Int J Parallel Prog @ CrossMark
DOI 10.1007/s10766-016-0461-2

Accelerating Detailed Tissue-Scale 3D Cardiac
Simulations Using Heterogeneous CPU-Xeon Phi
Computing

Johannes Langguth!® - Qiang Lan®3 .
Namit Gaur! . Xing Cail-4

Received: 29 February 2016 / Accepted: 22 September 2016
© Springer Science+Business Media New York 2016

Abstract We investigate heterogeneous computing, which involves both multicore
CPUs and manycore Xeon Phi coprocessors, as a new strategy for computational
cardiology. In particular, 3D tissues of the human cardiac ventricle are studied with
a physiologically realistic model that has 10,000 calcium release units per cell and
100 ryanodine receptors per release unit, together with tissue-scale simulations of the
electrical activity and calcium handling. In order to attain resource-efficient use of
heterogeneous computing systems that consist of both CPUs and Xeon Phis, we first
direct the coding effort at ensuring good performance on the two types of compute
devices individually. Although SIMD code vectorization is the main theme of perfor-
mance programming, the actual implementation details differ considerably between
CPU and Xeon Phi. Moreover, in addition to combined OpenMP+MPI programming,
a suitable division of the cells between the CPUs and Xeon Phis is important for
resource-efficient usage of an entire heterogeneous system. Numerical experiments
show that good resource utilization is indeed achieved and that such a heterogeneous

B Johannes Langguth
langguth@simula.no

Qiang Lan
lanqiang_nudt@163.com

Namit Gaur
namitgaur @ gmail.com

Xing Cai

xingca@simula.no
' Simula Research Laboratory, P.O. Box 134, 1325 Lysaker, Norway
College of Computer, National University of Defense Technology, Changsha 410073, China
3 National Key Laboratory of Parallel and Distributed Processing, Changsha 410073, China

Department of Informatics, University of Oslo, 0316 Oslo, Norway

Published online: 03 October 2016 &\ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-016-0461-2&domain=pdf
http://orcid.org/0000-0003-4200-511X

Int J Parallel Prog

simulator paves the way for ultimately understanding the mechanisms of arrhythmia.
The uncovered good programming practices can be used by computational scientists
who want to adopt similar heterogeneous hardware platforms for a wide variety of
applications.

Keywords Calcium handling - Multiscale cardiac tissue simulation - Supercomput-
ing - Xeon Phi

1 Introduction
1.1 Challenges in Heterogeneous Computing

Hardware accelerators that incorporate many simple cores per chip have taken a strong
hold on high-performance computing (HPC) systems. The two most prominent types
of manycore accelerators are graphics processing units (GPUs) and Intel’s Xeon Phi
coprocessors. Many of today’s flagship supercomputers [28] are heterogeneous clus-
ters that consist of both multicore CPUs and manycore accelerators.

In particular, the present paper focuses on Intel’s first-generation Xeon Phi
coprocessor that adopts the many-integrated-core architecture. Its theoretical peak
double-precision floating-point capability is calculated as 16 times the number of cores
times the clock frequency. For example, the 1.053 GHz 60-core 5110P coprocessor
has 16 x 60 x 1.053 = 1011 GFLOPs as its peak capability in double precision [12].
Here, the factor of 16 is due to the 512-bit vector length, which has space for eight
double-precision values, together with the fact that two of the four hardware threads
per core can work simultaneously on floating-point operations. In other words, the
peak performance assumes using all the cores and full vectorization capability.

However, with the tremendous theoretical computing power of the Xeon Phi
coprocessors come great programming challenges. In addition to effectively using
the large number of hardware threads, the single-instruction-multiple-data (SIMD)
vectorization capability of each thread must be utilized as much as possible. The for-
mer is typically achieved by careful OpenMP programming, or in combination with
of a small number of MPI processes. SIMD vectorization, which can ideally boost the
double-precision performance by a factor of 8, is either automatically delivered by
the compiler for simple loops of calculation, or manually achieved by painstakingly
inserting special intrinsic instructions [14].

Another factor that cannot be ignored in a heterogeneous CPU-Xeon Phi cluster
is the computing power of the multicore CPUs. Currently, the number of cores per
multicore CPU is relatively small, usually between 8 and 18. However, each CPU core
uses a higher clock frequency and can execute operations out-of-order, which makes
it much more flexible and capable than a Xeon Phi core. For non-trivial computations
where SIMD vectorization is difficult to achieve and/or the performance bottleneck
is memory bandwidth, a typical configuration of two 8-core Sandy Bridge CPUs can
often produce comparable performance as a manycore Xeon Phi coprocessor. Thus the
CPUs and Xeon Phis should ideally join forces to provide the full computing power
of a heterogeneous system. With respect to programming, however, heterogeneous

@ Springer

Int J Parallel Prog

computing brings additional tasks, such as using a different AVX instruction set for
256-bit SIMD vectorization on CPU cores, minimizing the impact of CPU-Xeon Phi
data transfers, and balancing workload division between the two hardware device

types.

