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Abstract— Hypoglycemia periods in Type 1 Diabetes mel-
litus (T1DM) patients are a dangerous condition leading to
serious acute complications, such as diabetic coma or death.
Despite recent technological and scientific advances in T1DM
therapy management, prevention of severe hypoglycemic peri-
ods still remains a challenge.

In this paper, we present a novel combination of a neu-
ral inverse optimal control via control Lyapunov function
(CLF) combined with a kernel-based regularization learning
predictive algorithm (KAR) for optimal control of the blood
glucose levels with a strong focus on timely detection and
prevention of acute debilitating and harmful hypoglycemic
events. We describe how the proposed scheme can be used
for aforementioned problem and report the results of the tests
on University of Virginia (UVA)/Padova Simulator as well
as comparing them with existing literature. The performance
assessment of the algorithms has been made with the use of
control variability grid analysis (CVGA).

I. INTRODUCTION

According to the International Diabetes Federation, di-
abetes mellitus is one of the costliest health problems in
the world and one of the major causes of death worldwide.
Prevalence of diabetes mellitus in 2013 was 387 million
people worldwide and is expected to increase by 205 million
people before 2035. Diabetes caused 4.9 million deaths in
2014 and the estimated global healthcare expenditures to
treat and prevent diabetes and its complications reached
$612 billion (US). Type 1 diabetes mellitus (T1DM) is a
chronic auto-immune disease caused by a lack of insulin
due to the destruction of insulin-producing beta cells in the
pancreas [1]. Although insulin was discovered in 1921, the
ability of insulin to promote glucose utilization and glycogen
formation was established in 1926 [2]. For many years,
the correlation between the degree of hyperglycemia and
the severity of chronic complications was the major quest.
The Diabetes Control and Complication Trial, the most
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important study of glycemic control in the field of Diabetes,
demonstrated that glycemic control with continuous insulin
infusion in T1DM patients can reduce or delay long-term
complications associated to hyperglycemia such as cardio-
vascular disease, nephropathy, neuropathy, amputation and
retinopathy, nevertheless, with this intense insulin therapy
a threefold increase in short term complications related to
severe hypoglycemia was detected [3]. There is also a longer
term complication of frequent and severe hypoglycemia
which is hypoglycemia unawareness [4].

Keeping blood glucose within normal bounds has become
the daily challenge for T1DM patients. Common insulin
therapy consists in providing insulin to the patient subcuta-
neously [5] [3]. In 2012, the Food and Drug Administration
(FDA) published a guidance, which pointed out the basic
device parts of the so called Artificial Pancreas Device Sys-
tem (APDS). Consisting of: 1) a continuous glucose monitor
(CGM) with a Blood Glucose Device (BGD) to optimize
the measures of the CGM, 2) a continuous subcutaneous
insulin infusion (CSII) pump, 3) a control algorithm which
calculates the adequate insulin dose for the patient [6].

Different control techniques have been applied for T1DM
closed-loop control in silico and in vivo testing. These
schemes include the classical PID control scheme [7], [8],
[9], [10], [11], [12], MPC (model predictive control) [7],
[13], [14], [15], [16], [17], [18] MPILC (a combination of
iterative learning control and MPC) [19], adaptative control
[20], linear robust µ-synthesis control [21], H∞ - based
control [22], [23]. In this paper, a control technique based on
discrete-time inverse optimal control via a control Lyapunov
function (CLF) for nonlinear systems trajectory tracking
is used to compute insulin infusion for T1DM patients
[24]. A kernel-based regularization-learning algorithm [25]
is incorporated in the controller as a predictor to prevent
the risk of hypoglycemia. Control-variability grid analysis
(CVGA) presented in [26] is used as a tool to present
the simulation results. The UVA/Padova Type 1 Diabetes
Mellitus Simulator (T1DMS) is used to test the proposed
controller [27], [8].

