
1 23

International Journal of Parallel
Programming

ISSN 0885-7458

Int J Parallel Prog
DOI 10.1007/s10766-016-0454-1

Panda: A Compiler Framework for
Concurrent CPU $$+$$ + GPU Execution
of 3D Stencil Computations on GPU-
accelerated Supercomputers

Mohammed Sourouri, Scott B. Baden &
Xing Cai

1 23

Your article is protected by copyright and all

rights are held exclusively by Springer Science

+Business Media New York. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.

Int J Parallel Prog
DOI 10.1007/s10766-016-0454-1

Panda: A Compiler Framework for Concurrent
CPU+GPU Execution of 3D Stencil Computations on
GPU-accelerated Supercomputers

Mohammed Sourouri1,2 · Scott B. Baden3 ·
Xing Cai1,2

Received: 4 February 2016 / Accepted: 22 September 2016
© Springer Science+Business Media New York 2016

Abstract We present a new compiler framework for truly heterogeneous 3D stencil
computation on GPU clusters. Our framework consists of a simple directive-based
programming model and a tightly integrated source-to-source compiler. Annotated
with a small number of directives, sequential stencil C codes can be automatically
parallelized for large-scale GPU clusters. The most distinctive feature of the compiler
is its capability to generate hybrid MPI+CUDA+OpenMP code that uses concurrent
CPU+GPU computing to unleash the full potential of powerful GPU clusters. The
auto-generated hybrid codes hide the overhead of various data motion by overlapping
themwith computation. Test results on the Titan supercomputer and theWilkes cluster
show that auto-translated codes can achieve about 90% of the performance of highly
optimized handwritten codes, for both a simple stencil benchmark and a real-world
application in cardiacmodeling. The user-friendliness and performance of our domain-
specific compiler framework allow harnessing the full power of GPU-accelerated
supercomputing without painstaking coding effort.

B Mohammed Sourouri
mohamso@simula.no

Scott B. Baden
baden@eng.ucsd.edu

Xing Cai
xingca@simula.no

1 Simula Research Laboratory, Oslo, Norway

2 Department of Informatics, University of Oslo, Oslo, Norway

3 Department of Computer Science and Engineering, University of California, San Diego, CA, USA

123

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-016-0454-1&domain=pdf
http://orcid.org/0000-0003-1231-6355

Int J Parallel Prog

Keywords Source-to-source translation · Code generation · Code optimization ·
CUDA, OpenMP · MPI · Stencil computation · Heterogeneous computing ·
CPU+GPU computing

1 Introduction

Manycore processors such as GPUs and the Xeon Phis have high energy efficiency,
thus large clusters using these accelerators are currently in strong demand. It is hypoth-
esized by Ang et al. [1] that future Exascale systems will be heterogeneous, equipped
with both general-purpose CPUs and accelerators. The latest research has therefore
switched to combining CPUs and accelerators for improved performance and energy
efficiency [22].

Several studies have demonstrated the benefit of concurrent CPU+GPU execution
in stencil computations [12,27,32,33]. A well-known feature of stencil applications is
that the performance is often limited by the memory bandwidth [41]. From a practical
point of view, combining CPUs and accelerators means that the memory bandwidth
provided by the CPU and the accelerator can be aggregated.

Despite the potential advantages of this strategy, there is, to the best of our knowl-
edge, no programmingmodel or compiler that can reap the benefit of this approach. To
address this challenge, we propose Panda, a framework comprising a programming
model and a compiler that effectively transforms serial C stencil code for parallel
execution on heterogeneous CPU–GPU clusters. Panda uses CUDA and OpenMP to
express intra-node parallelism, and MPI to express inter-node parallelism.

Apart from being a user-friendly framework, the other goal of Panda is to provide a
tool that satisfies the performance requirements of both novice and expert users. Frame-
works such as OpenACC [25] and OpenMP [26] have demonstrated that achieving
high-performance using a generic approach is challenging. Previous domain-specific
solutions [4,37] have outcompeted the generic approach. We have therefore decided
to restrict Panda’s applicability to 3D stencil computations on structured grids.

This paper makes the following contributions:

– We introduce a programming model that abstracts the complexity of writing par-
allel code for heterogeneous CPU–GPU clusters. The model consists of a set of
compiler directives that implicitly express parallelism in serial C code, allowing
users to focus on science instead of parallelization (Sect. 2).

– We create a source-to-source compiler that implements the programming model
(Sect. 3).

– We demonstrate the Panda framework’s versatility by generating code that targets
different cluster scenarios, including pure MPI, MPI+CUDA and MPI+CUDA+
OpenMP for concurrent CPU+GPU execution on heterogeneous CPU–GPU clus-
ters (Sect. 3).

– We experimentally evaluate the performance of Panda. Compared with highly
optimized handwritten code, we observe a performance realization close to 90%
under weak scalability experiments for both a simple stencil benchmark and a
real-world application in cardiac modeling (Sect. 4).

123

Author's personal copy

Int J Parallel Prog

2 The Panda Programming Model

Themain goal of the Panda framework is to reduce the complexity of developing large-
scale stencil applications by an automated approach. The target hardware systems
are GPU clusters where each node is equipped with one or more GPUs. Directive-
based programming is adopted because it minimizes user effort and offers a high level
of abstraction [15]. Another benefit of such an approach is backward compatibility,
compilers that do not support specific directives will simply ignore them.

2.1 Target Computations

The fundamental assumption of the Panda framework is that 3D stencil computations
are executed over logically 3D data arrays. Moreover, triple loop nests are assumed
for updating the values of these data arrays, where iterations of such a triple loop nest
can be concurrently carried out, thus giving rise to full parallelism. A loop nest can
have more than three levels, such as a time loop being the outermost level that has to
be carried out in sequence. The Panda compiler uses static analyses, with support of
directives, to automatically identify the parallelism, which is subsequently realized by
MPI, CUDA and OpenMP programming.

2.2 Panda Directives

Panda Distribute(list) Size(list)

For performance reasons, Panda supports only flattened arrays that are logically 3D.
The distribute directive of Panda (such as line 1 in Listing 1) allows the user to
annotate all the logically 3D arrays while, more importantly, explicitly marking the
variables used to define the length of the arrays through the size clause.

