
JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 1

Modelling and Verifying Combinatorial Interactions
to Test Data Intensive Systems

Experience with Optimal Archiving at the Norwegian Customs and Excise Directorate

Sagar Sen, Dusica Marijan, Carlo Ieva, Astrid Grime, and Atle Sander

Abstract—Testing data-intensive systems is paramount to in-
crease our reliance on information processed in e-governance,
scientific/medical research, and social networks. Data accrued in
these systems often go through several manual and computational
steps involving human inputs in interactive media and complex
batch applications that aim to ensure high quality of data in terms
of validity, correctness, and adherence to business rules. Testing
these systems involves verifying data in test databases, copied
from different steps of live production streams, for adherence
to business rules. We simplify the process by modelling and
automatically generating relevant test cases as data interactions
satisfying the combinatorial interaction coverage criteria. We
verify these test cases using our human-in-the-loop tool, DEPICT.
DEPICT, with expert assistance, generates complex SQL queries
for test cases and produces a visual report of test case satisfaction.
We apply the approach to simplify and optimize a periodic
archiving operation within the testing environment of the Custom
directorate’s TVINN system.

Index Terms—Classification Tree Modelling, Data Interactions,
Combinatorial Interaction Testing, Human-in-the-loop, Rela-
tional Databases, Testing, E-governance

ACRONYMS AND ABBREVIATIONS

SQL Structured Query Language
TVINN TollVesenets INformasjonssystem med Nringslivet
DNCE Directorate of Norwegian Customs and Excise
HTML HyperText Markup Language
JDBC Java Database Connectivity
CUSDEC Customs Declaration
CUSRES Customs Response
CTM Classification Tree Model
KID Customer Identification Number
SSB Statistical Bureau of Norway

NOTATION

Ct Classification tree
A,B,C Classifications
a, b, c Classes
tc Pairwise-covering test cases
l Dependency rule

S. Sen, D. Marijan, and C. Ieva are with Certus V&V Centre, Simula
Research Laboratory, Norway, e-mail: sagar@simula.no

A. Grime and A. Sander are with the The Norwegian Customs and Toll,
Norway.

I. INTRODUCTION

Data-intensive software systems are increasingly prominent
in driving global processes such as e-governance, data curation
for scientific and medical research, and social networking.
Large amounts of data is collected, processed, and stored by
these systems in databases. For example, the Directorate of the
Norwegian Customs and Excise (DNCE) uses the TVINN 1

system to process about 30,000 customs declarations a day
coming in from both individuals and enterprises. The live
transaction stream of declarations is processed for confor-
mance to well-formedness rules, customs laws and regulations
by complex batch applications. This scenario is prevalent in
many data-intensive software systems dealing with transac-
tion data which comprises semi-structured/structured data in
medium/high volume.

Verifying databases is an integral part of the testing pro-
cess in data-intensive systems. From our industry experience
at DNCE we observe that the common practices to verify
databases include (1) domain users observing data in a cus-
tomized user interface and verifying it against a checklist or
matrix of requirements in a spreadsheet. The semi-systematic
approach of using spreadsheets as a structured checklist for
properties to be found in test artifacts (such as test databases)
has been shown to be effective in industrial practice [34].
However, documenting testing intentions in a spreadsheet does
not associate clear computable meaning to the tests making
them ambiguous and a challenge to maintain; (2) skilled but
few database experts create, often complex, structured query
language (SQL) queries to verify data in databases. This
approach is often tedious, error-prone [32], database tech-
nology specific, fails to capture high-level testing intentions
much needed for documentation, and consequently hard to
maintain [22]. Moreover, studies assessing human factors have
shown that it is not easy to create such queries, especially
when multiple table joins are involved [48] [32] [25]. These
observations led us to believe that specifying requirements to
verfiy databases must be raised to a higher level of abstraction.
Previous Work: Our first objective was to introduce model
thinking to raise the level of abstraction in representing
realistic scenarios in test databases. In recent work, [40]
we proposed modelling and verifying realistic scenarios as
data interactions to improve testing of data-intensive systems.
The intuition stems from the observable interaction between
data elements in testing intentions such as, “If whisky is

1http://toll.no/

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 2

imported then it needs to be manually processed by a customs
officer” or “ If net weight is greater than 1/3 gross weight
then the item must have been manually inspected”. The text
in bold represents information stored in fields belonging to
different tables in a database. We model data interactions [37]
using the classification tree modelling formalism [15] and tool
TESTONA 2[23]. We associate semantics or computable mean-
ing to these models using a human-in-the-loop tool DEPICT.
DEPICT first queries database meta-data to extract a graph of
the database schema. DEPICT provides an interactive interface
to help a tester specify a connected subgraph between the
different nodes (representing tables) based on relationships
such as: (a) referential integrity (primary key - foreign key
relationships), and (b) surrogate and self-referential relation-
ships based on type matching between one or more fields
between two tables. After a valid connected subgraph is
created, DEPICT automatically generates a query for each test
case. Each query results in an inner join between the tables of
the connected subgraph with where clauses to equate classes
(from the test case) to each field. The resulting interaction
table represents test cases that are covered by the test database,
and DEPICT counts the number of occurrences and produces
an HTML report of the coverage. DEPICT is implemented as
a standalone Eclipse [35] rich-client platform application and
uses a non-vendor specific subset of JDBC [49] for database
connectivity rendering the tool database technology agnostic.
We evaluated several models and the tool DEPICT in [40] with
successful replication of real test scenarios as models and their
verification with DEPICT.
Challenge to Increase Automation: Modelling test cases
was still a manual task as reported in [40]. Test managers
at DNCE complained about the repetitiveness and tediousness
of creating test groups and test cases in a classification tree
model. Can we specify a modelling domain such that all test
cases can be automatically generated and verified against a
test database? This is the question we address.
Contributions: We present the idea of Combinatorial In-
teraction Testing for Data Intensive Systems in this paper.
Testing with interactions and combinations is not a new idea
in software testing [13] [52]. However, the focus on data itself
and the possible interactions between datum in a database
is, to the best of our knowledge, a less explored direction.
We outline the contributions of the paper (extending the work
previously presented at ISSRE 2014 [40]) as follows:

1) Modelling Domain of Data Interactions based on
Dependency Rules: We consider a database as a soft-
ware artifact under test. Using the classification tree
modelling formalism with boolean dependency rules
we model the constrained domain of data interactions
(described in Section III). The advantage of modelling
with dependency rules is the possibility to automatically
generate meaningful test cases or data interactions which
are correct by construction. This is a conceptual contri-
bution (not a technological one) towards representing
a modelling domain of test cases for databases using
classification trees.

2http://www.testona.net/en/

EDIFACT CUSDEC
declarations from industries

 FinalDB
Database

LIME
Script

(Business
rules)

Norwegian Toll Customs uses the TVINN system to handle about
30,000 declarations/day

EDIFACT CUSRES
responses to industries

TempDB
Database

EDI Message
Parsing

TVINN System (subset)

Fig. 1. Overview of the TVINN system at the Directorate of Norwegian
Customs and Excise

2) Automatic Test Generation based on Combinatorial
Interaction Coverage: We automatically generate test
cases for a model satisfying both dependency rules and
a combinatorial interaction coverage criteria. The advan-
tage of this method is that a tester can selectively (by
activating a dependency rule) generate test cases with
pairwise coverage without having to manually specify
them. The contribution aims to increase automation in
the testing process of a data-intensive system.