T1DMS and its distributed version can be obtained
through the UVA/Padova organization, enhanced by models



of subcutaneous (s.c.) insulin pumps and glucose monitors.
The aforementioned distributed version has a cohort of 30
virtual patients (10 adults, 10 adolescents, 10 children). It
also adds models of continuous glucose monitoring (CGM)
and s.c. insulin delivery, which allows more realistic simu-
lations. Furthermore, this system has been accepted by the
FDA as a substitute to animal trials in pre-clinical testing of
closed-loop control strategies. Several strategies for blood
glucose regulation in T1DM have been designed and/or
tested using T1DMS and analyzed with CVGA. Next, a few
of these approaches are briefly described.

In [28] the authors present a control scheme using a
patient-specific H∞ robust controller to reduce the risks
of hyperglycemia and hypoglycemia. The scheme is further
enhanced by an Insulin Feedback Loop (IFL) and a Safety
Mechanism (SM) to reduce the risks of hyperglycemia and
hypoglycemia in T1DM.

The control scheme is tested on T1DMS using the data
from 101 adults. Using the CVGA as a performance assess-
ment metrics, the controller illustrates satisfactory results
with a slight tendency towards hyperglycemia.

A personalized insulin infusion advisory system (IIAS) is
proposed in [29] to provide real-time estimations of insulin
infusion rate for T1DM patients. The approach consists, 1) a
personalized model based on the combined use of CMs and
an RNN for the simulation of glucose-insulin metabolism
and 2) an automatic algorithm for the on-line adaptation
of NMPC parameters. First, using data corresponding to 5
days of open-loop experiments of in-silico subjects were
performed to train glucose-insulin metabolism models. After
the 5 days of the tuning, IIAS has been set up and its per-
formance has been tested on data of 10 adult patients from
T1DMS. The performance results for IIAS were similar to
those for the controller scheme, i.e., a benign error and a
slight tendency towards hypoglycemia.

Model Predictive Control equipped with an asymmet-
ric quadratic cost function, postprandial input integral and
postprandial output soft constraints are presented in [30].
The controller was synthesized with a linear glucose-insulin
model customized on the basis of the patient clinical knowl-
edge. T1DMS is used to perform a perturbed scenario in
which the controller is not aware of random variations of
insulin sensitivity in 100 adult virtual patient. For both
scenarios the performance evaluation results using CVGA
are quite similar; whereas for the perturbed scenario some
error is observed.

In this paper, demonstrating the effectiveness of the
control scheme along with the predictor, we consider three
different simulation trials: 1. Using bolus after meals without
controller for five days (10 patients), 2. Using the controller
for five days (10 patients), 3. Using the controller and the
predictor together for five days (10 patients).

This paper is organized as follows: First the inverse
optimal control strategy via CLF and the neural model
are described; then the kernel-based regularization-learning
algorithm is presented, followed by simulation results where

three different scenarios are tested using the UVA/Padova
simulator, these results are presented using CVGA. Finally,
conclusions are presented.

II. DISCRETE TIME NON-LINEAR SYSTEMS INVERSE
OPTIMAL CONTROL VIA CLF

As described by Leon et al. [24], when we deal with op-
timal control, the solution of the Hamilton-Jacobi-Bellman
(HJB) partial differential equation is required. A control
law as a result of the optimal control formulation and
the associated HJB solution provides stability, optimality
and robustness with respect to disturbances [31]. However,
determining a solution for the HJB equation is the main
drawback of the optimal control; this solution may not exist
or may be extremely difficult to obtain. An inverse optimal
control approach for a class of discrete-time nonlinear
systems is used, which does not require a solution of the
HJB equation and guarantees robust stability in the presence
of disturbances and the minimization of a meaningful cost
functional. A quadratic candidate CLF is used to synthesize
the inverse optimal control law.