1 #pragma panda distribute(u_old, u_new) size(Nx+2,Ny+2,Nz+2)
2 for(int t = 0; t < iterations; t++) {
3 for (int k = 1; k < Nz+1; k++)
4 for (int j = 1; j < Ny+1; j++)
5 for (int i = 1; i < Nx+1; i++) {
6 int idx = i + j∗(Nx+2) + k∗(Nx+2)∗(Ny+2);
7 u_new[idx] = kC1 ∗ u_old[idx] + kC0 ∗
8 (u_old[idx−1] + u_old[idx+1] + u_old[idx−(Nx+2)]
9 + u_old[idx+(Nx+2)] + u_old[idx−(Nx+2)∗(Ny+2)]

10 + u_old[idx+(Nx+2)∗(Ny+2)]); }
11 #pragma panda wait
12 std::swap(u_old, u_new);
13 }

Listing 1 A sample 7-point stencil computation benchmark annotated with Panda directives

Panda Boundary(list) Size(list)

Panda assumes that a double loop nest is used to enforce the boundary condition
on each side of the physical boundary (six possibilities in total). Here, Panda relies

123

Author's personal copy

Int J Parallel Prog

on the user to insert a special boundary directive on top of each such double loop
nest.

1 #pragma panda boundary(zmin) size(n,n)
2 for (int j=1; j <=n; j++)
3 for (int i=1; i <=n; i++)
4 int index = i + j ∗ (n+2) ∗ 0 + (n+2)∗(n+2);
5 E_prev[index] = E_prev[index+2∗(n+2)∗(n+2)];

Listing 2 Computations on the physical boundary that is annotated with the special boundary directive

The input to the boundary directive is a list that consists of the following variables:
xmin, xmax, ymin, ymax, zmin and zmax, which represent the three directions in a
Cartesian coordinate system. With help of (a subset of) these variables, Panda can
detect the applicable spatial direction, and thus auto-generate the correct parallel code
in the context of distributed memory. The size clause is used both for validation
purposes and for deriving the correct indices inside the boundary-condition double
loop nest. Listing 2 illustrates the use of the boundary directive.

Panda Reduction(operator:list)

Many stencil applications need reduction operations, for example, to compute an inner
product. Interactions (implicitly) enforced between the threads of a CPU or a GPU are
needed to carry out a local reduction. Globally, on distributed memory, a reduction
requires additional interaction with MPI, which a novice user may not be aware of.
Thus, Panda supports (like OpenMP and OpenACC) a reduction directive, which
automatically takes care of necessary intra-node and inter-node data exchanges.

Panda Wait

Code regions that can only be executed sequentially on either the host or the GPU
are marked by the wait directive. The translated implementation depends on the
translator’s mode of operation. For example, when generating MPI+CUDA code,
the wait directive translates into a cudaDeviceSynchronize call. When gener-
ating MPI+CUDA+OpenMP code, the wait directive will result in the insertion of
a call to cudaDeviceSynchronize plus an OpenMP #pragma omp master
directive, followed by #pragma omp barrier.

3 The Panda Source-to-Source Compiler

3.1 Overview

Panda can generate three types of parallel code: pure MPI for homogeneous CPU
clusters, MPI+CUDA for GPU clusters, and MPI+CUDA+OpenMP for concurrent
CPU+GPU execution on GPU clusters. These three code versions gradually extend
each other. The MPI+CUDA version is similar to the pure MPI version, but the
main difference is that Panda generates CUDA kernels instead of CPU computation

123

Author's personal copy

Int J Parallel Prog

Fig. 1 An architectural view of the Panda source-to-source compiler

functions. In the MPI+CUDA+OpenMP version, both CPU functions annotated with
OpenMP directives and CUDA kernels are generated by Panda for computation.

A command line interface (CLI) determines the “translation mode”, so that
the matched modules inside Panda carry out the correct analyses. Currently, three
command-line options are supported:

– mpi generates pure MPI (CPU only) code
– gpu generates MPI+CUDA (GPU-only) code
– hybrid generates MPI+CUDA+OpenMP (CPU+GPU) code

The overall structure of the Panda compiler is shown in Fig. 1. The user input is a
serial C source file, annotated with Panda directives. Panda uses the EDG front-end
bundledwithROSE [13] to construct anAbstract Syntax Tree (AST), which expresses
the structure of the input code as a graph. Once the AST has been generated, the
CLI will pass the info about translation mode to a module for directive verification.
Thereafter, a module for domain decomposition is activated to partition the global
domain into smaller cuboids. Moreover, in the CPU+GPU mode, each subdomain
is further partitioned along the z-axis, as described by Sourouri et al. [33]. For the

123

Author's personal copy

Int J Parallel Prog

CPU+GPU mode, the user can control the CPU–GPU workload distribution via the
command line.

Next, the Panda compiler calls the Stencil Analyzermodule. The task of this module
is to reveal important details about the stencil reach, which are needed to generate CPU
functions/GPU kernels for halo boundary computations, and correspondingMPI func-
tion calls. For example, if the stencil shape reaches beyond 7 points, it is necessary
to generate additional CPU functions or GPU kernels for corner accesses. Further-
more, information about the stencil is essential for performing domain-specific code
optimizations.

Panda stores array descriptors in a table and uses it to count the number of read-
only references to each array. When it has finished tallying the references, Panda
subsequently sorts the arrays in the order of most-to-least-frequently accessed. A
description of the stencil is then stored as a Stencil object, which can be used by
other modules for transformation purposes. Stencil description is typically adopted by
domain-specific languages (DSLs) [20,42] to deal with this problem. However, while
DSLs typically require the user to explicitly define the stencil, the Panda compiler is
capable of detecting it automatically, like several existing tools [2,6,10,37].

3.2 MPI Code Generation

Panda adopts non-blocking asynchronous MPI calls to realize inter-node communi-
cation that overlaps halo boundary exchange with computation. However, before the
exchange takes place, the respective boundaries must be computed and stored in ded-
icated send buffers (packing). The send buffers are then passed to the MPI_Isend
function that communicates the content of the send buffer to a receiving neighbor. Data
received by a neighboring subdomain is stored in a receive buffer before it is unpacked.
Additionally, anMPI_Waitall is also inserted to ensure that associatedMPI requests
have completed before the unpacking starts.

3.3 Communication Optimizations

The Panda compiler performs two communication optimizations in order to improve
the application performance.

1. All data movement between a host CPU and its device GPU is performed by the
cudaMemcpyAsync function, which guarantees that the intra-node data move-
ment between the CPU and the GPU happens in the background, thus having the
possibility of being overlapped with computation.

2. In the context of MPI+CUDA+OpenMP code generation, Panda creates separate
MPI requests for theCPUand theGPU that are usedby the designatedMPI function
calls. By introducing separate MPI requests, we decouple CPU and GPU MPI
requests from each other, thus in effect creating two independent communication
channels. The benefit of this approach is that the GPU does not need to wait on the
CPU’s messages to arrive (or vice versa) before it can start unpacking its received
data.

