4 ) must be coupled

with the eight values for (Z(9)
2 , Z

(9)
3 ), so the total number of subkeys suggested

is expected to be

8(1 · 230 + 213 · 215 + 213 · 215 + (228 − 214) · 1) ≈ 234.

The correct subkey is expected to be suggested 4 times, and the other keys are
expected to be distributed more or less at random over the other 264 possible
values. It is highly unlikely that a wrong key should be suggested four times, so
we take the most suggested key as the correct subkey.

4.3 Finding the Rest of the Key

By keeping track of which pairs suggest which keys, the right pairs will be
revealed. The remaining 64 bits of the master key may be found by further
analysis using the right pairs. Since we know the differences in these pairs at
any stage of the encryption, we may start at the plaintext or ciphertext side
and let these pairs suggest values for the (partially) unknown subkeys. We will
not go into details here, but this strategy should work faster than searching
exhaustively for the remaining 64 bits.

5 Conclusion

We have shown how to use the isomorphism between the groups Z216 and
GF(216+1)∗ as a basis for a differential attack on IDEA-X/2 that works without
any conditions on the subkeys. This attack also works on IDEA-X, and gives an
improvement over the attack found in [9]. This shows that the security of IDEA
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depends on the fact that � and not ⊕ is used when inserting the subkeys Z
(r)
2

and Z
(r)
3 .

A 4-round characteristic has been implemented, to check that theory and
practice are consistent when the round keys are not independent, but generated
by the key schedule. The implementation also incorporated the first round trick,
bringing the probability of the differential to 2−14. One thousand keys were
generated at random, and for each key 220 pairs of plaintext were encrypted,
and the number of right pairs recorded. The expected number of right pairs
is 64, the actual number of right pairs produced by the keys ranged from 33 to
131. Thus the analysis (assuming independent round keys) seems to be consistent
with the key schedule of IDEA.
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