Considering a nonlinear affine system

xk+1 = f (xk) + g(xk)uk x0 = x (0) (1)

where x ∈ <n which is the state of the system at time
k ∈ N , u ∈ <m f : <n → <n, g : <n → <n×m, are
smooth and bounded mappings, f (0) = 0, N denotes the
set of nonnegative integers. The following meaningful cost
functional is associated with the trajectory tracking problem
for system (1)

C (zk) =

∞∑
n=k

(
l (zn) + uTnR (zn)un

)
(2)

where zk = xk−xδ,k with xδ,k as the desired trajectory for
xk; zk ∈ <n; C (zk) : <n → <+; l (zk) : <n → <+ is a
positive semi-definite function and R (zk) : <n → <m×m
is a real symmetric positive definite weighting matrix. The
entries of R (zk) can be fixed or can be functions of the
system state in order to vary the weighting on control
efforts according to the state value [32]. Considering the
state feedback control design problem, we assume that the
full state xk is available. Using the optimal value function
C∗ (xk) for (2) as Lyapunov function V (xk), equation (2)
can be rewritten as

V (zk) = l (zk) + uTkR (zk)uk

+

∞∑
n=k+1

(
l (zn) + uTnR (zn)un

)
= l (zk) + uTkR (zk)uk + V (zk+1)

where it is required the following boundary condition
V (0) = 0 so that V (zk) becomes a Lyapunov function.
From the Bellman optimality principle [33] [34], it is known
that, for the infinite horizon optimization case, the value



function V (zk) becomes time invariant and satisfies the
discrete-time (DT) Bellman equation [34] [35] [36]

V (zk) = min
uk

{
l (zk) + uTkR (zk)uk + V (zk+1)

}
where V (zk+1) depends on both zk and uk by means of
zk+1 in (1). Note that the DT Bellman equation is solved
backward in time [36].

In order to establish the conditions that the optimal control
law must satisfy, we define the discrete-time Hamiltonian
H (zk, uk) as

H (zk, uk) = l (zk)+u
T
kR (zk)uk+V (zk+1)−V (zk) (3)

A necessary condition that the optimal control law should
satisfy is ∂H(zk,uk)

∂uk
= 0, then

0 = 2R (zk)uk +
∂V (zk+1)

∂uk

= 2R (zk)uk +
∂zk+1

∂uk

∂V (zk+1)

∂uk

= 2R (zk)uk + gT (xk)
∂V (zk+1)

∂uk

Therefore, the optimal control law to achieve trajectory
tracking is formulated as

u∗k = −1

2
R−1 (zk) g

T (xk)
∂V (zk+1)

∂zk+1

with the boundary condition V (0) = 0. For solving the
trajectory tracking inverse optimal control problem, it is
necessary to solve the following HJB equation:

l (zk) + V (zk+1)− V (zk)

+
1

4

∂V T (zk+1)

∂zk+1
gT (xk)R

−1 (zk) g
T (xk)

∂V (zk+1)

∂zk+1

= 0 (4)

which is a challenging task. To overcome this problem, we
propose to use the inverse optimal control approach.

Definition 1 Consider the tracking error as zk = xk−xδ,k,
being xδ,k the desired trajectory for xk. The control law

u∗k = −1

2
R−1 (zk) g

T (xk)
∂V (zk+1)

∂zk+1
, (5)

will be inverse optimal (globally) stabilizing along the
desired trajectory xδ,k if:

(i) It achieves (global) asymptotic stability of xk = 0 for
system (1) along reference xδ,k;

(ii) V (zk) is (radially unbounded) positive definite func-
tion such that the inequality

V := V (zk+1)− V (zk) + u∗Tk R (zk)u
∗
k ≤ 0

is satisfied
Selecting l (zk) := −V , then V (zk) is a solution for (4)

and cost functional (2) is minimized.
As established in Definition 1, the inverse optimal control

law for trajectory tracking is based on the knowledge of
V (zk) . Then, a CLF V (zk) is proposed, such that (i) and

(ii) are guaranteed. Hence, instead of solving (4) for V (zk) ,
a quadratic candidate CLF V (zk) for (5) is proposed with
the form:

V (zk) =
1

2
zTk Pzk P = PT > 0 (6)

in order to ensure stability of the tracking error zk, where

zk = xk − xδ,k

=

 (x1,k − x1δ,k)
...