123

Author's personal copy

Int J Parallel Prog

3.4 MPI+CUDA Code Generation

For computation of the interior points, Panda generates CUDA kernels based on the
pipelined wavefront technique [30], but does not perform register blocking nor loop
unrolling. This implementation decision is for simplifying the actual code generation.
However, in future work we will investigate auto tuning of cache and register blocking
and other optimizations, such as loop unrolling for CPUs [24,40] and warp special-
ization for GPUs [19]. Listing 3 displays the generated CUDA kernel for computing
the interior points.

1 __global__ void ComputeInteriorPoints(
2 double ∗__restrict__ const u_old,
3 double ∗u_new, int nsdx, int nsdy, int nsdz, double kC0,
4 double kC1, int offset) {
5 unsigned int i = 1+threadIdx.x + blockIdx.x ∗ blockDim.x;
6 unsigned int j = 1+threadIdx.y + blockIdx.y ∗ blockDim.y;
7 unsigned int k_start = 1+blockIdx.z ∗ offset;
8 unsigned int k_stop = k_start + offset;
9

10 if (k_stop > (nsdz+2)−1) { k_stop = (nsdz+2)−2; }
11

12 if (i > 1 && i < (nsdx+2)−2 && j > 1 && j < (nsdy+2)−2)
13 for (int k = k_start; k < k_stop; k++) {
14 int idx = i + j∗(nsdx+2) + k∗(nsdx+2)∗(nsdy+2);
15 u_new[idx] = kC1 ∗ u_old[idx]
16 + (kC0 ∗ u_old[idx−1] + u_old[idx+1]
17 + u_old[idx−(nsdx+2)] + u_old[idx+(nsdx+2)]
18 + u_old[idx−(nsdx+2)∗(nsdy+2)]
19 + u_old[idx+(nsdx+2)∗(nsdy+2)]);
20 }}

Listing 3 Auto-generated CUDA kernel for computing interior points using a 7-point stencil. The code has
been formatted for brevity

One important assumption of Panda is that all stencil-compute loops (i.e. triple loop
nests) require inter-node MPI communication. Since we wish to overlap communica-
tion with computation, the inter-subdomain halo boundaries are computed separately
from the interior points for every identified stencil-compute loop nest. Panda thus
generates unique halo boundary functions for every stencil-compute loop nest.

When generating the kernels for computing the different halo boundaries, Panda
assumes that a subdomain is a box and thus has six sides (up to six MPI neighbors).
Specifically, Panda first enumerates the six different sides, and then iterates over them
using the stencil analysis process described in Sect. 3.1. At the same time, Panda is
able to distinguish stencil-compute loops from non-stencil-compute loops.

Each halo boundary, which is a 2D plane, is handled by a double loop nest. The
Panda compiler simplifies this part of CPU code generation by performing a deep
copy of the original triple loop nest, while removing one loop layer that is not needed
for a specific halo boundary. The benefit of such a deep copy technique is that we
automatically obtain the loop range (condition statement) of the for-loops.

It is straightforward to accommodate the deep copied for-loops when generating
CUDA kernels, by simply modifying the for-loops to iterate over the respective mesh

123

Author's personal copy

Int J Parallel Prog

points that are assigned to one CUDA thread. This technique is better known as grid-
stride loops [18]. As Listing 4 shows, the generated halo boundary loop nest in a
CUDA kernel is very similar to a regular CPU double loop nest.

1 __global__ void ComputePackEast(
2 double∗ u_new, double∗ __restrict__ const u_old,
3 double∗ d_send_buffer, int nsdx, int nsdy, int nsdz,
4 double kC0, double kC1) {
5

6 int z = 1+threadIdx.y + blockIdx.y ∗ blockDim.y;
7 int y = 1+threadIdx.x + blockIdx.x ∗ blockDim.x;
8

9 for (int k = z; k < (nsdz+2)−1; k += blockDim.y ∗ gridDim.y)
10 for (int j = y; j < (nsdy+2)−1); j += blockDim.x ∗ gridDim.x)
11 int idx = (nsdx) + j∗(nsdx+2) + k∗(nsdx+2)∗(nsdy+2);
12 int idx2d = (k−1) ∗ nsdy + j − 1;
13

14 u_new[idx] = kC1 ∗ u_old[idx]
15 + (kC0 ∗ u_old[idx−1] + u_old[idx+1]
16 + u_old[idx−(nsdx+2)] + u_old[idx+(nsdx+2)]
17 + u_old[idx−(nsdx+2)∗(nsdy+2)]
18 + u_old[idx+(nsdx+2)∗(nsdy+2)]);
19

20 d_send_buffer[idx2d] = u_new_sd[idx];
21 }

Listing 4 Auto-generated CUDA kernel for computing a halo boundary (the xy-plane in the “east”). The
code has been formatted for brevity

The Panda compiler takes advantage of the Kepler architecture’s read-only cache
[23] to further improve the performance. The read-only cache is a 48 kB on-chip
memory that can be used to cache data that is known to be read-only during the
lifetime of a kernel. Data to be placed in the read-only cache must be flagged with
the const and __restrict__ keywords. Thus, upon CUDA kernel generation,
theMPI+CUDAGenerator module will use information from the Stencil object to
identify read-only arrays. These arrays are then automatically flagged with the const
and __restrict__ keywords.

Choosing a good CUDA thread block size might impact the performance of a ker-
nel. Our solution is to generate three variables block_x, block_y and block_z,
one per dimension. Each variable (having a default value) is then connected to the
command-line interface, allowing the user to experiment with different block config-
urations at runtime (as opposed to compile time). However, auto-tuning to determine
optimal block sizes remains as future work.

3.5 MPI+CUDA+OpenMP Code Generation

In this scenario, the trick is to properly divide the computational workload between
the CPU and the GPU, so that the CPU can aid the GPU in sharing the computational
costs. Our programming strategy is based on the “nested” implementation strategy, as
described by Sourouri et al. [33], where a hybrid MPI+CUDA+OpenMP program-

123

Author's personal copy

Int J Parallel Prog

mingmodel is used to realize concurrent CPU+GPU computations. The principal idea
for the strategy is to overlap computationwith communication usingOpenMP’s nested
parallelism capability to generate two independent groups of threads. The first thread
group handles the CUDA,MPI communication and computation of the halo boundary
points on the CPU using OpenMP threads. The second thread group computes the
interior points on the CPU.

