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Abstract—The rapid development of Artificial Intelligence (AI)
and 5G paradigm, opens up new possibilities for emerging
applications in Industrial Internet of Things (IIoT). However, the
large amount of data, the limited resources of IoT devices, and
the increasing concerns of data privacy, are major obstacles to
improve the quality of services in IIoT. In this paper, we propose
the Digital Twin Edge Networks (DITEN) by incorporating
digital twin into edge networks to fill the gap between physical
systems and digital spaces. We further leverage the federated
learning to construct digital twin models of IoT devices based
on their running data. Moreover, to mitigate the communication
overhead, we propose an asynchronous model update scheme
and formulate the federated learning scheme as an optimization
problem. We further decompose the problem and solve the
subproblems based on the Deep Neural Network (DNN) model.
Numerical results show that our proposed federated learning
scheme for DITEN improves the communication efficiency and
reduces the transmission energy cost.

Index Terms—Communication efficiency, energy cost, feder-
ated learning, digital twin, Industrial IoT

I. INTRODUCTION

Emerging technologies such as 5G and edge computing pave
the way for the rapid development of Industrial Internet of
Things (IIoT) [1]. Devices in IIoT, which are equipped with
smart chips and wireless sensors, generate huge volumes of
running data. Due to the limited resources, one major issue is
how to process and mine these data to improve the quality of
services in IIoT.

Recent years have seen the great success of Artificial
Intelligence AI, which can be used in IIoT for data anal-
ysis and mining. Conventional cloud-based architectures [2]
transmit the user data to a cloud server, and executing AI
algorithms on the centralized server. However, due to the
large amount of transmitted data and long distance between
end users and cloud servers, the cloud-based solutions can
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hardly satisfy the delay requirement of various applications.
Mobile Edge Computing (MEC) [3] is proposed to mitigate the
communication delay and support latency-critical applications.
For example, the computation offloading problem is studied
in [4] and [5] to enable the computation-intensive applica-
tions. In [6], a deep Q-learning approach was proposed for
task offloading in MEC. The radio resource allocation and
computation offloading were jointly considered in [7] for the
IoT fog computing system. The energy consumption and task
processing delay were modeled into a constrained optimization
problem by authors in [8] for task offloading in MEC. With
the assistant of MEC, new technologies such as blockchain
[9] and Deep Reinforcement Learning (DRL) [10] have been
widely adopted for optimized resource allocation in IIoT [11]–
[14]. For example, in [11], the authors presented a DRL
and blockchain empowered resource scheduling framework for
IIoT. In [13], the authors formulated the multi-tenant cross-
slice radio resource orchestration problem as a multi-agent
Markov decision process and leveraged DRL to learn the
optimal policies. Besides IoT scenarios, the DRL model has
also been widely studied for MEC in smart city [14] and
cognitive vehicular communications [15].

However, in Industry 4.0, real-time interactions are required
to fill the gap between physical and virtual domains. The
stochastic communication latency and the continuous-growing
running data in the IIoT network make it hard for MEC servers
to perform online optimization by collecting and analyzing
the running data such as the Channel State Information (CSI)
from IoT devices. Therefore, the paradigm of digital twin is
proposed [16] to connect the physical machines with cyber
systems for better optimization of the manufacturing processes
[17]. As the mapping between physical entities and virtual
digital systems, digital twin has been listed by Gartner as
one of the most promising technologies in the next decade.
Despite the importance of digital twin, there remains a paucity
of evidence on the modeling and application of digital twins in
wireless networks [18]. The massive data to be synchronized
and the limited computing and communication resources hin-
der the modeling of digital twins in IIoT networks. Moreover,
the rising concerns of data privacy and security, raise new
challenges for the construction of digital twins.