(xn,k − xnδ,k)


The control law (5) with (6), which is referred to as the

inverse optimal control law, optimizes the cost functional
(2). Consequently, by considering V (xk) as in (6), control
law (5) takes the following form:

u∗k = abs

(
−1

4
R−1gT (xk)

∂zTk+1P zk+1

∂zk+1

)

= abs

(
−1

2
(R+ P2 (xk))

−1
P1(xk, xδ,k)

)
(7)

with

P1(xk, xδ,k) =


gT (xk)P (f (xk)− xδ,k+1)

for f(xk) � xδ,k+1

gT (xk)P (xδ,k+1 − f (xk))
for f(xk) � xδ,k+1

(8)

and
P2 (xk) =

1

2
gT (xk)Pg (xk) (9)

Moreover, with (6) as a CLF, this control law is inverse
optimal in the sense that minimizes the cost functional
(2). P1 (•) and P2 (xk) are positive definite and symmetric
matrices; thus, the existence of the inverse in (7) is ensured.

III. NEURAL MODEL AND INVERSE OPTIMAL CONTROL

In this section a brief description of the neural model and
controller are given, however the reader can refer to [24] in
order to obtain more details. First, a neural model identi-
fication is performed and a RMLP (Recurrent Multi-Layer
Perceptron) is chosen. The structure selected is NNARX
[37] (Neural Network AutoRegressive eXternal input); the
input vector to the artificial neural network is defined as
the regression vector of an AutorRegressive eXternal input
linear model structure (ARX) [38].

Following all the procedure presented in [24], the neural
network implemented as a predictor form is:

ŷk+1 = S (φk, w) + w′uk (10)

ek = yk − ŷk (11)

where w is the vector containing the adjustable parameters
and w′ is a fixed weight vector for inputs, which is used
to ensure controllability of the neural model [39] and ek is



Fig. 1. Structure of the RMLP for glucose level modeling.

the prediction error, which includes all the effects produced
by the neural network approximation, external disturbances,
and plant parameter variations. As defined, (10) constitutes
a RMLP neural network.

The RMLP used in this work contains sigmoid units only
in the hidden layer; the output layer is a linear one. The
sigmoid function S (•) is defined as

S (ς) =
1

1 + exp (−βς)
, β > 0 (12)

where ς is any real value variable. Finally, the neural
network (10) becomes:

∧
yk+1 =

5∑
i=0

w
(2)
1i vi + w′uk with v0 = +1 (13)

where

vi =

S
 2∑
j=0

w
(1)
ij xj

 with x0 = +1. (14)

Fig. 1 shows the structure of the RMLP for modeling
of glucose level; it has 5 neurons in the hidden layer, with
logistic activation functions (12), and the output layer is
composed by one neuron, with a linear activation function.
The initial values for the covariance matrices (R,Q, P ) are
R0 = Q0 = P0 = 10000. The identification is performed
on-line for each patient (male and female) using an EKF-
learning algorithm in a series-parallel configuration. The
EKF determines the optimal weight values which minimize
the prediction error at every step; using these new new
weights the covariance matrices are updated.

According to Fig. 1, x1,k = yk−1 and x2,k = yk, then

x1,k+1 = yk

x1,k+1 = x2,k

x2,k+1 = yk+1

x2,k+1 =
∧
yk+1 + ε

In order to obtain a representation for control purposes
as (1), the neural model (13) can be represented using state
space variable as follows:

x1,k+1 = f1 (xk) (15)

x2,k+1 = f2 (xk) + g (xk)u (xk) (16)
∧
yk = x2,k[

f1 (xk)
f2 (xk)

]
=

[
x2,k
∧
yk+1

]
g (xk) = w′

where x1,k+1 and x2,k+1 are glucose levels, and uk is the
insulin dose.