Generating MPI+CUDA+OpenMP code requires only incremental changes to the
MPI+CUDA code. The main difference is that the generated MPI+CUDA code is
augmented with additional CPU code annotated with OpenMP directives. Moreover,
an additional 1D subdomain partitioning along the z axis is applied to divide the
computational workload between the CPU and the GPU in every subdomain. Code
generation is realized in three passes. First, Panda generates pure MPI code for per-
forming communication and computation on the CPU. Next, MPI+CUDA code is
generated, and in the final pass the two codes are stitched together.

As a number of studies [5,11,12,33,38] have already shown, one of the most chal-
lenging aspects of CPU+GPU codes is related to assigning work to the different
processing units of a heterogeneous node. Because CPU+GPU codes are extremely
sensitive to the workload ratio, Panda’s CLI will auto-generate command-line argu-
ments for the translated code so that the user can specify the CPUs workload ratio.

4 Experimental Results

This section investigates the performance of the GPU-only and CPU+GPU code
generated by Panda. The two auto-generated code versions are compared against the
corresponding handwritten implementations for two cases of stencil computation: the
well-known 7-point 3D Laplacian stencil benchmark and a real-world 3D application
in cardiac modeling.

Two hardware platforms have been used for our study. TheWilkes cluster at Univer-
sity of Cambridge is the former No. 2 system on the Green500 list [35], and consists
of 128 compute nodes. Each Wilkes node is equipped with two 6-core Intel Xeon
E5-2630v2 “Ivy Bridge” CPUs and two Tesla K20c GPUs. The second platform is
the Titan supercomputer, currently ranked the second fastest supercomputer on the
TOP500 list [36]. Each Titan node is equipped with a single 16-core AMD Opteron
6274 CPU and a Tesla K20X GPU. A complete overview of the two GPU clusters
are detailed in Table 1. Under the weak scaling experiments, the problem size for
each MPI process was fixed at 5123 for both the 3D Laplacian stencil benchmark
and the Cardiac elctrophysiology simulator. The global problem size for the strong
scale experiment was 512×512×1024. All experiments were conducted with double
precision.

4.1 3D Laplacian Stencil Benchmark

As the first numerical case, let us consider the simplest diffusion equation, ∂u/∂t =
∇2u, to be discretized by finite differences combined with explicit time stepping.
The resulting 3D numerical scheme straightforwardly computes a new time level of

123

Author's personal copy

Int J Parallel Prog

Table 1 Experimental platform
overview

Titan (Cray XK7) Wilkes

CPU Opteron 6274 Xeon E5-2630v2

Clock frequency 2.2 GHz 2.6 GHz

cores 16 6

sockets 1 2

L3$ per chip 16 MB 15 MB

Theoretical DP 142 GFLOP/s 249.6 GFLOP/s

Theoretical BW 70.4 GB/s 119.4 GB/s

STREAM 31.9 GB/s 72.95 GB/s

Compiler cce 8.1.0.144 icc 15.0.5.223

Accelerator Tesla K20X Tesla K20c

GPUs per node 1 2

Theoretical DP 1310 GFLOP/s 1170 GFLOP/s

Theoretical BW 250 GB/s 208 GB/s

STREAM 180 GB/s 151 GB/s

Compiler nvcc 6.5 nvcc 6.5

u by applying a standard 7-point stencil over the previous time level of u. That is,
the computation involved in each time step is the same as the well-known 7-point 3D
Laplacian stencil, as shown in Listing 1. Moreover, this simple benchmark application
assumes that u remains constant on the entire physical boundary. Hence, during the
whole time-stepping procedure, no computation is needed on any of the physical
boundary points.

For this 3D benchmark, both of our handwritten implementations use a highly
optimized single-GPU kernel that can realize 78% of the realistic memory bandwidth
on a K20 GPU, which is measured by the STREAM Triad memory benchmark [21].
More precisely, the handwritten CUDA kernel is based on the technique presented by
Su et al. [34], which combines plane sweeping along the z axis with chunking along
the y axis. In comparison, the Panda auto-generated GPU kernel can achieve about
72% of the realistic memory bandwidth. The performance difference is due to the fact
that the handwritten GPU kernel is more aggressively optimizedwith register blocking
along the z dimension, which is not adopted automatically by the Panda compiler.

On the Wilkes cluster, which has more powerful CPUs than those on the Titan
cluster, we compare the auto-generated CPU+GPU (i.e., MPI+CUDA+OpenMP)
code with the handwritten CPU+GPU counterpart, as well as a comparison between
the two GPU-only versions. If only one GPU is used per Wilkes node, the achiev-
able GPU memory bandwidth is about 2× that of the aggregate CPU memory
bandwidth. Figure 2a displays the measured performance of the four implemen-
tations (two handwritten versions versus two Panda auto-generated versions), in
the context of using one GPU per node on the Wilkes cluster. The most efficient
implementation is the handwritten MPI+CUDA+OpenMP code, followed by the
auto-generated MPI+CUDA+OpenMP code. The best CPU workload ratios for
the two CPU+GPU codes are 15% for the handwritten version and 8% for the

123

Author's personal copy

Int J Parallel Prog

(a) (b)

Fig. 2 Weak scaling results on the Wilkes cluster, each MPI process is responsible for 5123 mesh points
a weak scaling on Wilkes using one GPU per node b weak scaling using two GPUs per node

auto-generated version, respectively. This difference in the CPU workload ratio is
primarily because that the handwritten version performs a highly efficient 3D cache-
blocking [28] technique for computing the interior points on the CPU, and uses
non-temporals for computing the halo boundary points. The auto-generated code
does not implement these optimizations, which implicitly means that the CPU work-
load must be smaller. Nevertheless, the auto-generated CPU+GPU code is still
capable of outperforming the highly optimized handwritten GPU-only implemen-
tation.

Using both GPUs per Wilkes node brings a new challenge, because the number
of MPI processes is now two per node (one per CPU socket), effectively reducing
the number of CPU cores available per GPU from 12 to 6. This in turns widens the
memory bandwidth difference to a factor of 4×, between one GPU and one CPU
socket. Consequently, we reduce the CPU’s workload ratio from 15 to 10% for the
handwritten version, and from8 to 5% for the auto-generated version.Despite theCPU
workload reduction, it is evident from Fig. 2b that the auto-generated CPU+GPU code
is still faster than the hand optimized GPU-only version, in the context of using two
GPUs per Wilkes node.