1.2 Detailed 3D Tissue-Scale Cardiac Simulations

Parallel computing is now widespread in computational cardiology, as in many other
branches of computational science. The demand for computing power is continuously
increasing, because computational cardiologists want to adopt more advanced mathe-
matical models to simulate the heart and use higher resolutions in time and space. The
arrival of heterogeneous supercomputers is welcome because of their extreme comput-
ing power. Some previous work [3,4] focuses on speeding up the cardiac simulation
process.

One of the important subjects in computational cardiology concerns arrhythmias
that occur at the tissue and organ scale. Due to limited computing power, however,
most of the previous studies have focused on the development of cardiac cell mod-
els of electrophysiology and calcium handling that incorporate the discrete nature of
subcellular stochastic calcium release processes [11,18,24,32]. These models of cal-
cium handling and action potential are useful for studying causative and preventive
mechanisms of arrhythmogenesis, which originates from the local nanoscopic level of
channel and dyadic dysfunction, and develops into membrane potential abnormalities
at the subcellular and cellular levels. These include delayed afterdepolarizations, early
afterdepolarizations [25], and cardiac alternans [19,20,24].

However, extrapolating cell-level studies to understand tissue-scale or organ-scale
arrhythmias is insufficient. The challenge is rather shifted from the realism of modeling
to the scale of computing. A typical human heart has around 2 x 10° cells [1]. Each
cardiac cell has about 10° ryanodine receptors (RyRs) that are distributed over roughly
10* calcium release units, which are also called dyads. Each dyad has a number of
L-type channels operating stochastically in response to membrane potentials and local
calcium concentrations [5]. Using a preliminary tissue-scale simulator that only makes
use of multicore CPUs, we found in [15] that two 8-core Sandy Bridge CPUs need
one second of wall-clock time to simulate one time step of 3000 detailed cardiac cells.
Since a realistic tissue-scale simulation involves 107—10% cells and needs 10*-~103
time steps, the need for supercomputing is obvious.

2 Mathematical Models and Numerical Methods

This section briefly describes the involved mathematical models and numerical strat-
egy, thereby providing the background knowledge needed in the following sections
for discussing the various performance programming techniques on Xeon Phis and
multicore CPUs.

@ Springer

Int J Parallel Prog

Fig. 1 The eight possible kC101*dt
transitions between four states of U

a RyR, where the labels on the
arrows indicate the probabilities
of the transitions

N
@)
[
*
o
=

kC2C3*dt

2.1 Physiologically Detailed Cell Modeling

We adopt the multiscale model of stochastic calcium handling in a ventricular myocyte
from [11]. To mimic the human cardiac ventricular tissue, we replace the electrophysi-
ological current formulation of [11], which models a guinea pig, with the O’Hara-Rudy
(ORd) model [22] of a healthy human cardiac ventricular action potential.

In each cell, 10,000 calcium release units or dyads are assumed to form an internal
100 x 10 x 10 grid. Each dyad consists of five calcium compartments: (1) myoplasm,
(2) submembrane space, (3) network sarcoplasmic reticulum, (4) junctional sarcoplas-
mic reticulum, and (5) dyadic space. See [11] for the detailed equations and parameters.
The dyadic space, in particular, contains 15 L-type calcium channels and 100 RyRs
that operate stochastically. At any given time, each RyR can be in one of four states,
denoted as C1, C2, C3, and O1. Figure 1 shows the possible transitions between them,
which occur stochastically with probabilities that are related to the local calcium con-
centrations. The number of open RyRs, i.e. those having state Ol1, is closely connected
to the calcium influx that affects a cell’s interior voltage.

The governing equations that determine the dyadic calcium concentrations can be
written as the following ordinary and partial differential equations:

cags = (Jrel + Jica + Cass/Tefflux) X Tefflux (D
dcagg —
7 = Bss (JNCX + Jdiff_myo_ss + Jdiff_ds_ss) (2)
dcajsp ~ ——
P Bjsr (Jrel + Jaiff_NSR_ISR) (3)
d cansr
TR Jup — Jreak — Jditf_NSR_ISR 4
dcamyo ——
dt = Bmyo (Jcab + Jpca + JINeX — Jup + Jleak — Jdiff_myo_ss) (5)
Cags = (Jrel + Jica + Cass/Teffiux) X Tefflux (6)
0Cags — 2
ar = By (JNCX + Jdiff_myo_ss + Jdiff_ds_ss + DcaV Cass) @)

@ Springer

Int J Parallel Prog

d Cajsr

TR Bysr (Jrel + Jdiff_NSR_ISR) (®)
dCansr

rra Jup — Jieak — Jaift_NSR_ISR + Dsr V2 Cansr 9
0Camyo ——
T = Bmyo (Jcab + Jpca + JINCX — Jup + Jleak — Jdiff_myo_ss

+ DcaV2Camyo) (10)