We leverage federated learning to alleviate the above issues
in digital twin modeling. Federated learning [19] enables dis-
tributed machine learning over edge devices without collecting
their raw data for training. The client users train models
locally and only transmit their parameters to the server. With
respect to data privacy, there has been growing interest in
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applying federated learning in wireless networks recently [20].
For example, the authors in [21] exploited federated learning
to achieve proactive content caching in MEC scenarios. In
[22], the authors proposed to integrate federated learning with
blockchain for secure data sharing in industrial IoT, which pro-
vides a secure and efficient data sharing scheme for distributed
IoT devices. In [23], the authors applied federated learning
to wireless networks and provided the optimal solution for
balancing the energy consumption and learning time cost.
Some works have also considered addressing the security of
federated learning, such as gradient leakage [24] and user data
privacy [25]. To enhance security and privacy, the authors
in [26] proposed to employ Bayesian differential privacy to
provide sharper privacy loss bounds in federated learning.

However, a critical challenge posed to federated learning in
IIoT is the communication overhead. With the development
of AI techniques, machine learning models such as Deep
Neural Networks (DNN) and Convolutional Neural Networks
(CNN) are becoming more and more complex, which leads to
growing size of model parameters [27]. Moreover, the training
in federated learning is an iterative process, which requires
frequent parameter exchange between clients and the server.
Therefore, to apply federated learning in resource-constrained
IIoT scenarios, reducing the communication overhead is a fun-
damental problem that requires in-depth investigation. Some
works have explored to mitigate resource consumptions in
federated learning by reducing the parameter transmission load
between the server and clients. In [28], the authors proposed
a control algorithm to determine the best trade-off between
local update and global parameter aggregation under a given
resource budget. In [29], the authors addressed the issue of
inefficient training caused by client with limited resources and
selected clients based on their resource conditions. However,
directly skipping the global aggregations may degrade the
quality and convergence of the global models. In the learning
process, the allocation of computation and communication
resources, the model update scheme of users, require to be
jointly considered to improve the communication efficiency
of federated learning.

In this paper, we first propose the architecture of Digital
Twin Edge Networks (DITEN), by integrating digital twin with
edge computing to establish an efficient mapping between IoT
devices and cyber systems. Then, we adopt federated learning
to build the models in DITEN. We further present the federated
learning system model and formulate the problem of reducing
communication costs to an optimization problem. The problem
is then decomposed into two subproblems and solved by a
Deep Neural Network (DNN) model. The main contributions
of this paper are summarized as follows.
• We propose the architecture of DITEN, which integrates

digital twin with edge computing to make efficient and
appropriate optimization of the IIoT networks.

• We leverage the federated learning scheme to construct
the DITEN models, which can reduce the data transmis-
sion overhead and protect data privacy. Furthermore, to
improve the communication efficiency, we propose an
asynchronous model update scheme, and formulate the
problem of reducing communication cost to an optimiza-

tion problem.
• We solve the communication cost optimization problem

by decomposing it into two subproblems and determine
the optimal strategies for allocating the communication
resources based on a deep neural network model.

II. SYSTEM MODEL

In this section, we introduce the model of our digital twin
edge network in IIoT. The communication model and com-
putation model are also presented to formulate the federated
learning problem.

A. Digital Twin Edge Network Model

Fig. 1 shows the architecture of our DITEN. There are
mainly three layers in our framework: user layer, edge layer,
and digital twin layer. The user layer consists of client devices
in IIoT such as smart machines, vehicles, and IoT devices.
The client users are denoted by U = {u1, u2, ..., uN}. Each
client device generates and holds the local dataset denoted by
Di, with size Di. The edge layer is composed of Base Stations
(BSs) that are equipped with MEC servers. The BSs, which are
indexed by B = {B1, B2, ..., BM}, connect with user devices
under their coverage via wireless communications. The digital
twins are constructed in the BSs. For a client user ui, its digital
twin DTi is modeled in its nearby BS based on the local data
of ui. As shown in Eq. (1), DTi(t) consists of its model Mi,
historical data Di, running state si and interaction state data
∆si from ui.