3) Application to Optimal Archiving Operation at
DNCE: We apply our approach to optimize the archiv-
ing operation (described in Section V) within DNCE’s
test environment. Archiving can only take place when
customs declarations have been through a precise se-
quence of operations reflected by several flags in
TVINN’s test database. We automatically generate test
cases to represent the different scenarios and use DE-
PICT to monitor the database in the testing environment.
For instance, test cases ensure that (a) a declaration
has received a payment (b) content from declarations
have been sent to the statistical bureau of Norway,
to name a few. Lessons learnt (in Section VI) from
this experience demonstrate the advantages of modelling
and combinatorial testing to simplify and increase the
efficiency of the testing process at DNCE.

The paper is organized as follows. Background work (from
[40]) is spread out in large parts of the paper that is neces-
sary for a comprehensive understanding of our experience in
combinatorial interaction testing at DNCE. In Section II, we
describe both a simplified running case study and industrial
case studies from DNCE. In Section III, we review modelling
data interactions with classification tree models. Section IV
presents an overview of the tool, DEPICT to verify test
databases using classification tree models as input. We apply
our approach to a periodic archiving scenario at DNCE in
Section V. Lessons learnt from this experience are discussed in
Section VI. Section VII discusses the related work and places
our contribution in the body of knowledge. We conclude in
Section VIII.

II. CASE STUDY

TVINN is a Customs information system for business and
trade developed by and for the Norwegian Customs as shown

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 3

FIRSTNAME
LASTNAME
ADDRESS

CUSTOMERID (PK)
Customers

CATEGORY
EXCHANGERATE
CURRENCYCODE
DECLAREDAMOUNT
TAXAMOUNT
TRANSPORTCOST
DIRECTION
COUNTRYCODE

CUSTOMERID (PK FK)
DATE (PK)
SEQUENCE (PK)
VERSION (PK)

Declarations

ITEMCODE
STATISTICALVALUE
GROSSWEIGHT
DECLAREDAMOUNT
NETWEIGHT
ADJUSTMENT
ORIGINCOUNTRY

CUSTOMERID (PK FK)
DATE (PK FK)
SEQUENCE (PK FK)
VERSION (PK FK)
LINENUMBER (PK)

Items

TAXFEECODEGROUP
COUNTRYGROUP
KEYCODE
TAXRATE
BASIS
AMOUNT

CUSTOMERID (PK FK)
DATE (PK FK)
SEQUENCE (PK FK)
VERSION (PK FK)
LINENUMBER (PK FK)
SERIALNUMBER (PK)

Taxes

refers

refers

refers

Innklog

Valkurs

Worm_Ark

Avskhist

VpdataVirkhist

Avg_Sats

Flagg

Modul

Systinfo

Wormtext

Wormindx

Hmndkrav

PsendhodPfilesen

Tollkv ta

Psenddat

He_Kunde

Medlland

Avgruppe

Regtype

Tollkvot

Regkobl

Jobb

Tollkv re

Wormparm

Feltv erd

Maskeper

Pfilehod

Regperty

Jobbparm

FunksjonAksess

Parametr

Sbrolle

Gyldverd

Utlisens

Meldtext

Sadbla1 UmeldkoInnfparm Logoparm Pmeldkod

Kode2

Purrergl

Buddist

Pmeldhod

Tollager Tv inlogg

He_Kuinn

Postlogg

Sysparam

Saksbeh

Pdekltab

Budko

Pmelddat

Budftype

Meldkobl Meldtype

Avgford

Pnettmot

Pprotoko

Postakod

Unntdok

Postparm

Landkobl

Kundetxt

PabonnenPlinje

Kpost

Faktura

Linjdekl

Avbetal

Namsmann

Utforkun

Garanti

Stnghist

Ep_Kunde

Mrk_Kund

Kugamadr

Kundeadr

Kund_Dis

Fo_Tilla

Kgrenlog

Betaling

Distrikt

Purrhist

Agresso

Kasse

Konto

Kunde

Postkont

Sted

Bunke

Innfdekl

Regndekl

Avglinje

Agnrseri

Betkryss

Betaltxt

Dokkobl

Omrade

Fo_Tilta

Regel

Loggon

Nyloggon

Namskobl

Tariffnr

Reffak

Tollkvv a

Avskr

Vlinj txt

ReferansUndstnr

Maske

Maskkobl

Faktref

Varelinj

Ombertab

Fritekst

Faktindx

Krav ko

Sumavg

Undbehko

Linjkobl

Kontrh

Avdrag

Valsort

Land

Regnavg

Utforpos

Utforsl

Kassjour

Ekspenh

Fsumavg

Resmaske

Feltv erd_Regel

Ambulering

Renteinterv all

Typetilfelle

App_Melding App_Param Bruker_Param

Hjelp_Kontekst

Pabo_Hlp

Mingrense

Rentesats

Transiente klasser:

Persistente klasser i POST Persistente klasser i WORM

Persistente klasser i TVINN

POST-databasen

TVINN-modellen

Transiente assosiasjoner er markert i

diagrammet med grå linje.

Sist endret:

6.1 2014 av

Atle Sander

Helligdag

Kund_Hlp

LoggFelt LoggTabell

Nummerserie

JobbResultat

JobbStatus

JobbUnderArbeid Detalj

Kontering Konteringsdimensjon

Understellsnummer

0..*

Dis_Kun

1

0..*

Var_Und

1

1

0..1

0..*

Bun_Bet

0..1

0..*

Pos_Dis

0..1

1

Dis_Betk

0..*

0..*

Kun_Pur

0..1

0..*

Dis_Agr

1

1

Kas_Amb

0..*

0..*

Kun_Kgr

1

0..*

Dis_Kon

0..1

0..*

Kun_Foti

0..1

0..*

Nam_Kun

0..1

0..*

Ste_Kun

0..1

1

Kun_Khlp

0..1

0..1

Pos_Nam

0..1

0..1

Pos_Ste

0..1

0..*

Dis_Ste

0..1

0..*

Dis_Bun

0..1

0..*

Kun3_Inn

1

0..*

Ste_Kas

1

0..*

Pos_Garg

0..1

1..*

Kasj_Kpo

1

0..*

Kun_Kpo

0..1

0..*

Avb_Fak

0..1

0..*

Kun_Fak

0..1

0..*

Kun_Lind

0..1

0..1

Kun_Avb

1

0..*

Utf_Utfk

1 0..*

Kun_Utfk

1

0..*

Kun_Bet

0..1

0..*

Pos_Garp

0..1

0..*

Kun1_Inn

0..1

0..*

Kun_Stn

0..1

0..*

Kte_Dim

1

0..1

Kun_Epk

1

0..1

Kun_Mrk

1

0..1

Kun_Kga

1

0..*

Kun_Kuad

0..1 0..*

Pos_Kuad

0..1

0..*

Kun_Kudi

0..1

0..*

Kun_Gar

0..1

0..*

Nam_Namk

0..1

0..*

Omr_Reg

0..1

0..*

Regt_Reg

1

0..*

Sak_Log

0..1

0..*

Sbr_Log

0..1

0..*

Sak2_Log

0..1

0..*

Eks_Log

0..1

0..*

Sbr_Nlog

0..1

0..*

Sak2_Nlo

0..1

0..*

Eks_Inn

0..1

0..*

Eks_Nlog

0..1

0..*

Unn_Dok

0..1

0..*

Pos_Namk

0..1

0..*

Fak2_Ref

1

0..*

Fak1_Ref

1

0..*

Var_Tkva

1

0..*

Tkv_Tkva

0..1

0..*

Dok_Avs

0..1

0..*

Var_Vli

1

0..*

Var_Ref

1

0..*

Sak_Nlog

0..1

0..*

Fakt_Reg

0..1

1
Pab_Phlp

0..1

0..*

Lan1_Inn

0..1

0..*

Ttf_Inn

0..1

0..*

Ste_Inn

0..1

0..*

Lan2_Inn

0..1

0..*

Val_Inn

0..1

0..*

Kun2_Reg

1

0..*

Kun3_Reg

1

0..*

Tar_Fott

0..1

0..*

Eks_Reg

0..1

0..*

Fot_Fott

0..1

0..*

Regt_Avg

0..1

0..*

Var_Avg

0..1

0..*

Dis_Agn

0..1

0..*

Bet_Betk

0..1

0..*

Fsu_Bet

0..1

0..*

Bet_Btx

0..1

0..*

Tar_Dok

1

0..*

Regt_Dok

1

0..*

Kun2_Inn

1

0..*

Kun1_Reg

0..1

0..*

Ste_Eks

0..1

0..*

Avg_Fsu

0..1

0..*

Fak_Fsu

0..1

0..*

Inn_Res

0..1

0..*

Mas_Res

0..1

0..*

Omb_Rni

1

0..*

Bet_Rni

0..1

0..*

Job_Jst

1

1..*

Utfk_Utp

1

0..*

Avg_Rns

0..1

0..*

Val_Valk

1

1

Lot_Lof

0..*

0..*

Ppr_Pli

0..1

0..*

Avg_Rni

0..1

0..1

Inn_Unk

1

0..*

Eks_Mask

1

0..*

Inn_Fak

1

0..*

Lan_Var

0..1

0..*

Tar_Var

0..1

0..*

Inn_Var

0..1

0..*

Inn_Omb1

1

0..1

Inn_Omb2

1

0..*

Inn_Fri

1

0..*

Kas_Kasj

1

0..*

Inn_Sum

0..1

0..*

Sak_Utf

1

0..*

Sak_Lin

0..1 0..*

Lin_Link

0..1

0..*

Eks_Lin

0..1

0..*

Inn_Kon

1

0..*

Sak_Kon

1

0..*

Avb_Avd

0..1

0..*

Avg_Reg

0..1

0..*

Reg_Ravg

0..1

0..*

Fun_Jua

1

0..1

Inn_Kvk

1

0..*

Pab_Mkob

1

0..*

Job_Jobp

1

0..*

Mod_Fun

1

0..*

Sbr_Aks

1

0..*

Fun_Aks

1

0..*

Fun_Par

1

0..*

Kod2_Gyl

0..1

0..*

Pse_Pme

0..1

1

Sak_Amb

0..*

0..*

Job_Jor

1

0..*

Mty_Mkob

1
0..*

Mas_Fel

0..1

0..*

Omr_Unn

1

0..*

Kun_Unn

0..1

0..*

Lan_Lank

0..10..*

Tar_Lank

0..1

0..*

Kun_Ktx

0..1

0..*

Pli2_Pab

0..1

0..*

Pli1_Pab

0..1

0..*

Mas_Mask

1

0..*

Pme_Pmel

0..1

0..*

Reg_Tkv

0..1

0..*

Jua_Det

1

0..*

Pab_Psen

0..1

0..*

Pse_Pfs

0..10..*

Pfh_Pfs

0..1

0..*

Tar_Tkta

0..1

0..*

Tkv_Tkta

0..1

0..*

Pse_Psen

0..1

0..*

Lan_Med

1

1..*

Regt_Rep

1

0..*

Avg_Regt

0..1

0..*

Mas_Masp

0..1

0..*

Omr_Tkv

1

0..*

Tar_Regk

1 0..*

Reg_Regk

0..1

0..*

Log_Job

1

0..*

Fun_Job

1

0..*

Tar_Tkre

1

0..*

Reg_Tlre

1

0..*

Tkv_Tkre

1

0..*

Pne_Pli

0..1

0..*

Omr_Med

1

CustomersDeclarations

TempDB Database Schema

 FinalDB Database Schema

(a) (b)

 TollCustomsDemo Database Schema

QUEUE

Fig. 2. (a) Simplified Database Schema TOLLCUSTOMSDEMO at Norwegian Toll Customs in Crow-Foot Notation (b) Bird’s Eye View of FINALDB and
TEMPDB Database Schemas (reproduced from [40])

in Figure 1. All customs declarations regarding import and
export to and from Norway are processed by this system and
98% of them are received electronically by use of the EDI-
FACT3 standard. Incoming declarations are received as CUS-
DEC (Customs Declaration) messages and outgoing responses
are sent in CUSRES (Customs Response) messages. During
weekdays, the number of incoming CUSDEC messages is
approximately 25-30,000. Each incoming message is subject
to input control, with different checks, such as:

• Conformity to the protocol used, EDIfact;
• Optional, mandatory and conditional parameters;
• Correct values for parameters specified;
• Static and dynamic filtering based on message data;
• Business rules.
Some of these checks will trigger the system to accept the

declaration, but initiate manual control by a customs officer.
Other checks might cause the message to be rejected by the
system. If no checks trigger any specific action but approval,
the message is processed automatically by the system. In-
dependent of the outcome from above, a response message
with the result is automatically returned. The response will
always include one or several unique numerical codes (can be
fault code) identifying the result. Parsed EDIFACT messages
from live transactions are stored in the TEMPDB database.
While, customs declarations validated by the principal batch
application LIME (see Figure 1) are stored in the complex and
highly structured FINALDB database. The principal challenge
is to verify that the TEMPDB and FINALDB databases have
correctly executed the above mentioned checks. The challenge
is evergreen since checks in TVINN evolve on a regular basis
(approximately, every six months), depending on new gov-
ernmental policies, sanctions, and change in political parties.
TVINN is also affected with time-bounded rules created by
customs officers. These rules exist for a short period of time
(often 3 months). For instance, a customs officer could decide

3http://www.unece.org/trade/untdid/welcome.html

to thoroughly check items and consult seniors for imports with
no prior tax laws for a fixed period of time. These kinds of
rules are called filter control and can be disabled/deactivated
after a fixed time limit. These rules can change on an everyday
basis, without anticipation, making TVINN a highly dynamic
system.

Testing TVINN has been achieved by a small testing staff who
manually executes the tests and verifies the results. However,
the current practice of using such a test database presents three
crucial problems:
No Coverage Guarantee: Live declarations are expected
to cover a realistic subset of the database’s domain (set of
all possible combination of values in fields and tables of a
database). However, there is no way to guarantee this coverage
in an effective manner.
Very Large Set of Test Records: Accumulating information
from live transactions can easily give rise to an ever-growing
set of data records in a test database. Many of these records
share similarities and hence are redundant for the purpose of
testing. Cost-effective testing will require a verification of a
test database for the number of occurrences and consequently
selecting only a minimal set of records in a test database. A
minimal set will also have modest time and space requirements
for testing efforts.
Constantly Changing Rules: Test databases have a lifetime
and need to be discarded. For instance, this may be needed
due to new governmental policies such as increase in taxes
on imported cheese, or when sanctions are imposed on certain
countries. Legacy test databases may not be used anymore to
test the evolved system. Therefore, they need to be constantly
verified for testing adequacy.

We address the above problems by combinatorial interaction
testing using our DEPICT in large test databases from TVINN.
In Section II-A, we describe a simplified version of the
TVINN’s test database that we use as a running example
throughout the paper. In Section II-B, we describe the complex

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 4

industrial TEMPDB and FINALDB databases that we evaluate
in Section V to demonstrate the industrial relevance and
scalability of our approach.