Moving to the Titan platform, Fig. 3a shows the performance of three GPU-only
implementations. That is, in addition to the handwritten version and the Panda auto-
generated version, we also adopt a highly optimized OpenACC kernel, which has been
kindly reviewed and improved by NVIDIA. The OpenACC implementation makes
use of CUDA-aware MPI (not used by the other two implementations), and thus
achieves slightly better communication performance on Titan. Despite this advantage
of OpenACC, the GPU-only code generated by Panda is able to beat the OpenACC
implementation. This is because the Panda translator is domain-specific, thus able
to leverage the knowledge of the domain of stencil computations to generate more
optimized kernels. The performance of the OpenACC code is largely determined by
the generic approach taken by OpenACC, which divides the loop nest into smaller
thread blocks, and then executes each thread block in a SIMD fashion on each GPU.

123

Author's personal copy

Int J Parallel Prog

(a) (b)

Fig. 3 Weak scaling results on the Titan supercomputer, each MPI process is responsible for 5123 mesh
points a MPI+CUDA weak scaling on Titan bMPI+CUDA weak scaling on Titan with MPI disabled

Another performance weakness of the OpenACC code arises from a very high register
usage that limits the occupancy, thus impeding the performance.

On Titan, the Panda auto-generated code realizes nearly 90% of the performance of
the handwritten counterpart. The primary reason why the auto-generated code cannot
realize the full performance of the handwritten code is largely because of less efficient
compute kernels including the kernels responsible for computing the halo boundary
points. Furthermore, the auto-generated code performs unnecessary packing/unpack-
ing of halo boundary data that is actually laid out contiguously in memory.

In Fig. 3b we have repeated the same weak-scaling study outlined in Fig. 3a, but
the MPI calls now are disabled. In other words, there is no inter-node communication
overhead. The purpose is to quantify the amount of time spent on communicating, and
thereby reveal how well the code is able to hide inter-node communication. As Fig. 3b
shows, the handwritten code does a good job of hiding the MPI communication. It is
only when the number of GPUs exceeds 1024 that the MPI communication becomes
a decisive bottleneck. The difference between the performance results without inter-
node communication and the performance results with communication can help to
quantify the impact of inter-node communication. For example, at 2048 GPUs, 23%
of the total time of the handwritten code is spent on MPI communication, while 33%
is spent on MPI communication when 4096 GPUs are used. Similarly for Panda, MPI
communication is well hidden up to 512 GPUs. After 512 GPUs, communication
becomes a more pressing issue affecting scalability. At 1024 GPUs, 10% of the time
is spent on MPI, 21% at 2048 GPUs, and finally at 4096 GPUs, 31% is spent on
communication.

The reason that we only present the GPU-only performance measurements on Titan
is that CPU+GPU versions were unsuccessful on Titan. Recall that each Titan node is
equipped with a single 16-core AMDOpteron 6274 CPU and a Tesla K20XGPU. The
performance difference between the GPU and the CPU, by comparing the realistic
memory bandwidth performance, is approximately 5.6×. Closing this performance
gap is challenging, especially since the 16CPU cores share 8 floating point units. Thus,
it is not possible to delegate enough threads to the two thread groups responsible for
computing the halo boundary and interior points.

123

Author's personal copy

Int J Parallel Prog

The lesson learned from clusters such as Titan is that CPU+GPU codes do not
pay off, if the performance gap between the CPU and the GPU is too big. In such a
scenario, GPU-only code might be a better alternative. Luckily, Panda is capable of
generating both GPU-only and CPU+4GPU code. Hence, the user can freely choose
the best option that suits a given hardware platform.

4.2 Cardiac Electrophysiology Simulator

We have also applied Panda to a real-world 3D cardiac electrophysiology simulator,
which simulates the propagation of electrical signals in the cardiac tissue. The purpose
of such a simulator is to study complicated cardiac features, such as spiralwaves,which
may lead to life threatening situations such as ventricular fibrillation.

Themathematical model of concern was derived byAliev and Panfilov [8].Without
going into details, it suffices to mention that the model consists of a 3D reaction-
diffusion equation, coupled with a two-state ordinary differential equation (ODE)
system per spatial mesh point. In comparison with the preceding 7-point Laplacian
stencil benchmark, the cardiac simulator has additionally implemented anODE solver,
as well as enforcing a homogeneous Neumann condition on the entire physical bound-
ary.

The input serial code of the cardiac simulator to Panda is annotated similarly to
Listing 1, with the addition of the panda boundary directive in order to deal with the
Neumann boundary condition, as outlined in Sect. 2.2. For comparison, we have also
implemented two handwritten versions: GPU-only and CPU+GPU.

Figure 4a, b show the performance results of the cardiac simulator on the
Wilkes cluster using both handwritten and auto-generated CPU+GPU and GPU-
only implementations. Like the 7-point Laplacian stencil benchmark, the most
efficient implementations for the cardiac simulator are the two that involve concurrent
CPU+GPU computations.

(a) (b)

Fig. 4 Weak scaling results on the Wilkes cluster, each MPI process is responsible for 5123 mesh points
a weak scaling on Wilkes using one GPU per node b weak scaling on Wilkes using two GPUs per node

123

Author's personal copy

Int J Parallel Prog

(a) (b)

Fig. 5 Weak and strong scaling results on the Titan supercomputer. Under the weak scaling experiment,
eachMPI process is responsible for 5123 mesh points, while under the strong scaling experiment, the global
problem size is 512× 512× 1024 aMPI+CUDA weak scaling on Titan bMPI+CUDA strong scaling on
Titan

The performance upper-hand of the handwritten code comes largely from the faster
kernels for the halo boundaries, and for computing the PDE and the ODE parts. The
computations involve many coefficients, which easily cap the occupancy due to high
register usage. The handwritten code makes use of the GPU’s constant memory for
this purpose. Moreover, it also uses plane sweeping and loop unrolling to achieve high
performance. These optimization techniques are not exploited in the kernels generated
by Panda.

The performance difference between the handwrittenGPU-only code and the Panda
GPU-only version is more visible under the strong scaling experiments conducted
using up to 1024 GPUs on Titan, as shown in Fig. 5b. We observe that already at
32 GPUs the two performance curves start to diverge. Profiling reveals that there are
two reasons for this behavior. The first reason is that Panda does unnecessary halo
boundary packing and unpacking on the xy planes. This is avoided by the handwritten
code. The second reason is that the Panda generated kernels for the halo boundaries
and the interior points are not as fast as the handwritten kernels, which may constitute
a bottleneck under strong scaling experiments when each subdomain becomes very
small. One side effect of the generalizations that Panda makes is the introduction of
additional overheads. However, we believe that these overheads are modest enough
that we do not see them as the main obstacle to scalability.

5 Related Work

The number of prior works conducted by other researchers is large. To help the reader,
we will categorize the related work into three types: compiler directives, libraries and
DSLs.