IV. A KERNEL-BASED REGULARIZATION-LEARNING
ALGORITHM

Blood glucose (BG) prediction has been focused upon
for more than a decade and the subject of intensive mul-
tidisciplinary research. The most recent advances in BG
prediction are based on the observation that pure data-driven
algorithms lead to more clinically accurate results than
the ones based on physiological models or a combination
of both. In this framework, the problem can be stated as
the function reconstruction problem from given noisy data.
Assume that at the time moment t = tk we are given
m preceding estimates xBGk

, xBGk−1
, . . . , xBGk−m+1

of a
patient’s BG concentration sampled at the time moments
tk > tk−1 > . . . > tk−m+1 within the sampling horizon
SH = tk − tk−m+1. The goal is to construct a pre-
dictive algorithm that uses these available measurements
and possibly some additional information about therapeu-
tically valuable factors to predict a BG concentration as
a function of time ŷBG = ŷt for T subsequent future
time moments tk+1, . . . , tk+T within the prediction horizon
PH = tk+T − tk+1 such that tk+1 < . . . < tk+T .

The kernel-based adaptive regularized learning (KAR)
algorithm [25], considered in this paper, has both shown
to outperform state-of-the-art prediction algorithms, and
demonstrated high predictive accuracy in extensive clinical
studies with more than 90 patients across Europe. The
algorithm performance was especially robust for short-term
(up to 40 min) predictions for patients with high glucose
variability, including a significant risk of hypoglycemia.

In general terms, the KAR predictor extrapolates glucose
values from a small number of glucose measurements made
before the moment of a prediction. To be more precise, using
the classical results of regularization theory [40], the KAR
predictor is constructed as

ŷt =

k∑
i=k−m+1

cλiK(t, ti), (17)

where K, a symmetric positive-definite function, uniquely
determines a Reproducing Kernel Hilbert Space, in which



the extrapolation is performed. A real vector of coefficients
cλ = (cλk−m+1, . . . , c

λ
k) is defined as

cλ = (λmI+K)−1xBG,

with I a unit matrix of the size m × m, K =
{(K (tj , ti))}0i j=k−m+1 is the Gram matrix, and xBG is
the vector of a patient’s past BG concentration (see [25] for
further details).

In order to construct predictor (17) two important issues
have to be addressed: how does one choose an adequate
functional space, characterized by a symmetric positive-
definite function K, called the kernel, and how does one
choose the so-called regularization parameter λ.

The KAR algorithm addresses both issues and allows for
the construction of the fully adaptive, flexible and accurate
BG predictor. Construction of the algorithm consists of
two separate stages performed by two learning machines:
prediction setting stage (can be performed offline and only
once) and prediction execution stage. During the first stage,
the so-called main learning machine is trained on a specific
data pool of measured physiological states in choosing
adequate functional space, where the extrapolation will be
made and from which an adequate extrapolating function
may be selected. To be more specific, a non-linear rela-
tionship between given data segments as input and the best
kernel and the regularization parameter values as output
is created. This relationship is constructed by employing
a data-driven regularization algorithm, e.g., by minimizing
an error function expressed in terms of the Tikhonov-
type functional which is minimized over a Reproducing
Kernel Hilbert Space. The error function is given in terms
of difference between predicted and actual blood glucose
values.

As the outcome of the first stage, a non-linear relationship
between the best kernels, the regularization parameters and
the corresponding input data segments from the training set
is constructed. During the second stage, a supervised learn-
ing machine is trained to construct a function from a given
functional space. The machine presents a future glucose
profile and is constructed by a data-driven regularization
algorithm performed in the space suggested by the main
machine.

To be more specific, during this stage of the prediction
process, the trained non-linear relationship between data
segments of the training set and desired parameters created
in the main learning machine is used to determine the kernel
and the regularization parameter for the final kernel to be
used to construct the predictor of the form (17). These
parameters are specific to the data, but need not be trained
specific to a patient, i.e., the prediction setting stage can be
employed independently of the individual user.