A. Simplified Test Database

As a simplified running example, we present a schema
developed along with our industry partner, the Norwegian
Customs and Excise, in Figure 2(a). The database schema for
TOLLCUSTOMSDEMO consists of four tables and is created
on a MySQL server. We describe the tables and some of the
fields in them. The CUSTOMERS table is used to store records
of customers. A customer is identified by a CustomerID which
is a primary key (indicated PK). A customer can make one
or more declarations. These declarations are stored in the
DECLARATIONS table that refer to a customer using a foreign
key (indicated FK). A declaration can have one or more items
that are stored in the ITEMS table. Every item has an item
code and a statistical value of its cost. There can be different
types of taxes on an item which is stored in the TAXES table.
The most common form of tax is the value added tax or VAT.
Taxation rules are often expressed on the country group, tax
fee code group (from the TAXES table) of import and the
item code (from the ITEMS table). The 10,000 items codes,
88 country groups, and 934 tax fee codes can potentially give
rise to 12.9 trillion 3-wise possible taxation laws. However,
only 195,000 taxation laws are used in practice.
Size: The test database used as a running example contains
about 363 customers, 8172 declarations, 60591 items, and
63515 tax records.

B. Industrial Test Database

The schema of the industrial test database is confidential.
However, we present a bird’s eye view of the relational
database schema in Figure 2(b) for the TEMPDB and FI-
NALDB databases.The database TEMPDB contains raw data
from EDIFACT messages. It has 18 tables, 188 fields, of
which 13 are relationships between primary and foreign keys.

The principal database FINALDB consists of 132 tables,
1335 fields, of which 157 are relationships between primary
and foreign keys. It is the far more complex industrial version
of the simplified schema shown in Figure 2(a). The complex
database reflects more than just one possible path between
two tables complicating the task of selecting a path relevant
to specific scenario. For instance, the tables DECLARATIONS
and CUSTOMERS have three PK-FK associations as shown in
Figure 2(b): (a) A customer is the legal owner of the decla-
ration, (b) A customer is the declarant or importer, and (c) A
customer is the payer for taxes on the declaration. Establishing
an interaction between a field in CUSTOMERS and a field in
DECLARATIONS will require an informed selection between
the three possible paths. Manually creating an entry into the
FINALDB database requires a specialist who can navigate
his/her way through a large number of dialogue windows. This
complex operation explains that using an existing test database
and knowing exactly what missing information to insert into
a test database can greatly reduce manual effort. Completed
customs declaration in DECLARATIONS are put into a queue

for archival to a write-once-read-many-times (WORM) backup
drive to keep query performance optimal in FINALDB. The
state of a declaration before it is ready for archival is available
in the table QUEUE.
Size: The test databases FINALDB and TEMPDB contain
about 2.5 million customers and 190,000 declarations. In
addition, it contains 93,000 legal documents sometimes used
to justify taxes.

III. MODELLING DATA INTERACTIONS

Modelling data interactions was introduced by the authors in
[37]. Data interactions are modelled on a relational database
schema. We briefly describe a database schema in the fol-
lowing Section III-1. We use the classification tree modelling
formalism to model data interactions as presented in Section
III-2. The content of Sections III-1, III-2 has been reproduced
from our previous work [40].

1) Database Schema: Databases are typically modelled
using a data model such as a database schema. It specifies
the input domain of a database in an information system. We
briefly describe the well-known concept of database schema.
More information on them can be found in a standard database
textbooks such as [10]. A database schema typically contains
one or more tables. A table contains fields with a domain
for each field. Typical examples for field types/domains are
integer, float, double, string, and date. The value of each field
must be in its domain, hence maintaining domain integrity in
a database. A table contains zero or more records, which is
a set of values for all its fields within their domain. A table
may also contain one or more fields that are referred to as
primary keys, which identify each record. In addition, each
table may refer to primary keys of other tables via foreign keys.
The value of foreign keys must match the value of a primary
key in another table. This is known as a referential integrity
constraint. We refer to the combined concepts of referential
integrity and domain integrity as data integrity. Records in a
database must satisfy data integrity as specified by its database
schema. Databases can be queried using SQL queries. We
use queries to create inner-joins, views and to count number
of records. An example of a database schema from DNCE
is shown in Figure 2(b). The schema has four tables with
three referential integrity constraints associating them, hence
creating the possibility of interactions between these tables.

2) Classification Tree Model: Classification tree models are
typically used to model the input domain or a subset of it
for a software system. They contain the concepts of compo-
sitions, classifications, and classes for each classification to
structure the input domain. We use the tool TESTONA [23]
(previously known as CTE-XL) to model classification tree
models (CTM). CTMs have been used to model complex
input domains such as the domain of the Norwegian Tax
Department [33]. We use CTMs to graphically model test cases
for databases. Our use of the CTM is specialized to the need
of specifying data interactions on a database. Hence, we first
assume that a modeller has access to the relational database
schema of the information system for which data interaction
test cases need to be specified. We use the example in Figure

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 5

Database Name

Table Names

Field Names

Field Values

Data Interaction
Test Case[]

Whisky Vodka Rum Beer

Fig. 3. Classification Tree Model for Alcohol Imports (reproduced from [40])

3 to describe the syntax of the specialized model as follows:
Root Composition for Database: It is an identifier for a
database on a server. Software that analyzes the classifica-
tion tree model can identify a concrete database using this
identifier. In Figure 3, this is represented by the composition
TollCustomsDemo.
Compositions for Tables: The root composition can contain
several compositions representing identifiers for tables. In
Figure 3, this is represented by the compositions Declarations
and Items from the schema shown in Figure 2(b). All or only
a subset of tables maybe be specified depending on the use of
the model.
Classifications for Fields: Fields in tables are classifications
in the third level of the classification tree. For instance, in
Figure 3, we use the fields Category and ItemCode. All or
only a subset of fields for a table might be specified in the
model.
Classes for Fields: A field can have one or more concrete
values or domains of values. We represent these possibilities
as classes. For instance, in Figure 3, the classes MA and FO
are associated with the classification for the field Category.
At a rudimentary level, one may specify individual values for
fields as a class, but this often leads to an explosion in the
size of the model. Therefore, we provide special classes for
domains of a field as shown in Figure 4. The most common
special classes include the set operator IN, NOT IN, the pattern
matching operator such as LK, NOT LK.
Interactions as Test Cases in Groups: Interactions between
field values across different tables are represented as test cases
in a classification tree model. For instance, in Figure 3, pair-
wise.TestCase1 represents the interaction {MA,22086000}.
This is the interaction between a declaration category for
manual processing of an import and for itemcode 2208600
for Vodka. Interactions in TESTONA can either be generated
automatically such that all pairs or three-wise interactions
between two or three classes are covered. In Figure 3, we
present all pairwise interactions between a set of database field
values. Testers can also manually specify them. Test cases
or interactions can be divided into groups to represent test
cases for different aspects of the information system. A good
practice is to create several small classification tree models
with test groups containing a small number of test cases with
very specialized testing intent. This also renders the model-

Fig. 4. Special Clauses for Data Classes (reproduced from [40])

based documentation more comprehensible.
TESTONA allows specification of additional boolean con-

straints or dependency rules between classes to limit the
number of interactions or test cases that can be specified by
construction.

We may wish for a test case to exist or not in a test
database. This is exactly what is verified by DEPICT, and
the principal contribution of the paper. The method behind
DEPICT is described in Section IV.

3) Generating Combinatorial Interactions: A test case for
classification trees is defined by combining classes from
different classifications. The length of the test case depends
on the number of classifications of each class.

Let Ct = (A[a1,an], B[b1, ..., bm], C[c1, ..., ck]) be a
classification tree with three classifications A, B, and C, each
classification with a number of classes. A pairwise-covering
test cases tc is defined as a combination of classes taking
every pair of classes from disjunctive classifications at least
once, tc = (ai, bj , ck), i ∈ 1..n, j ∈ 1..m, k ∈ 1..k. Similarly,
a threewise-covering test case is defined as a combination
of classes taking every triple of classes from disjunctive
classifications.
Specifying dependencies: Dependency rules are used to spec-
ify constraints between the values of different classes. In
test generation, dependencies restrict possible combinations of
classes of a classification tree. For example, a dependency rule
l = [a1, b1] will require that the class b1 is selected if the class
a1 is selected. Dependency rules can be defined for different
logical dependency relations (AND, OR, NOT).