DTi(t) = Γ(Mi,Di, si,∆si, t). (1)

The DTi collects the running data from the user device and
constructs a model Mi of ui. Moreover, DTi continuously
interact with ui to keep their consistency. The digital twins
may also interact with each other, which forms the digital
twin edge network. The virtual network can reflect the real
network states in the user layer.

Our proposed DITEN constructs a mapping scheme that
connects the physical devices in the user layer with the digital
systems in the edge layer. Based on the DITEN, further
network optimization and resource allocation strategies can be
explored in DITEN and be implemented to the real networks.

We leverage federated learning to model digital twins in
our DITEN. The goal of federated learning is to establish
a machine learning model M for DITEN, which can give
reaction to the states based on the rules and states of real
devices. Denote the loss function as f(w), which quantifies
the difference between estimated and true values for instances
of running data Di. The loss function Fi(w) of user ui on
dataset Di is defined as:

Fi(w) =
1

Di

∑
xj ,yj∈Di

f(w, xj , yj), (2)

where xj , yi is the samples of training data. The aggregated
loss function is

Authorized licensed use limited to: UNIVERSITY OF OSLO. Downloaded on September 01,2020 at 23:32:35 UTC from IEEE Xplore.  Restrictions apply. 



3

∑

Digital Twins

IoT devices

Edge layer

... ...

IoT devices

... ...

∑

Running states

User layer

... ...

Fig. 1: Digital Twin Edge Networks for IIoT

Fg(w) =
1

Dg

N∑
i=1

Fi(w), (3)

where Dg =
∑N
i=1Di is the total size of data from participat-

ing users. The goal of federated learning is to minimize the
global loss:

min
w∈Rd

Fg(w) (4)

In practical scenarios, due to limited computation and com-
munication resources and storage capabilities, we can select
the data for some specific applications that are most useful
to build digital twins. For example, in the traffic prediction
scenario, the digital twin models can be constructed only from
the traffic data.

B. Communication Model for DITEN

We consider the finite state model to capture the states
of wireless channels in our DITEN. The channel state is
obtained based on the received signal-to-noise ratio (SNR).
The possible values of SNR are partitioned into K intervals
as H = {H1, H2, ...,HK}. The channel state at time period
t is denoted as ζ(t) = Hk, which can be considered to
be constant during period t, and varies in different periods.
The transition probability from channel state ζ(t) = Hk1 to
channel state ζ(t) = Hk2 is derived according to Markov
transition probabilities.

We consider the multicast Orthogonal Frequency Division
Multiple access (OFDMA) protocol between end users and
BSs in our DITEN. Assume that there are C0 sub-channels
over the whole bandwidth W . The number of sub-channels
allocated to user ui is cui

, and allocated to BS Bj is cBj
. The

achievable data rate of user ui at BS Bn is

rui,Bj
=
cui

C0
Wlog(1 + ζui,Bj

). (5)

The wireless spectrum allocated to all users and BSs should
not exceed the total bandwidth, which follows the constraint:

N∑
i=1

cui
+

M∑
j=1

cBj
≤ C0, (6)

where ui ∈ U and Bj ∈ B.

C. Federated Learning Empowered Computation Model for
DITEN

All the participating users share the same machine learning
model w(t − 1) obtained from the BS at the beginning of
iteration t. Each ui then trains the model w(t) based on its
local data Di, denoted as:

wi(t) = w(t− 1)− η∇Fi(w(t− 1)) (7)

The trained model parameters wi, and the running state
si, are transmitted to the nearby BS by user ui. The BS,
which also act as the aggregator, collects the parameters from
participating users and aggregates them into a global model,
as:

w(t) =
1

Dg

N∑
i=1

Diwi(t), (8)

where η > 0 is the learning step. The process is repeated until
the global model parameters w(t) achieve the minimum global
loss in Eq. (3).