Compiler Directives

A developer friendly approach is to use compiler hints to guide the compiler in
generating parallelized code. Thanks to the support from numerous vendors, Ope-

123

Author's personal copy

Int J Parallel Prog

nACC and OpenMP have rapidly established themselves as the de facto solutions for
directive-based code development. Although capable of delivering acceptable perfor-
mance [16,39] in a broad range of applications, neither OpenACC norOpenMP targets
an entire cluster. Users are thus left to their own to write code that deals with MPI.

Our work is closely related to [14,25,26,37], which all use compiler directives to
automatically offload computation to a single accelerator. OpenACC [25] is known to
provide good performance on Nvidia GPUs, while OpenMP [26] is known to deliver
particularly good performance on CPUs and Xeon Phi co-processors. Mint [37] by
Unat et al. is a domain-specific translator for stencil methods by transforming serial
stencil C/C++ code to CUDA code. OpenMPC [14] by Lee and Eigenmann pro-
vides an extension of OpenMP, so that code annotated with OpenMP directives is
translated to CUDA code. OpenMPC also includes an auto-tuner for performance
tuning. Like OpenACC and OpenMP, both Mint and OpenMPC target only a single
accelerator.

OpenMP-D [3] by Basumallik and Eigenmann provides a set of custom directives
that extendsOpenMP for translatingOpenMPcode toMPI code. Similar toOpenMPC,
OpenMP-D takes a generic approach, and is not restricted to stencil computations.
Dathathri et al. [5] have developed a compiler for auto-generation of regular compu-
tation on structured grid for heterogeneous CPU–GPU clusters. OpenCL is chosen as
the programming model to generate code for both CPUs and GPUs. The compiler by
Dathathri et al. can also generate CPU+GPU code using an asymmetric work distrib-
ution similar to ours. The authors however are not able to make their CPU+GPU code
scale beyond a single node, believing that the CPU is the bottleneck. Ravishankar et
al. [29] have developed a compiler framework of code generation for mixed irreg-
ular/regular computations targeting homogeneous distributed memory systems. Our
Panda compiler framework shares several similarities with the work by Ravishankar
et al., such as static analyses of partitionable loops, use of compiler directives to anno-
tate distributed data structures, etc. However, one important distinction is that our
tool is capable of targeting GPU-enhanced clusters in addition to homogeneous CPU
clusters.

Libraries

PARTANS [17] by Lutz et al. provides a C++ template library to ease the burden of
OpenCL programming of stencil code targeting multiple GPUs. The authors have also
developed an extensive auto-tuner for performance optimizations. PARTANS supports
multiple GPUs per node, but its scalability is limited because the library only supports
1D domain decomposition. Shimokawabe et al. [31] have developed a C++ library for
performing large-scale weather forecast simulations on the TSUBAME 2.5 supercom-
puter. The library of Shimokawabe et al. supports various domain decompositions, and
also takes advantage ofmultiple GPUs on the same node usingGPUDirect v2 (peer-to-
peer) memcopies for fast intra-node data transfers. Both PARTANS and the framework
of Shimokawabe et al., however, lack the ability to perform pure CPU or concurrent
CPU+GPU computations. Furthermore, users with sequential implementations must
rewrite their code in order to take advantage of these libraries.

123

Author's personal copy

Int J Parallel Prog

DSLs

DSLs constitute a compromise by giving up some of the language generality for
performance. Since a DSL is restricted to a particular application domain, it can
leverage on this knowledge to deliver excellent performance. Contrary to a directive-
based approach, DSLs require considerable effort in code development. A similar
investment in code redevelopment is also required if the user has an existing parallel
implementation.

The DSLs that lie quite close to Panda are [4,7,9,11,20,27,42]. PATUS [4] is a
CPU–GPU stencil code generation and auto-tuning framework developed by Chris-
tensen et al. PATUS depends on user-provided description files, because it lacks a
stencil analyzer that can automatically recognize stencil shapes. Code generation for
different architectures is explicitly defined in a machine architecture description file.
Holewinski et al. [9] have developed a single-GPU stencil code generator using over-
lapped tiles in OpenCL. Neither PATUS nor the work by Holewinski et al. generates
code for concurrent CPU+GPU execution.

The Halide [27] DSL represents a compiler and auto-tuner framework by Ragan-
Kelley et al. It generates stencil code for 2D image processing on CPUs, GPUs, and
CPUs+GPUs. Like PATUS and the framework developed by Holewinski et al., Halide
targets CPUs and manycore processors within a single node.

Physis [20] by Maruyama et al. is an embedded DSL that targets large-scale GPU
clusters. A dedicated compiler translates input code that is implemented in the Physis
DSL into MPI+CUDA code, which overlaps inter-node data transfers with computa-
tion. However, Physis cannot generate heterogeneous CPU+GPU code. The SnuCL
[11] framework by Kim et al. can run a wide range of OpenCL applications on GPU
clusters. SnuCL abstracts the processing units, such as CPUs and GPUs, across an
entire cluster to make it appear as a single processing unit on a single machine. Appli-
cations transformed by SnuCL are capable of concurrent CPU+GPU computations,
but due to the workload distribution strategy adopted by SnuCL, the performance
benefit of this approach is limited. Another limitation is that SnuCL does not take
serial code as input, only parallel OpenCL code. The auto-generation and auto-tuning
stencil framework [42] by Zhang and Mueller generates high-quality stencil code that
can be executed on GPU clusters. The framework however cannot generate pure MPI
or CPU+GPU code nor can it handle physical boundary conditions.

STELLA [7] is a recent DSL/library that targets atmospheric stencil codes dis-
cretized on structured grids. Like the library developed by Shimokawabe et al. [31],
STELLA is particularly optimized for a specific weather prediction and regional cli-
mate model called COSMO. Similar to Panda, STELLA is able to handle physical
boundary conditions, but unlike Panda, it is not able to produce codes that can per-
form concurrent CPU+GPU computations.

In summary, the related work reveals the lack of a developer-friendly programming
model that can realize high performance on accelerated clusters by auto-generating
CPU+GPU code based on serial input codewritten in a general-purpose programming
language such as C. This gap in the compiler toolchain represents a particular obstacle
to domain scientists who wish to harness the computational powers of CPU–GPU
clusters. The Panda framework is thus an effort to close the gap.

123

Author's personal copy

Int J Parallel Prog

6 Conclusion

In this paper we have presented the Panda compiler framework, consisting of a
directive-based programming model and a source-to-source translator. From anno-
tated serial C code, Panda can automatically generate various forms of parallel code
that can efficiently run on GPU-accelerated distributed-memory systems.