In addition to the superior performance, the KAR algo-
rithms exhibits several attractive features: it is portable from
individual to individual; does not require any readjustment;
it produces prediction in the form of a function describ-
ing a future glucose profile, which allows more precise

Fig. 2. Closed loop diagram for the control law combine with the predictor.

alarm / alert features to be incorporated. Furthermore, the
algorithm works well on the data with essential time gaps
in measurements, which makes it robust against temporary
malfunctions in BG measurement systems.

V. SIMULATION RESULTS

In this section, simulation results are presented. Fig. 2
is a block diagram which portrays how the virtual patient
(T1DMS), is connected to the on-line neural identifier, then,
the blood glucose levels obtained from the virtual patient
are used to predict the blood glucose level 20 minutes
ahead with the KAR algorithm implemented as a predictor.
The virtual patient uses as inputs the day’s meals and
the subcutaneous insulin calculated by the inverse optimal
control law; then the on-line neural identifier captures the
dynamics of the virtual patient. The model determined by
the neural identifier is used to calculate the inverse optimal
control law. However, the activation of the control law
depends on the predictor. If the blood glucose level obtained
by the predictor is less than 110mg/dl the control law is
turned off; moreover, if the blood glucose level calculated
by the predictor is equal or higher than 110mg/dl the control
law is activated. The insulin calculated by the control law
goes through the virtual patient, to supply the subcutaneous
insulin dose, and to the neural model. The desired trajectory
(xδ,k) is fixed to a value of 110 mg/dl. Simulations are
implemented using Matlab 1.

A. First Scenario: Bolus Insulin Treatment 5 Days

It is very common for T1DM patients to use multiple-
daily insulin injections. In this first scenario a simple bolus
calculator (BC) (18) is used in order to estimate the insulin
doses delivered to reach post-meal BG target for 10 different
patients.

Insulin =
Carbs

CIR
+
BGcurrent −BGtarget

ISF
(18)

where Carbs is the amount of carbohydrates consumed
during a meal, CIR is the Carbohydrate-to-Insulin Ratio,

1It is a trade mark of the MathWorks, Inc.
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Fig. 3. CVGA for 10 different patients regulated using bolus insulin
treatment with meals during 5 days.

BGcurrent, BGtarget are current and target blood glucose (BG)
levels, and ISF is the Insulin Sensitivity. The simulation
starts at 12:00am and patients have three different meals; at
8:00am, 1:00pm and 6:00pm with 50, 40 and 30 grams of
carbohydrates respectively during one day.

Control-variability grid analysis [26] is used to present all
the results. Table 1 presents all the boundaries of the zones
in the CVGA. The meanings of each zone according to
[26] are: accurate control for A zone, benign deviations into
hypoglycemia for Lower B zone, benign control deviations
for B zone, benign deviations into hyperglycemia for upper
B zone, over correction of hyperglycemia for lower C zone,
over correction of hypoglycemia for upper C zone, failure to
deal with hypoglycemia upper C zone, failure to deal with
hypoglycemia for lower D zone and erroneous control E
zone. A zone is the safest and E zone is the most dangerous
zone.

A X Range 110-90mg/dl and
Y range 110-180mg/dl

Lower B X=90-70mg/dl and Y=110-180mg/dl
B X=90-70mg/dl and Y=180-300mg/dl
Upper B X = 110–90 mg/dl, Y = 180–300 mg/dl
Lower C X < 70 mg/dl, Y = 110–180 mg/dl
Upper C X = 110–90 mg/dl, Y > 300 mg/dl
Lower D X < 70 mg/dl, Y = 180–300 mg/dl
Upper D X = 90–70 mg/dl, Y > 300 mg/dl
E X < 70 mg/dl and Y > 300 mg/dl

The CVGA for this experiment is shown in Fig. 3; the
summary outcome is A=0%, B=60%, C=20%, D=10% and
E=10%, A+B=60% and C+D+E=40%.