For user ui, we denote the number of CPU cycles needed to
execute one unit of data by ξi, which is decided by the CPU
chips of ui. The CPU-cycle frequency of user ui is denoted
as fui

. Thus, the CPU energy consumption of user ui in one
iteration is

Ecmpui
= αξiDif

2
ui
, (9)
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where α is the energy consumption coefficient of user i’s
device. The computation time of user ui is

T cmpui
=
ξiDi

fui

, (10)

In the transmission phase of user ui, the transmission time
is

T comui
=
|wi(t)|
ri

, (11)

where |wi| is the size of transmitted model parameters of ui.
The energy consumption of ui’s transmission is

Ecomui
=
βPi|wi|
ri

, (12)

where β is ui’s energy consumption coefficient for transmis-
sion.

The users apply the standard gradient descent method to
train their local models with the learning rate η as in Eq. (7).
We consider that the gradient ∇F (wg) is uniformly Lipschitz
continuous for a positive constant L, that is

||∇f(wt+1)−∇f(wt)|| ≤ L||wt+1 − wt||. (13)

We also consider that F (w) is strongly convex with parameter
µ and is twice-continuously differentiable. According to [30],
we can obtain

F (wt+1) ≤ F (wt)−
1

2L
||∇F (wt)||2 (14)

Since F (w) is strongly convex , for any w, we can also obtain

F (w∗) ≥ F (w)− 1

2µ
||∇F (w)||2 (15)

In the case w = wt,

||∇F (w)||2 ≥ 2µ[F (wt)− F (w∗)]. (16)

By subtracting F (w∗) from both sides of Eq.(14) and (16),
we obtain the upper bound of E[F (w(t+ 1))− F (w∗)]

E[F (w(t+1))−F (w∗)] ≤ (1− µ
L

)E[F (w(t))−F (w∗)]. (17)

Thus, the federated learning algorithm converges to the opti-
mal global model in the training process.

Since the BSs in our system have sufficient power resources,
the energy consumption of BSs has little effect on our system.
Thus we only consider the energy consumption of end users in
our scheme. In addition, since the downlink bandwidth is much
larger than the uplink, we also do not consider the downlink
time.

The proposed federated learning scheme can also be applied
to multi-BS scenario, where the MBS (or the BS) collects
all parameters from various BSs and aggregates them to a
global model. In the multi-BS federated learning scenario,
the communication between BSs and the MBS can also be
modeled by the communication model in our scheme. The
achievable data rate of BS Bj1 to BS Bj2 is

rBj1 ,Bj2
=
cBj1

C0
Wlog(1 + ζBj1 ,Bj2

). (18)

The increased communication cost is
M∑
m=1

|wm|
rBm,Bs

(19)

where M is the number of BSs, rBm,Bs
is the achievable data

rate between BS Bm and the MBS Bs.

III. COMMUNICATION-EFFICIENT FEDERATED LEARNING
FOR DITEN

To reduce the communication overhead in our DITEN, we
propose a communication-efficient federated learning scheme
in this section.

The processes of conventional federated learning are shown
in Fig. 2. For each participating user, there are two pro-
cesses: local training and parameter transmission. Due to the
heterogeneous computation and communication resources, the
execution time varies in different users. The aggregator, which
is a BS with the MEC server, waits for all the users to finish
their execution, including the slowest one. The dynamic exe-
cution time of different users straggles the whole synchronous
scheme.

Users

Iterations

u2

u3

u1

Global aggregation

Local computation completed
Model transmission completed

Fig. 2: Conventional federated learning processes

Towards the above issue, we improve communication ef-
ficiency and reduce overall energy cost from the following
aspects:
• Decreasing the size of overall parameter data transmitted

to the aggregator to improve update efficiency;
• Improving communication efficiency by optimizing the

allocation of communication resources.