We have demonstrated that the MPI-supported GPU-only code generated by Panda
can realize 90% of the performance of a highly optimized handwritten counterpart.
Moreover, Panda’s GPU-only code scales nicely onmore than 4000GPUs on the Titan
supercomputer.

With respect to concurrent CPU+GPU computation, coding is notoriously hard
due to many fine-grained details. The Panda framework fills the missing gap in auto-
mated generation of hybrid MPI+CUDA+OpenMP code for stencil computations.
The automatically generated CPU+GPU code from Panda can in many cases out-
perform handwritten GPU-only code. We thus believe that Panda can satisfy the
performance requirements of many domain scientists, so that they can focus on the
science instead of tedious programming details. At the same time, Panda generates
codewith high readability, so advanced users can use Panda as a springboard to quickly
generate parallel and hybrid code that can later be manually modified for further per-
formance enhancements.

Future work will mainly address some of Panda’s current limitations, such as han-
dling stencils with a wider reach than 7 points. Another topic is periodic physical
boundary condition, which in the context of MPI parallelization requires implement-
ingwrap-around communication.Wealso plan to construct a runtime system to provide
a better user experience with respect to adjusting input, such as the CPU workload
ratio, to the translated application.

We will also explore better support for future GPU clusters that are equipped with
multiple GPUs per node. In the current version of Panda, an MPI process is spawned
per GPU. However, a more promising approach is to use only a single MPI process,
but adopting multiple CPU threads to control the GPUs.

Currently, the Panda source-to-source compiler is specifically designed for GPU
clusters, but we will consider extending Panda with respect to Xeon Phi clusters.
Such an extension will involve fine-grained use of OpenMP on Xeon Phis as opposed
to using CUDA on GPUs. Our preliminary study suggests that the extension can be
implemented in a straightforward manner.

Acknowledgments This workwas supported by the FriNatek program of the Research Council of Norway,
through Grant No. 214113/F20. The authors thank High Performance Computing Service at the University
of Cambridge, UK. This research used resources of the Oak Ridge Leadership Computing Facility at the
Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC05-00OR22725.

References

1. Ang, J., Barrett, R., Benner, R., Burke, D., Chan, C., Cook, J., Donofrio, D., Hammond, S., Hemmert,
K., Kelly, S., Le, H., Leung, V., Resnick, D., Rodrigues, A., Shalf, J., Stark, D., Unat, D., Wright,
N.: Abstract machine models and proxy architectures for exascale computing. In: Proceedings of

123

Author's personal copy

Int J Parallel Prog

the 1st International Workshop on Hardware–Software Co-Design for High Performance Computing
(Co-HPC), pp. 25–32 (2014)

2. Baskaran, M.M., Ramanujam, J., Sadayappan, P.: Automatic C-to-CUDA code generation for affine
programs. In: Proceedings of the 19th Joint European Conference on Theory and Practice of Software,
International Conference on Compiler Construction, pp. 244–263 (2010)

3. Basumallik, A., Eigenmann, R.: Towards automatic translation of OpenMP to MPI. In: Proceedings
of the 19th Annual International Conference on Supercomputing, pp. 189–198 (2005)

4. Christen, M., Schenk, O., Burkhart, B.: PATUS: A code generation and autotuning framework for
parallel iterative stencil computations onmodernmicroarchitectures. In: ParallelDistributedProcessing
Symposium (IPDPS), 2011 IEEE International, pp. 676–687 (2011)

5. Dathathri, R., Reddy, C., Ramashekar, T., Bondhugula, U.: Generating efficient data movement code
for heterogeneous architectures with distributed-memory. In: Proceedings of the 22nd International
Conference on Parallel Architectures and Compilation Techniques, pp. 375–386 (2013)

6. Grosser, T., Cohen, A., Holewinski, J., Sadayappan, P., Verdoolaege, S.: Hybrid hexagonal/classical
tiling for GPUs. In: Proceedings of Annual IEEE/ACM International Symposium on Code Generation
and Optimization, pp. 66:66–66:75 (2014)

7. Gysi, T., Osuna, C., Fuhrer, O., Bianco, M., Schulthess, T.C.: STELLA: A domain-specific tool for
structured gridmethods inweather and climatemodels. In: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, pp. 41:1–41:12 (2015)

8. Hanslien, M., Artebrant, R., Tveito, A., Lines, G.T., Cai, X.: Stability of two time-integrators for the
Aliev-Panfilov system. Int. J. Numer. Anal. Model. 8, 427–442 (2011)

9. Holewinski, J., Pouchet, L.N., Sadayappan, P.: High-performance code generation for stencil com-
putations on GPU architectures. In: Proceedings of the 26th ACM International Conference on
Supercomputing, pp. 311–320 (2012)

10. Kamil, S., Chan, C., Oliker, L., Shalf, J., Williams, S.: An auto-tuning framework for parallel multicore
stencil computations. In: ParallelDistributedProcessing (IPDPS), 2010 IEEE International Symposium
on, pp. 1–12 (2010)

11. Kim, J., Seo, S., Lee, J., Nah, J., Jo, G., Lee, J.: SnuCL: An OpenCL framework for heterogeneous
CPU/GPU clusters. In: Proceedings of the 26th ACM International Conference on Supercomputing,
pp. 341–352 (2012)

12. Langguth, J., Sourouri, M., Lines, G.T., Baden, S.B., Cai, X.: Scalable heterogeneous CPU–GPU
computations for unstructured tetrahedral meshes. Micro, IEEE 35(4), 6–15 (2015)

13. Lawrence Livermore National Laboratory: ROSE compiler infrastructure. http://rosecompiler.org
(2015). Accessed 04 June 2015

14. Lee, S., Eigenmann, R.: OpenMPC: Extended OpenMP programming and tuning for GPUs. In:
Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 1–11 (2010)

15. Lee, S., Vetter, J.S.: Early evaluation of directive-based GPU programming models for productive
exascale computing. In: Proceedings of the International Conference onHigh Performance Computing,
Networking, Storage and Analysis, pp. 23:1–23:11 (2012)

16. Levesque, J.M., Sankaran,R.,Grout,R.:HybridizingS3D into an exascale application usingOpenACC:
An approach formoving tomulti-petaflops and beyond. In: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, pp. 15:1–15:11 (2012)

17. Lutz, T., Fensch, C., Cole, M.: PARTANS: an autotuning framework for stencil computation on multi-
GPU systems. ACM Trans. Archit. Code Optim. 9(4), 59:1–59:24 (2013)

18. MarkHarris: CUDApro tip:Write flexible kernelswith grid-stride loops. http://goo.gl/b8Vmkh (2015).
Accessed 12 Nov 2015