TESTONA provides an in-built mechanism to generate test
cases that satisfy pairwise and threewise coverage with the
possibility of selectively applying dependency rules. We use
this in-built feature to generate a large number of data inter-
actions without having to manually select classes in classifi-
cations of field values.

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 6

Classification Tree Model of Interactions 1. Verify Model with
Schema

Database Server

3. Select Interaction
Path

4. Query Generation
and Execution

Select Connected Subgraph between Tables

Interaction Coverage Results

Human Inputs
Depict

Automation

5. Visualisation of
Coverage

2. Extract Relational
Graph

Fig. 5. Verifying Interaction Coverage (reproduced from [40])

IV. MODEL VERIFICATION

Given a model of data interactions as input, our method
computes the satisfaction or non-satisfaction of these inter-
actions in a test database. An overview of the operational
flow of our method is shown in Figure 5. The method has an
automated part implemented in the Eclipse-based tool DEPICT
and also requires human inputs to guide the process. Note
that the approach shown in Figure 5 is about modelling and
verification of data interaction, which is only a subset of the
global testing process associated with TVINN. Figure 5 refers
to background work already presented in [40]. The different
steps of the method are described below:
Step 1: The input classification tree model (CTM) with test
cases is first specified by a domain expert shown in Figure 3.
We use the tool TESTONA (previously CTE-XL[23]) to create
the model. The CTM is then imported into DEPICT. While
importing a CTM, DEPICT requires additional parameters
to connect to a database on a local/remote database server.
DEPICT verifies that the CTM contains valid names for a
database, tables, and field names. This is done by querying
and comparing meta-information from the database schema
on a database server. DEPICT’s connection to a database is
implemented using a non-vendor specific subset of JDBC [49],
to facilitate connecting to different database technologies.
Step 2: DEPICT extracts a relational graph by querying
the meta-data of the database schema using the JDBC class

(a) (b)

Fig. 6. (a) Relational Graph Extracted from Database Schema (b) Selection
of Connected Subgraph

ResultSetMetaData [49]. For instance, in Figure 6(a) we show
the graph extracted for the simplified schema shown in Figure
2(a). The yellow nodes in Figure 6(a) indicate the tables
specified in the classification tree model of Figure 3. The other
tables are shown as red nodes. The associations between the
tables in the form of primary key and foreign key relationships
are shown as dashed edges in the graph. The dashed edges
highlight potential arcs between tables. One must manually
select an edge to establish a relationship between nodes.
DEPICT uses the JUNG Universal Graph Library4 to display,
perform automatic layout, and enable human interaction with
the graph.
Step 3: The human domain expert defines a connected sub-
graph between interacting tables or nodes in the relational
graph obtained in the previous step. This is illustrated by the
edge created between yellow nodes for ITEMS and DECLA-
RATIONS in Figure 6(b). The example in the figure represents
the simplest possible interaction where two nodes can interact
due to PK-FK relationships. If two nodes are disconnected,
DEPICT allows the creation of a surrogate relationships (com-
prehensively illustrated in Scenario 2 of Section V), based on a
type match between one or more fields of the two nodes/tables.
For instance, we may create a relationship between the fields
origin country in the ITEMS table and country code in the
DECLARATIONS table for the schema in Figure 2(a). Both
these fields have the same type which is an enumeration of
160 country codes. DEPICT also allows specification of self-
referential relationships between fields of a unique node/table
(also illustrated in Scenario 2 of Section V). A surrogate
relationship can also be created between two tables even if
they already have one or more PK-FK associations and are not
completely disconnected. The advantages of creating surrogate
relationships are:

• Creating totally brand new relationships which are not
strictly functional to the data model of the system but hav-
ing a valuable meaning for the testing perspective such as:
better performance avoiding unnecessary complex paths
through a shortcut across tables.

• Fill gaps into the original design of the data model.
Sometimes the PK-FK relationships simply do not exist.
In that case we are able to fill the gap creating a surrogate
relationship.

The principal task of a human-expert is to select edges from

4http://jung.sourceforge.net

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 7

Fig. 7. Interaction Coverage for Alcohol Import Example (reproduced from
[40])

potentially several possibilities, in order to create a connected
subgraph that is meaningful. We present such an example in
the industrial Scenario 1 in Section V.

SELECT d e c l a r a t i o n s . c u s t o m e r i d AS f 1 ,
d e c l a r a t i o n s . date AS f 2 ,
d e c l a r a t i o n s . s e q u e n c e AS f 3 ,
d e c l a r a t i o n s . v e r s i o n AS f 4 ,
i t e m s . c u s t o m e r i d AS f 5 , i t e m s . date AS f 6 ,
i t e m s . s e q u e n c e AS f 7 ,
i t e m s . v e r s i o n AS f 8 ,
i t e m s . l i n e n u m b e r AS f 9

FROM d e c l a r a t i o n s JOIN i t e m s ON
d e c l a r a t i o n s . c u s t o m e r i d = i t e m s . c u s t o m e r i d

AND d e c l a r a t i o n s . date = i t e m s . date
AND d e c l a r a t i o n s . s e q u e n c e = i t e m s . s e q u e n c e
AND d e c l a r a t i o n s . v e r s i o n = i t e m s . v e r s i o n
WHERE d e c l a r a t i o n s . c a t e g o r y = ’MA’
AND i t e m s . i t e m c o d e =22086000

Listing 1. Generated Interaction Table Example

Step 4: The connected subgraph between all interacting nodes
is used by DEPICT to generate SQL queries, in order to
create an interaction table for each test case. For instance,
we generate 8 interaction tables for the model in Figure 3.
The query to generate an interaction table for the test case
pairwise.Testcase1 in Figure 3 is shown in Listing 1. The
interaction table is stored with new field names f1, f2, ..., fn
to avoid conflicts with tables that may have duplicate names.
The table should contain all records where the field values
in the CTM match the selected classes, which is decla-
rations.category=’MA’ and items.itemcode=22086000. Addi-
tional queries are also generated to compute the frequency of
the occurrence of a test case. These queries are executed by
DEPICT on the test database to populate the interaction table,
and compute the frequency of occurrence.
Step 5: We refer to test cases that are not found in the test
database as “holes”. This is indicated by a count of zero for
number of records on an interaction table. If a test case is
found in a test database then the count is non-zero. DEPICT,
provides an HTML report to visualize the results of the queries
executed in Step 4. The report provides a table with test case
id (indicated by a yellow colored box, in case of “hole”), test
case name, count, a human-readable expression of the test
case, an SQL query for the test case, and the elapsed time to
query the test database. DEPICT also generates a bar graph
produced using JFreeChart5 to display the count for each test
case as shown in Figure 7 for the CTM in Figure 3. The report
gives instant feedback to a tester about interactions that are
missing in a test database and need to be created for complete
coverage.

5http://www.jfree.org/jfreechart/

The tool DEPICT is implemented in pure Java as a stan-
dalone Eclipse Rich-client Platform application. We request
the reader to contact the authors for instructions to download,
install and use the tool for databases in their information
systems. DEPICT currently supports MySQL, PostgreSQL,
Sybase, Oracle, Microsoft SQL, and can easily be extended to
other relational databases with the appropriate driver. DEPICT
is a generic industry-strength tool, as demonstrated in Section
V, and can handle databases with millions of records in a
stable manner.