A. Asynchronous Weighted Model Update

We propose to use asynchronous model update scheme to
reduce the size of transmitted data and improve transmission
efficiency. The transmission overhead is calculated as:

φ =

T∑
t=1

N∑
i=1

|wi(t)|, (20)

where T is the total rounds, N is the number of total
participants, |wi(t)| is the size of user i’s updating model in
iteration t. From Eq. (20) we can see that the communication
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overhead is decided by the size of model parameters, the
rounds of communications, and the number of participating
users. The |wi(t)| can be reduced by data compression or
reconstruction [31], [32].

In our DITEN, the update includes the device state s(t)
and model parameters wi(t) of federated learning. The model
parameters are used to build the global model, while the device
running states s(t) are used to synchronize the digital twins.
In the gradient descent based algorithms, the model training
process usually converges smoothly. For some participants,
they do not need to frequently update their model parameters
to the BS. Instead, they only need to update their running state
to the digital twins in BSs, which can reduce the overhead
of total transmission. We define the update weight τi(t) in
iteration t as:

τi(t) = (t− tl) · (
||wi(t)− wg(t− 1)||

wg(t− 1)
)
ri(t)

fui

, (21)

where t− tl is the round gap of ui since its last global aggre-
gation, ||wi(t)− wg(t− 1)|| is the absolute model difference
between ui’s local model and global model, ri(t)fui

is ui’s ratio
of communication capability to computation capability. The
users with high τi(t) that exceeds a predefined value should
participate in the global aggregation process in iteration t.
Otherwise, the users only transmit its current state to update
the digital twins, and continue to execute the local training
process.

In the edge layer, the BS aggregates the local models it
received according to Eq. (22)

wg(t+ 1) =

K∑
k=1

Dk∑K
k=1Dk

(1− e−τi(t)) · wk(t), (22)

where k ∈ {1, ...,K} denotes the k-th user that participants
in the global aggregation.

The complete processes of our asynchronous weighted
model update scheme is shown in Algorithm 1.

Algorithm 1 Asynchronous Weighted Model Update

Input: Last global update round tl, achievable data rate ri(t),
achievable CPU frequency fui

1: Initialize the global model M0

2: for each iteration t do
3: for each user ui ∈ U do
4: ui trains its local model on its data Di

5: ui calculates its update weight τi(t) according to Eq.
(21)

6: If τi(t) > τ0, ui updates its local model for global
aggregation. Otherwise, ui continues its local training

7: end for
8: BS Bj collects all running states and updates the digital

twins
9: Bj aggregates the local models it received according to

Eq. (22)
10: Bj broadcasts the new global model wg(t) to users
11: end for

B. Problem Formulation

To improve communication efficiency, we allocate the com-
munication resources in our DITEN according to the system
states such as the current computing capabilities and the
channel state information of IoT devices.

We adaptively allocate our communication resources to par-
ticipating users, to mitigate the imbalance of communication
performance. As shown in Fig. 3, the “straggler” users such
as u2 are assigned with more communication resources, while
the “fast” users such as u1 and u3 are assigned with less
communication resources. The aggregation data rate of the

Users

Iterations

u2(straggler)

u3 (fast user)

u1(fast user)

Global aggregation

Local computation completion point
Model transmission completion point

Transmission completion point before optimization

Fig. 3: Optimized federated learning processes

i-th user is

Ri =

C0∑
k=1

θi,kri,k, (23)

where θi,k ∈ {0, 1} represents whether the n-th subcarrier
is assigned to user i. θi,k = 1 indicates that subcarrier n is
allocated to user i. Otherwise, θi,k = 0. The θi,k satisfies∑

i∈N
θi,k ≤ 1,∀k ∈ C0, (24)

which denotes that one subcarrier can only assigned to at
most one user. The transmit power of the user devices are
also limited, which satisfies∑

k∈C0

Pi,k ≤ Pmaxi (25)

The expected average execution time of users in iteration t
is:

Tave(t) =
1

N

N∑
i=1

(T cmpi (t) + T comi (t)) (26)

We define the time variance to quantify the execution
imbalance between participants, as:

Tvar(t) =

∑N
i=1 |Ti(t)− Tave(t)|

N
(27)