As it can be seen, in Fig. 3, even when a bolus treatment
is supplied to each patient every time they have a meal, this
technique is not enough to regulate their blood glucose level.
Moreover, there is a 10% in the E zone, indicating complete
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Fig. 4. CVGA for 10 different patients controlled using inverse optimal
control strategy for non-linear systems via CLF.

failure of the treatment. Trying to regulate blood glucose
levels of patients using this technique entails complications.

B. Second Scenario: Control Insulin Treatment 5 Days

A second scenario set with the same meals and hours
as the first scenario is tested using inverse optimal control
strategy for non-linear systems via CLF explained in section
2. This experiment is done with the aim to compare it
with the first scenario and show how the blood glucose
level of the patients can be better regulated using a control
technique. The control law is tuned for each patient in order
to obtain the best results. The CVGA summary outcome
applying inverse optimal control via CLF in Fig. 4 shows a
0% in A zone, 88% in zone B, 2% in zone C and 10% for
zone D and E, A+B=88%, C+D+E=12%.

In the first scenario A+B=60%, however using inverse
optimal control via CLF this percentage is increased to 88%.
C+D+E percentage in the first scenario was 30% compared
with only 12% in the second scenario. Of that 30%, 10%
was in E zone, which is dangerous for a patient. Comparing
both results suggests that using a control technique is safe
than only using insulin bolus treatment in T1DM patients.

C. Third Scenario: Control Insulin Treatment Plus Predic-
tor 5 Days

In this sub-section the inverse optimal control via CLF
in combination with a KAR algorithm used as a predictor
are tested in the third scenario. The simulation start time
and meals were the same as the preceding scenarios, it run
for 5 days and the control law tuned for each patient as the
third scenario. The predictor gives the blood glucose level
of the patients 20 minutes ahead. Then, as Fig. 2 shows,
the control law activation depends on the predictor value.
If the predictor value is less than 110mg/dl the control
law remains unactive, however, if the blood glucose level
predicted is 110mg/dl or higher the control law is activated
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Fig. 5. CVGA for 10 different patients controlled using inverse optimal
control strategy for non-linear systems via CLF in combination with a
kernel-based regularization learning algorithm.

and insulin is administrated to the virtual patient. The
advantage of using a predictor instead of an on/off controller
is that a hypoglycemia period can be identified in advance
time and deactivating the controller can be avoided. Fig. 5
shows results for this experiment. It is worth noting that
failure to correct hypoglycemia has been eliminated with
the combination of the predictor and the controller. As well
as B zone increases from 88% to 97%, C zone decreases
from 2% to 1% and D zone decreases from 10% to 2%.
These results demonstrate the value of the predictor for the
regulation of blood glucose levels in T1DM patients.

VI. CONCLUSIONS
This paper tested a neural inverse optimal control via con-

trol Lyapunov function (CLF) in combination with a kernel-
based regularization-learning algorithm with the University
of Virginia/Padova Simulator. Three different scenarios are
shown; the first one used a simple bolus calculator for bolus
insulin treatment; with this method only 60% of patients
were well regulated. A second scenario showed that the
control technique outperforms a bolus treatment. Inverse
optimal control via CLF supports good results for patients,
nevertheless, it still fail to eliminate hypoglycemia. Thus,
a kernel-based regularization learning algorithm is used as
a predictor linked up with the inverse optimal control via
CLF in order to prevent hypoglycemia periods. Simulation
results from the fourth scenario showed the effectiveness of
this combination. Simulation results also showed the success
of the proposed RNN for deriving an affine dynamical
mathematical model for the T1DM, for the patient response
to meals (unknown disturbance) and subcutaneous insulin
infusion (system input).
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[21] L. Kovács, B. Kulcsár, A. György, and Z. Benyó, “Robust servo con-
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