V. EXPERIMENT

We evaluate our approach to model-driven combinatorial
interaction testing for the customs declaration archiving pro-
cess at DNCE and discuss lessons learnt. This section presents
a novel application of our method to monitor and verify
test databases using the test cases satisfying combinatorial
interaction coverage.

A. Optimal Archiving

The database TVINN, described in Section II-B, must be
kept as small as possible for efficient query execution. The
archiving batches perform a data cleanup by moving declara-
tions into an archival database. However, a declaration must
be verified through a number of steps before it is archived. In
production, the flow of TVINN is complete when all batches
are scheduled to process data from the customs declaration in
the correct and natural order:
Step 1. Declarations are received, processed and responses are
returned, invoices are generated (with customer identification
numbers or KID numbers).
Step 2. Payment may require to wait for all online processing
done by the customer officers to terminate. Customs officers
define time-bounded masks to control specific types of cus-
toms declarations. In addition they may have to manually
control incoming declarations.
Step 3. Invoices are sent to customers who will pay their bill
(referencing this KID) and we will receive the money (OCR
from the banks referencing this KID), match with the KID and
then return the receipt if OK.

However, in the testing environment, a tester must regularly
monitor status of declarations from production (during Step
2 above) to consequently test batch applications. Archival
of a declaration depends on a combination of: (a) values in
the field (FINALDB.DECLARATIONS.STATUS) of the table
DECLARATIONS, and (b) values in several fields in the queuing
state table FINALDB.QUEUE (shown in Figure 2 (b)). We
discuss the different fields (names have been changed from
original Norwegian for privacy reasons) and their possible
values below:
FINALDB.DECLARATIONS.STATUS: A declaration is con-
sidered finished/completed and ready for archival when the
status field has a value greater than 89 and less than 100 (97
not being used). For example, when a declaration has been
finalized due to a newer version sent by a customer, it is
identified by the value 94.

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 8

FINALDB.QUEUE.RECALC: A finalized declaration might
be subject to recalculation due to many reasons. If the recal-
culation has started QUEUE.RECALC is set to V . If the re-
calculation is processed and finalized then QUEUE.RECALC
is set to V again since it is an intermediate state indicator.
When recalculation is finalized, the attribute will be updated
in the table QUEUE.
FINALDB.QUEUE.RECEIPT: Declarations might need to
be finalized for payment of fees, some can be archived
immediately while some cannot be archived immediately until
the payment is done. Its faster to delay archiving rather than
extracting from the archive. The QUEUE.RECEIPT values
U,Z implies not paid while NOT(U,Z) implies that fees are
paid. RECEIPT is updated to U when customer pays. Status is
Z when a receipt is being created while * means that receipt
is not necessary or is ‘do not care’.
FINALDB.QUEUE.EXTERNAL: Declarations must be sent
to external entities such as the Statistical Bureau of Norway
6 (SSB) before archival. The value of EXTERNAL = J
means ready for analysis/transfer, O is acceptance but not yet
available for archiving, values I and X imply don’t modify
declaration, F is a fault, U means just arrived in the queue,
or NULL which means no value for this attribute. A batch is
run to dump all declarations into a file that is sent to SSB.

In the following section we describe how model-driven
combinatorial interaction testing helps represent and test data
interactions, that helped test managers at DNCE ensure correct
and optimal archiving.

B. Approach Application

The first step in our approach is to model the domain of
data interactions that need to be tested for archiving. In Figure
8, we present the classification tree model that represents the
different possible values for the fields discussed in Section
V-A and the test cases that cover all pairwise interactions.
This model was created by a test manager at DNCE during
the periodic archiving operations.

The test manager, instead of generating the set of all test
cases (covering pairwise) using Testona, decided to divide
the test cases into test groups as seen in the Figure 8. Each
test groups exercises one dependency rule for a specific sce-
nario. For instance, the test group readyToArchive 90 contains
generates only one test case that satisfies the dependency
rule: RECEIPT = NOT IN(U,Z) AND EXTERNAL = I AND
(RECALC = NULL OR RECALC = V) AND STATUS = 90.
While, the test group Possible2Rerun is generated from a more
relaxed dependency rule: RECEIPT = * AND EXTERNAL=O
AND RECALC=* AND (STATUS = 90 OR 91 OR 92 OR 93
..OR 99).
Test Scenario: Traffic is run until we have enough customs
declarations in the test database. All traffic, including online,
is then stopped. We check the database using DEPICT with
the model in Figure 8 as input. The tester runs the archiving
batch application. Then, we run DEPICT on the model again
and compare the frequency of test cases in Figure 8 from two
generated HTML reports. For instance, in Figure 9 we show a

6http://ssb.no

Fig. 9. Snapshot of DEPICT Monitoring Status of Archiving

snapshot of DEPICT representing number of declarations that
satisfy the different test cases in the model.

If the first run exposes no data interactions (or satisfaction of
test cases) for test group ready2archive but several interactions
for the test groups Possible2rerun or readyForT analysis, we
know that there is a need to run other batch applications for
recalculation and specific analysis before running a batch for
archiving the declarations. Declarations cannot be archived
automatically due to several reasons such as: (a) their possi-
bility for recall for payment or review, or (b) ensuring that the
content of the declarations have been sent to external entities
such as the Statistical Bureau of Norway. Our approach using
DEPICT allows monitoring the status of declarations before
they are archived in the most optimal way. If declarations are
archived before they are ready then the recall cost is relatively
high as retrieval is time consuming.

VI. LESSONS LEARNT

This article reports an experience in inculcating model
thinking and combinatorial thinking to improve testing of data-
intensive systems. We focus on a part of the testing process
that involves verifying test databases for data interactions.
We present lessons learnt from our experience in an optimal
archiving process:
Improved model thinking: Thinking about data interactions
between fields cross-cutting a database schema seemed like a
natural way for us to represent consistency and correctness in
a test database. Our objective in this collaboration with DNCE
was to validate this hypothesis. We introduced modelling
data interactions using classification tree models in a robust
and well-supported tool Testona at the DNCE. Testona has
both a free and a commercial flavour. After one year of
experimentation, the DNCE bought five floating licenses for
the commercial version. The commercial version has support
for automatic generation of test cases based on coverage
criteria, such as pairwise and three-wise. Modelling data
interactions also increased the readability and maintainability

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 9

Fig. 8. Models of Combinatorial Interactions for Declaration Archival

of test scenarios compared to the state of practice (of using a
test matrix in an Excel sheet or SQL queries). Currently, we
are addressing the challenge of introducing modelling across
the organization (DNCE), especially with testers who have not
been part of the initial development process. We aim to achieve
this incrementally by reuse of existing models, creation of
small models, followed by use of complex features such as
use of dependency rules and T-wise generation to create large
models.
Advantage of associating executable meaning to models
via DEPICT: Associating meaning to models of data inter-
action by generation of queries, their execution, and HTML
report generation, immensely increased the credibility in the
approach. The test managers got a first hand feel for what
the test cases meant in a real artifact, which was the database
FINALDB with millions of real records. The use of count or
frequency in the number of times a test case was satisfied by
a test database was very easy to understand for test managers
and made the approach very reactive.
Very specific use of combinatorial thinking: It took test
managers at least a couple of months to think about a scenario
that could benefit from automatic test generation satisfying
pairwise and dependency rules. Test managers often have
a data interaction in mind but do not think about a full
domain of data interactions and a selection of test cases based
on coverage criteria. The archiving operation discussed in
the paper was a good candidate for combinatorial thinking.
We realize that there is to trained testers to think about

combinatorics for generating a large variety of test cases using
dependency rules. This can greatly improve their operational
efficiency in specifying tests.
Tool adoption: Both Testona and DEPICT are used at DNCE.
Our objective in the year 2015 is to produce at least twenty
significantly large models for TVINN. Twelve people from
DNCE are involved in the adoption efforts. There is an internal
meeting every month where test managers discuss their efforts.
We have a fortnightly meeting with test managers to discuss
usability and new features for DEPICT. Issue reports for
DEPICT are collected and addressed in a Bitbucket repository.