Base on the above models, we now formulate an optimiza-
tion problem to minimize the communication cost in federated
learning process. We optimize the resource allocation for
participating users in federated learning. The minimization
problem is:
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min
f ,λ,θ

1∑N
i=1 λi

N∑
i=1

λi(Ti(θ, t)− Tave(λ,θ, t))2 (28)

s.t. λi, θ
k
i ∈ {0, 1},∀i ∈ N, (28a)∑

i∈N,k∈C0

θi,k ≤ C0, (28b)

Tave(λ,θ, t) ≤ Tthd,∀i ∈ N, (28c)

fmini ≤ fi ≤ fmaxi ,∀i ∈ N, (28d)

Pmini ≤ Pi ≤ Pmaxi ,∀i ∈ N, (28e)
Ei(ri, Pi) ≤ Ethd, (28f)

where λi(t) is the index that denotes whether user i partici-
pates in the t-th global aggregation of federated learning. If
τi(t) ≥ τ0, λi(t) = 1. Otherwise, λi(t) = 0. Tthd is the
execution time threshold. The execution time of ui is given
by:

Ti(θ, Pi, t) =
ξiDi

fui

+
|wi(t)|∑C0

k=1 θi,kri,k
(29)

The average execution time of participating users in iteration
t is:

Tave(λ,θ,P , t) =
1

N

N∑
i=1

λi · (
ξiDi

fui

+
|wi(t)|∑C0

k=1 θi,kri,k
) (30)

Constraint (28a) denotes that the allocated bandwidth should
not exceed the total bandwidth. (28d) and (28e) are the
maximum CPU frequency and transmission power of users.
Constraint (28f) is the energy consumption limit of users,
where Ethd is decided by the power supply of user devices.

IV. OPTIMIZATION OF COMMUNICATION RESOURCES FOR
FEDERATED LEARNING

Since it is hard to obtain the Tave in advance, we leverage
digital twins to estimate the expected execution time of Tave.
At the beginning of each iteration t, the states s(t) of each
IoT devices are mapped to the digital twins. We calculate
the expected execution time of each user device according to
Eq. (30) based on the communication model and computation
model in Section II.

In problem (28), the optimization variables can be divided
into two phases: fi in the computation phase and θi,k, λ(τi)
in the communication phase. In the computation phase, the
variable fi of user devices determines the energy cost and
computation time. Thus, the objective of this phase is to jointly
minimize the energy cost and computation time:

min
fi

N∑
i=1

Ecmpn (fi) + γT cmp (31)

s.t.
ξiDi

fi
≤ Tcmp,∀i ∈ N, (32)

fmini ≤ fi ≤ fmaxi ,∀i ∈ N (33)

The balance requirement between the energy consumption and
the time cost is determined by the factor γ. Problem (31) is a
CPU-cycle control problem that can be solved by categorizing

users into three groups according to their T cmpui
. The optimal

solution is:

f(x) =


fmaxn ∀i ∈ N1,

fminn ∀i ∈ N2,
ξiDi

T∗
cmp

∀i ∈ N3,

(34)

T ∗cmp = max{TN1
, TN2

, TN3
}, (35)

where N1 is the “bottleneck” user group that always run
its maximum frequency, N2 is the “strong” group which
run minimum frequency, N3 is the user group having the
optimal frequency. N1, N2, N3 are produced based on their
computation time T cmpui

and thresholds TN1 ,TN2 ,TN3 [33].
In the communication phase, the computation time

of each participant is fixed, denoted as T cmp(t) =
{T cmp1 , ..., T cmpN },∀i ∈ N . The optimization problem is:

min
λ,θ

N∑
i=1

λi(T
com
i (θ, Pi, t) + T cmpi − Tave)2 (36)

s.t. λi, θ
k
i ∈ {0, 1},∀i ∈ N, (36a)

Tave ≤ Tthd, (36b)∑
i∈N,k∈C0

θi,k ≤ C0, (36c)