19. Maruyama, N., Aoki, T.: Optimizing stencil computations for NVIDIA Kepler GPUs. In: Proceedings
of the 1st International Workshop on High-Performance Stencil Computations, pp. 89–95 (2014)

20. Maruyama, N., Nomura, T., Sato, K., Matsuoka, S.: Physis: An implicitly parallel programming model
for stencil computations on large-scale GPU-accelerated supercomputers. In: Proceedings of 2011
International Conference for High Performance Computing, Networking, Storage and Analysis, pp.
11:1–11:12 (2011)

21. McCalpin, J.D.: Memory bandwidth and machine balance in current high performance computers.
IEEE Computer Society Technical Committee on Computer Architecture (TCCA) Newsletter pp. 19–
25 (1995)

123

Author's personal copy

http://rosecompiler.org
http://goo.gl/b8Vmkh

Int J Parallel Prog

22. Mittal, S., Vetter, J.S.: A survey of CPU–GPU heterogeneous computing techniques. ACM Comput.
Surv. 47(4) (2015)

23. NVIDIA:NVIDIA’s next generationCUDAcompute architecture:KeplerGK110. http://goo.gl/9ju84x
(2013). Accessed 12 Nov 2015

24. Olschanowsky, C., Strout, M.M., Guzik, S., Loffeld, J., Hittinger, J.: A study on balancing paral-
lelism, data locality, and recomputation in existing PDE solvers. In: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis, pp. 793–804 (2014)

25. OpenACC - Directives for Accelerators: The OpenACC Application Program Interface. http://
openacc-standard.org (2015). Accessed 23 May 2015

26. OpenMP Architecture Review Board: OpenMP Application Program Interface. http://openmp.org
(2015). Accessed 23 May 2015

27. Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Durand, F., Amarasinghe, S.: Halide: A language
and compiler for optimizing parallelism, locality, and recomputation in image processing pipelines.
In: Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and
Implementation, pp. 519–530 (2013)

28. Rahman, S.M.F., Yi, Q., Qasem, A.: Understanding stencil code performance on multicore archi-
tectures. In: Proceedings of the 8th ACM International Conference on Computing Frontiers, pp.
30:1–30:10 (2011)

29. Ravishankar, M., Dathathri, R., Elango, V., Pouchet, L.N., Ramanujam, J., Rountev, A., Sadayappan,
P.: Distributed memory code generation for mixed irregular/regular computations. In: Proceedings of
the 20th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP
2015, pp. 65–75 (2015)

30. Schäfer, A., Fey, D.: High performance stencil code algorithms for GPGPUs. In: Proceedings of 2011
International Conference on Computational Sciences (ICCS) 4, 2027–2036 (2011)

31. Shimokawabe, T., Aoki, T., Onodera, N.: High-productivity framework on GPU-rich supercomputers
for operational weather prediction code ASUCA. In: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, pp. 251–261 (2014)

32. Shimokawabe, T., Aoki, T., Takaki, T., Endo, T., Yamanaka, A., Maruyama, N., Nukada, A., Matsuoka,
S.: Peta-scale phase-field simulation for dendritic solidification on the TSUBAME 2.0 supercomputer.
In: Proceedings of 2011 International Conference for High Performance Computing, Networking,
Storage and Analysis, pp. 3:1–3:11 (2011)

33. Sourouri, M., Langguth, J., Spiga, F., Baden, S.B., Cai, X.: CPU+GPU programming of stencil compu-
tations for resource-efficient use of GPU clusters. In: Computational Science and Engineering (CSE),
2015 IEEE 18th International Conference on, pp. 17–26 (2015)

34. Su, H., Wu, N., Wen, M., Zhang, C., Cai, X.: On the GPU performance of 3D stencil computations
implemented in OpenCL. In: Proceedings of the 28th International Supercomputing Conference 7905,
125–135 (2013)

35. Top500.org: June 2015—the green500 list. http://www.green500.org/lists/green201506 (2015).
Accessed 04 Sept 2015

36. Top500.org: November 2015—top500 supercomputer sites. http://top500.org/lists/2015/11/ (2015).
Accessed 18 Nov 2015

37. Unat, D., Cai, X., Baden, S.B.: Mint: Realizing CUDA performance in 3D stencil methods with
annotated C. In: Proceedings of the International Conference on Supercomputing, pp. 214–224 (2011)

38. Venkatasubramanian, S., Vuduc, R.W.: Tuned and wildly asynchronous stencil kernels for hybrid
CPU/GPU systems. In: Proceedings of the 23rd International Conference on Supercomputing, pp.
244–255 (2009)

39. Wienke, S., Springer, P., Terboven, C., Mey, D.: OpenACC - First Experiences with Real-World Appli-
cations. In: Euro-Par 2012 Parallel Processing—18th International Conference, vol. 7484, pp. 859–870
(2012)

40. Williams, S., Kalamkar, D.D., Singh, A., Deshpande, A.M., Van Straalen, B., Smelyanskiy, M., Alm-
gren, A., Dubey, P., Shalf, J., Oliker, L.: Optimization of geometric multigrid for emerging multi- and
manycore processors. In: Proceedings of the International Conference on High Performance Comput-
ing, Networking, Storage and Analysis, pp. 96:1–96:11 (2012)

41. Williams, S., Waterman, A., Patterson, D.: Roofline: An insightful visual performance model for
multicore architectures. Commun. ACM 52(4), 65–76 (2009)

42. Zhang, Y., Mueller, F.: Auto-generation and auto-tuning of 3D stencil codes on GPU clusters. In:
Proceedings of the Tenth International Symposium on Code Generation and Optimization, pp. 155–
164 (2012)

123

Author's personal copy

http://goo.gl/9ju84x
http://openacc-standard.org
http://openacc-standard.org
http://openmp.org
http://www.green500.org/lists/green201506
http://top500.org/lists/2015/11/

	Panda: A Compiler Framework for Concurrent CPU+GPU Execution of 3D Stencil Computations on GPU-accelerated Supercomputers
	Abstract
	1 Introduction
	2 The Panda Programming Model
	2.1 Target Computations
	2.2 Panda Directives
	Panda Distribute(list) Size(list)
	Panda Boundary(list) Size(list)
	Panda Reduction(operator:list)
	Panda Wait

	3 The Panda Source-to-Source Compiler
	3.1 Overview
	3.2 MPI Code Generation
	3.3 Communication Optimizations
	3.4 MPI+CUDA Code Generation
	3.5 MPI+CUDA+OpenMP Code Generation

	4 Experimental Results
	4.1 3D Laplacian Stencil Benchmark
	4.2 Cardiac Electrophysiology Simulator

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