VII. RELATED WORK

This article addresses three principal areas of work: (a)
the notion of test coverage in data-intensive systems, (b)
using high-level models to specify testing intentions, and (c)
combinatorial interaction techniques. We position our work in
relation to these areas of work.
Test coverage: The coverage of an input domain is an impor-
tant topic in testing database applications [18]. Test coverage
in data intensive systems has been the subject of many
studies [30], [36], [44]. These techniques are not applicable to
measuring coverage in databases since they do not handle the
structure of a database’s complex schema. The tool proposed
by Suarez et al. [42] measures the coverage of SQL queries
without support for monitoring coverage. Halfond et al. [16]
measure coverage of application-database interactions but do
not consider the interactions between database fields. In [19],

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 10

the authors present the concept of database-aware test coverage
monitoring that instruments the program and the test suite
to determine how well are database entities covered. The
proposed coverage monitor also captures database interactions
at different levels of interaction granularity: database, relation,
attribute, record, and attribute value. However, it does not
provide high-level modelling of test cases as interactions. Tuya
et al. propose a criterion that assesses the coverage of the
test data in relation to the executed database queries [45].
Still, similarly to the previous approaches, it does not support
modelling the test cases visually nor monitoring the coverage.
There is also large body of work on generating SQL queries
[2] [20] [39] [6] [31] [17] [5] [1] [50] [28] [43] [29] [38]
that by construction aim to cover a database’s input domain.
These approaches are useful when real test databases are non-
existent, or when automatically generated tests that satisfy
generic constraints, such as cardinality [6], can be considered
as effective. In this paper, we consider the specific scenario
where real test databases are already available and need to be
verified for test coverage.
Modelling test intentions: High-level specifications such as
models have been used to either derive tests or simplify
specification of testing intentions. Model-based testing [47]
[46] is an effective approach to use behavioral models such
as state machines to derive test cases. In [50], the authors use
constrained queries to model database states and generate test
records. Constrained queries cannot be seen as models at high-
level of abstraction that significantly reduce human-effort in
specifying testing intentions. In [7], the authors show that com-
binatorial interaction designs are very effective in constraining
the input domain and consequently revealing bugs in software.
We previously extended the notion of (combinatorial) inter-
actions to represent testing intentions as data interactions in
databases [37]. The notion of data interactions proposed in
the paper is similar to the idea of data dependencies proposed
in [11][12]. The authors propose a theoretical framework to
specify conditional functional dependencies to improve data
quality in relational databases. However, there is no mention
of industry strength tool-support or modelling tools that we
deem necessary for industrial impact.
Combinatorial interaction testing: Combinatorial interaction
principles have a wide spectrum of applications in software
testing, such as test case generation for large distributed
systems [21], GUI testing [27], fault localization [51], filure
diagnosis [26]. The effectiveness of combinatorial interaction
techniques is based on the observation that software failures
are often due to interactions between only few software
parameters [21], [3], [14]. To support the application of
combinatorial interaction techniques, a large number of tools
has been developed, such as AETG [8], IPO [24], CATS
[41], OATS [4], PICT [9]. However, our approach concerns
less researched area of applying combinatorial interaction
techniques for verifying the correctness of test databases.

VIII. CONCLUSION

We present the application of model and combinatorial
thinking at DNCE using the tools TESTONA and DEPICT

to verify coverage of data interactions (test cases) in a test
database. The domain of data interactions and test cases are
represented in a classification tree model. DEPICT connects to
a test database and verifies if these test cases are covered by
the database. We evaluate our approach on a periodic archiving
operation performed at Directorate of the Norwegian Customs
and Excise. Lessons learnt from the experience show that
model and combinatorial thinking is useful in the industry.
However, there are small challenges in having testers think
about modelling domains of test cases/data interactions instead
of individual test cases. Future work for the improvement of
DEPICT at DNCE involves support for multiple databases for
checking consistency and correctness of data interacting across
databases. We are currently experimenting with our approach
on other industrial databases such as databases at the Cancer
Registry of Norway for modelling and verifying data quality
of cancer screening data, and sensor data collected on oil
pipelines at ROSEN group.

IX. ACKNOWLEDGMENTS

We thank the Norwegian Research Council for funding our
work through the Certus-SFI 7 scheme.

REFERENCES

[1] IBM DB2 test data generators. http://www.ibm.com/developerworks/data/
library/techarticle/dm-0706salkosuo/index.html.

[2] S. Abdul Khalek and S. Khurshid. Automated sql query generation for
systematic testing of database engines. In Proc. of the IEEE/ACM Int.
Conf. on Aut. Sof. Eng, pages 329–332. ACM, 2010.

[3] K. Bell and M. Vouk. On effectiveness of pairwise methodology for
testing network-centric software. In Inf. and Commun. Tech., 2005.
Enabling Tech. for the New Knowledge Society: ITI 3rd International
Conference on, pages 221–235, Dec 2005.

[4] R. Brownlie, J. Prowse, and M. S. Phadke. Robust testing of at&t
pmx/starmail using oats. AT&T Technical Journal, 71(3):41–47, 1992.

[5] N. Bruno and S. Chaudhuri. Flexible database generators. VLDB, 2005.
[6] N. Bruno, S. Chaudhuri, and D. Thomas. Generating queries with car-

dinality constraints for dbms testing. Knowledge and Data Engineering,
IEEE Transactions on, 18(12):1721–1725, Dec 2006.

[7] D. Cohen, S. Dalal, M. Fredman, and G. Patton. The aetg system: An
approach to testing based on combinatorial design. IEEE Transactions
on Software Engineering, 23(7):437–444, 1997.

[8] D. Cohen, S. Dalal, M. L. Fredman, and G. Patton. The aetg system:
an approach to testing based on combinatorial design. Software Engi-
neering, IEEE Transactions on, 23(7):437–444, Jul 1997.

[9] Czerwonka. Pairwise testing in the real world: Practical extensions
to test-case scenarios. In Proceedings of the 24th Pacific Northwest
Software Quality Conference, 2006.

[10] C. J. Date. An Introduction to Database Systems. Pearson Addison-
Wesley, Boston, MA, 2004.

[11] W. Fan. Dependencies revisited for improving data quality. In Proceed-
ings of the Twenty-seventh ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems, PODS ’08, pages 159–170, New
York, NY, USA, 2008. ACM.

[12] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Conditional functional
dependencies for capturing data inconsistencies. ACM Trans. Database
Syst., 33(2):6:1–6:48, June 2008.

[13] M. Grindal, J. Offutt, and S. F. Andler. Combination testing strategies:
A survey. Software Testing, Verification, and Reliability, 15:167–199,
2005.

[14] M. Grindal, J. Offutt, and S. F. Andler. Combination testing strategies:
A survey. Software Testing, Verification, and Reliability, 15:167–199,
2005.

[15] M. Grochtmann and K. Grimm. Classification trees for partition testing.
Software Testing, Verification and Reliability, 3(2):63–82, 1993.

7http://certus-sfi.no

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 11

[16] W. Halfond and A. Orso. Command-form coverage for testing database
applications. In Automated Software Engineering, 2006. ASE ’06. 21st
IEEE/ACM International Conference on, pages 69 –80, sept. 2006.