Pmini ≤ Pi ≤ Pmaxi ,∀i ∈ N, (36d)
Ei(ri, Pi) ≤ Ethd, (36e)

Conventional optimization methods require the optimization
problem to satisfy strict assumptions and constraints. The
performance of conventional optimization methods greatly
relies on choosing the correct threshold, which is a challenging
task for dynamic scenarios. To improve the system flexibility
and robustness, we propose the digital twin empowered deep
neural network to find the optimal solution. The trained DNN
model can be used for online optimization, and can deal with
dynamic system states. The states s(t) are the input of DNN
Θ, which is defined as:

s(t) = {T cmpi ,θt−1, ζ,λ}. (37)

The output vector λ is calculated according to Eq. (38)

θt =
L∑
l=1

f(W [l]X [l] + b[l]). (38)

We propose a heuristic algorithm to solve problem (36). The
scheme consists of three phases: initialization, exploration, and
training.
• Initialization: since the communication time of i-th user

only depends on its own transmitted data and the subcar-
riers it occupied, we iteratively assign the subcarriers to
participating users to find the best allocation policy. Note
that the number of participating users can be controlled
by Algorithm 1. We consider the number of subchannels
is larger than the number of participating users. The initial
allocation strategy is determined as follows. First, we rank
the subchannels according to their current channel states.
The good channels are assigned to the users with high
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T cmpi , and each user is assigned with one subchannel.
Then, we calculate the current Ti(θ, Pi, t) of each user
and assign the good channels to the users with high
Ti(θ, Pi, t).

• Exploration: We then explore the possible allocation
policies to validate their performance. The estimated
average time cost Tave is calculated first. For user ui that
T cmpi + T comi > Tave, more subcarriers are allocated to
ui. Otherwise, if T cmpi +T comi < Tave, fewer subcarriers
are allocated to ui. We iteratively change the assignment
of subcarriers, while the others remain the same as in the
initialized states, to obtain the new allocation policy θ.
We calculate the object value Ψ(s, θ) based on the system
parameters in digital twin according to Eq. (36).

• Training: According to the values of Ψ(s, θ), we choose
the one that minimizes the objective function in Eq.
(36), and save the tuple {s(t), θt} into training buffer
memory. We adopt the experience replay technique to
train the DNN model. The trained DNN model can
generate the optimal communication resource allocation
strategy towards various system states in real-time.

The complete communication resource optimization process is
shown in Algorithm 2.

Algorithm 2 Communication Resource Optimization

Input: Computation time of each participant T cmpi (t), size of
trained models |wi(t)|, channel state information ζ(t)

1: Initialize the original allocation strategy θ0
2: Calculate the current object value Ψ(s, θ) according to Eq.

(36), where s is obtained from the digital twins in edge
layer

3: for each iteration t do
4: for each θj do
5: Run the exploration and obtain the new allocation

strategy as θj
6: Calculate the current object value Ψ(s, θ) according

to Eq. (36) based on states of digital twins
7: Record the states s, allocation strategy, and the

Ψ(s, θj)
8: end for
9: Calculate the best allocation strategy Ψ(s(t), θ(t))

10: Store the states and optimal allocation strategy
Ψ(s(t), θ(t))

11: end for
12: Train the DNN model with stored samples (st, θt)

Since the DNN model can make real-time decisions, we
mainly consider the complexity in the training process. For a
given system state s, we denote the size of subchannels as K
and the number of participants as N . Each subchannel can be
assigned to one of K users, while every user should occupy
one subchannel. Thus, there are N + (N − 1) + ... + (N −
K) + K ∗ (K − N) types of allocation strategies. Thus, the
complexity to find the optimal strategy is O(K ∗ (K − N)).
Due to the dynamic network states, the computation time T cmpi

and the update factor λi vary in each iteration. The dynamic
state data s can be obtained by interacting with the digital

twin networks in each iteration. For T iterations, the total
complexity for obtaining the training samples is O(KT (K −
N)). The DNN model is trained on the data samples off-line
and updated periodically with the change of network states.
The trained DNN model is then used to generate real-time
resource allocation policies for improving the communication
efficiency of federated learning.