[17] K. Houkjær, K. Torp, and R. Wind. Simple and realistic data generation.
In Proc. of the 32Nd Int. Conf. on Very Large Data Bases, VLDB ’06,
pages 1243–1246. VLDB Endowment, 2006.

[18] G. M. Kapfhammer and M. L. Soffa. A family of test adequacy criteria
for database-driven applications. In In Proc of 9th ESEC/10th FSE,
pages 98–107, 2003.

[19] G. M. Kapfhammer and M. L. Soffa. Database-aware test coverage
monitoring. In Proceedings of the 1st India software engineering
conference, ISEC ’08, pages 77–86, New York, NY, USA, 2008. ACM.

[20] S. A. Khalek, B. Elkarablieh, Y. O. Laleye, and S. Khurshid. Query-
aware test generation using a relational constraint solver. In Proc. of the
2008 23rd IEEE/ACM Int Conf. on Automated Software Engineering,
pages 238–247, 2008.

[21] D. R. Kuhn, D. R. Wallace, and A. M. Gallo, Jr. Software fault
interactions and implications for software testing. IEEE Trans. Softw.
Eng., 30(6):418–421, June 2004.

[22] W. Labio, J. Yang, Y. Cui, H. Garcia-Molina, and J. Widom. Perfor-
mance issues in incremental warehouse maintenance. Technical Report
1999-42, Stanford InfoLab, 1999.

[23] E. Lehmann and J. Wegener. Test case design by means of the cte xl. In
Proceedings of the 8th European International Conference on Software
Testing, Analysis Review (EuroSTAR 2000), pages 1–10, 2000.

[24] Y. Lei and K.-C. Tai. In-parameter-order: A test generation strategy for
pairwise testing. In The 3rd IEEE International Symposium on High-
Assurance Systems Engineering, HASE ’98, pages 254–261, Washing-
ton, DC, USA, 1998. IEEE Computer Society.

[25] H. Lu, H. C. Chan, and K. K. Wei. A survey on usage of sql. SIGMOD
Rec., 22(4):60–65, Dec. 1993.

[26] R. Mandl. Orthogonal latin squares: An application of experiment design
to compiler testing. Community ACM, 28(10), 1985.

[27] A. M. Memon and M. L. Soffa. Regression testing of guis. SIGSOFT
Softw. Eng. Notes, 28(5):118–127, Sept. 2003.

[28] K. Pan, X. Wu, and T. Xie. Guided test generation for database
applications via synthesized database interactions. ACM Trans. Softw.
Eng. Methodol., 23(2):12:1–12:27, Apr. 2014.

[29] K. Pan, X. Wu, and T. Xie. Program-input generation for testing database
applications using existing database states. Aut. Sof. Eng., pages 1–35,
2014.

[30] C. Pavlopoulou and M. Young. Residual test coverage monitoring.
In Software Engineering, 1999. Proceedings of the 1999 International
Conference on, pages 277 –284, may 1999.

[31] M. Poess and J. M. Stephens, Jr. Generating thousand benchmark queries
in seconds. In Proceedings of the Thirtieth International Conference on
Very Large Data Bases - Volume 30, VLDB ’04, pages 1045–1053.
VLDB Endowment, 2004.

[32] P. Reisner. Human factors studies of database query languages: A survey
and assessment. ACM Comput. Surv., 13(1):13–31, Mar. 1981.

[33] E. Rogstad, L. Briand, R. Dalberg, M. Rynning, and E. Arisholm.
Industrial experiences with automated regression testing of a legacy
database application. In Software Maintenance (ICSM), 2011 27th IEEE
Int. Conf.e on, pages 362 –371, sept. 2011.

[34] K. Rothermel, C. Cook, M. Burnett, J. Schonfeld, T. R. G. Green, and
G. Rothermel. Wysiwyt testing in the spreadsheet paradigm: an empirical
evaluation. In Software Engineering, 2000. Proceedings of the 2000
International Conference on, pages 230–239, 2000.

[35] D. Rubel. The heart of eclipse. Queue, 4(8):36–44, Oct. 2006.
[36] R. Santelices and M. J. Harrold. Efficiently monitoring data-flow test

coverage. In IEEE/ACM ASE, ASE ’07, pages 343–352, New York, NY,
USA, 2007. ACM.

[37] S. Sen, J. de la Vara, A. Gotlieb, and A. Sarkar. Modelling data inter-
action requirements: A position paper. In Model-Driven Requirements
Engineering (MoDRE), 2013 International Workshop on, pages 50–54,
July 2013.

[38] S. Sen and A. Gotlieb. Testing a data-intensive system with generated
data interactions. In C. Salinesi, M. Norrie, and s. Pastor, editors,
Advanced Inf. Systems Eng., volume 7908 of Lecture Notes in Computer
Science, pages 657–671. 2013.

[39] S. Sen and A. Gotlieb. Testing a data-intensive system with generated
data interactions: The norwegian customs and excise case study. In
CAISE, Valencia, Spain, June 17-21 2013.

[40] S. Sen, C. Ieva, A. Sarkar, A. Sander, and A. Grime. Experience report:
Verifying data interaction coverage to improve testing of data-intensive
systems: The norwegian customs and excise case study. In Software

Reliability Eng. (ISSRE), 2014 IEEE 25th Int. Symposium on, pages
223–234, Nov 2014.

[41] G. B. Sherwood, S. S. Martirosyan, and C. J. Colbourn. Covering arrays
of higher strength from permutation vectors. Journal of Combinatorial
Designs, 14(3):202–213, 2006.

[42] M. J. Suárez-Cabal and J. Tuya. Using an sql coverage measurement for
testing database applications. In Proceedings of the 12th ACM SIGSOFT
twelfth international symposium on Foundations of software engineering,
SIGSOFT ’04/FSE-12, pages 253–262, New York, NY, USA, 2004.
ACM.

[43] K. Taneja, Y. Zhang, and T. Xie. Moda: automated test generation for
database applications via mock objects. In ASE, pages 289–292, 2010.

[44] M. M. Tikir and J. K. Hollingsworth. Efficient instrumentation for code
coverage testing. SIGSOFT Softw. Eng. Notes, 27(4):86–96, July 2002.

[45] J. Tuya, M. J. Suárez-Cabal, and C. de la Riva. Full predicate coverage
for testing sql database queries. Software Testing, Verification and
Reliability, 20(3):237–288, 2010.

[46] M. Utting and B. Legeard. Practical Model-Based Testing: A Tools
Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2007.

[47] M. Utting, A. Pretschner, and B. Legeard. A taxonomy of model-based
testing. Technical Report 04/06, New Zealand, April.

[48] C. Welty and D. W. Stemple. Human factors comparison of a procedural
and a nonprocedural query language. ACM Tran. Dat. Sys., 6(4):626–
649, 1981.

[49] S. White, Cattell, Fisher, and Hamilton. JDBC API Tutorial and
Reference, Second Edition: Universal Data Access for the Java 2
Platform. Addison-Wesley Longman Publishing Co., Inc., 1999.

[50] D. Willmor and S. M. Embury. An intensional approach to the
specification of test cases for database applications. In Proceedings of
the 28th International Conference on Software Engineering, ICSE ’06,
pages 102–111, New York, NY, USA, 2006. ACM.

[51] C. Yilmaz, M. Cohen, and A. Porter. Covering arrays for efficient fault
characterization in complex configuration spaces. Software Engineering,
IEEE Transactions on, 32(1):20–34, Jan 2006.

[52] H. Yin, Z. Lebne-Dengel, and Y. K. Malaiya. Automatic test generation
using checkpoint encoding and antirandom testing. In Proceedings of the
Eighth International Symposium on Software Reliability Engineering,
ISSRE ’97, pages 84–, Washington, DC, USA, 1997. IEEE Computer
Society.