V. NUMERICAL RESULTS

We conduct evaluations of the proposed communication-
efficient federated learning on the real-world dataset MNIST
[34]. The MNIST training set contains 60,000 examples and
the testing set contains 10,000 examples. The learning on
the dataset is similar to the image recognition applications
in IIoT such as autonomous driving and intelligent camera.
In our federated learning, we take the CNN model [35]
as the initial model to be trained. We also compare our
asynchronous model update scheme with the conventional
synchronous update scheme. We set the number of end users
to 100 in our evaluation, while their device states are randomly
derived from different Gaussian distributions. The example
network scenario is shown in Fig. 4. We mainly consider the
application scenario with single BS as the aggregation server.
The proposed scheme can also be extended to the application
scenarios with multiple BSs and one MBS as the aggrega-
tion server. Compared with single-BS scenarios, applying the
proposed scheme to multi-BS scenarios will slightly increase
the communication cost between BSs and the MBS to transmit
model parameters. We shuffle the 60,000 training samples and
distribute them to the 100 users, where the number of samples
on each user follows N(µ = 600, σ = 200).

Fig. 4: The example network scenario

We evaluate the accuracy of our proposed federated learn-
ing with different numbers of participants on the MNIST
dataset. We set the number of participants to 30, 50, 70,
90 by adjusting the weight threshold for participating in the
update process. The accuracy quantifies the ratio of correctly
predicted samples by the learned global model. From Fig. 5 we
can see that the learning scheme converges to high accuracies
after 20 iterations. The final accuracy results show that the
accuracy increases with the number of participants. However,
the performance gap between groups with different numbers
of participants is small, which shows the good scalability of
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the proposed federated learning scheme. The results of training
loss in Fig. 6 further confirm the good accuracy and scalability
as in Fig. 5, where the loss results in different groups with
different numbers of participants converge to similar small
values.
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The accumulative time cost results of our proposed com-
munication resource optimized update scheme, and the con-
ventional synchronous update scheme, are shown in Fig. 7.
Compared with the baseline algorithm, our proposed method
achieves better time cost results. The accumulative time cost
of our proposed method increases much slower with the

training round than the baseline algorithm. The reason is
that the execution time of the synchronous update scheme
is determined by the slowest user with poor computing and
communication capability. The results show that the proposed
scheme reduces the overall communication time cost in the
model update process, which can further reduce the overall
energy consumption in communication.

Fig. 7 shows the comparing time cost with different num-
bers of participants. The time cost of our proposed method
increases slightly with the number of participants, while the
time cost of the baseline algorithm increases considerably with
the participation of new users. Since the time cost also denotes
the global consumption of computation and communication
resources, the results indicate that the allocation of resources
can reduce the average resource consumption. The loss values
and inference accuracy of our proposed DNN model in the
training process are provided in Fig. 9. From Fig. 9 we can
see that the DNN model can be trained in dozens of rounds
with high inference accuracy. Therefore, the trained DNN
model can be used in real-time optimization of communication
resources in the federated learning process to reduce overall
energy consumption.
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Fig. 9: The training loss and inference accuracy of our
proposed DNN model
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VI. CONCLUSION

In this paper, we proposed the architecture of DITEN, which
incorporates digital twins into edge networks for real-time
data analysis and network resource optimization. To model
digital twins, we used federated learning to build digital twins
from the historical running data of devices. The raw data
transmission is avoided and data privacy is enhanced in fed-
erated learning. We then formulated an optimization problem
that aims at reducing the communication cost of federated
learning, and provided the solution by decomposing it and
using DNN for communication resource allocation. Numerical
results on the benchmark real-world dataset corroborated that
our proposed mechanism can improve the communication
efficiency and reduce the overall energy cost.
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