Here, Ji) is the release flux through RyRs into the dyad, and Jj¢, is the flux through
L-type calcium channels into the dyad. tefqux is the time constant of diffusion between
the dyadic space and the submembrane space. Jncx is the flux through the Na-Ca
exchange current into the submembrane space. Jyiff_myo_ss is the diffusive flux between
myoplasm and submembrane space, while Jaifr_ds_ss 1S the diffusion flux between the
dyadic and the submembrane space. Jgiff NSR_Jsr 1S the diffusion flux between NSR
and JSR. Jyp is the SR uptake into NSR by the SR pump and Jje,k is the leak flux from
NSR into the myoplasm. Jeap is the flux through the background calcium current. Jyca
is the flux through the sarcolemmal Ca pump. The submembrane space is buffered
instantaneously by SR and SL buffers. The instantaneous buffering factor is given by
Bss. Bysr is the buffering factor for JSR by calsequestrin (CSQN) and Kyo is the
instantaneous buffering factor in myoplasm due to calmodulin (CMDN) and troponin
(TRPN). Further details about the various parameters and values can be found in [11].

2.2 Tissue Modeling

A slab of cardiac tissue is modeled as a 3D uniform grid of cells. To simulate the
tissue-scale electrical activity, we use the following monodomain model:

8Vm —Iion 2
arm _ Dy V2V, 11
ot Cm + Dyol m ()

where V), is the membrane potential, [,y is the ionic current provided by the under-
lying multiscale cell model of calcium handling, C,, = 1uFcm™2 is the membrane
capacitance, Dyo = 0.2 mm?2/ms is the voltage diffusion coefficient.

2.3 Numerical Strategy

Stochastic methods are used to monitor the number of open L-type calcium channels
and RyRs, to be detailed in Sect. 3.3. Explicit time integration is used to solve all
the differential equations (2)—(11). The involved diffusion terms are discretized with
centered finite differences. For the monodomain equation (11), an operator-splitting
approach [23] is used. This means that the diffusion terms are treated separately from
the Ilion term, where the latter is computed by summing up the total ionic currents
obtained from solving the ordinary differential equations in the ORd model.

@ Springer

Int J Parallel Prog

Fig. 2 Pseudo code of the Global initialization
overall computational procedure for (inmt t = 0; t < time steps; t++) {
for (int k = 1; k <= cells; k++) {
Cell computation
for (int j = 1; j <= dyads; j++) {
L-type probability calculation
L-type opening
RyR probability calculation
RyR opening
Ca concentration computation }
Dyad diffusion }
Cell difusion }

The overall computational procedure is carried out as a time loop, where the work of
each time step consists of first looping over all the cells, and then stepping forward the
monodomain equation (11). The computational work per cell is in form of another loop
that goes through all the dyads one by one, plus the subsequent inter-dyad diffusion
computations. This innermost loop in the pseudo code in Fig. 2 contains the most time-
consuming computations, due to the large number of dyads per cell. Thus, optimizing
these computations is crucial in the development of an efficient implementation.

3 Implementation Strategy

The primary aim of our heterogeneous implementation is to incorporate the compu-
tational power of Xeon Phis. To this end we extended an existing multi-node CPU
implementation [15] significantly with respect to both the parallelization strategy and
the SIMD performance.

3.1 Target Hardware

The Intel Xeon Phi coprocessor is a novel hardware accelerator based on the manycore
design principle. Unlike traditional multicore CPUs which feature a small number of
powerful cores, it is composed of a large number of relatively slow and simple cores
with wide vector units. This design makes the device ill-suited for sequential programs,
but very powerful for highly parallel workloads.

Our target platform is a multi-node system where each node is equipped with at
least one Xeon-Phi coprocessor, in addition to one or more multicore CPUs. The most
well-known examples of such a heterogeneous hardware platform are Stampede [26]
and TianHe-2. The latter is currently the second fastest system on the TOP 500 list
of supercomputers [28]. For our experiments, we have used the Xeon Phi enhanced
nodes of Abel [29], a supercomputer operated by the University of Oslo.

To use such systems effectively, we must distribute our computations on four dif-
ferent levels of parallelism: between compute nodes, between CPU and Phi compute
devices on the same node, between cores on the same device, and between the SIMD
lanes in every core since each core is equipped with SIMD vector units that allow it
to perform multiple operations at the same time.

@ Springer

Int J Parallel Prog

3.2 Heterogeneous Multi-Level Parallelization

Our computational problem allows decompositions at multiple levels. Among these,
the top level is the cardiac tissue which is represented as a 3D cartesian grid of cardiac
cells. Each compute node is thus assigned a cuboid subdomain containing an equal
number of cells. The cell voltage values V,, are exchanged along the faces of the
subdomains during every time step using a standard halo exchange approach over
MPI [17].

Within each compute node, we further divide its assigned cells between the CPU
host and the accelerator(s). However, we do not use a geometric partitioning within
the subdomains. This allows for more flexibility in load balancing between CPU and
accelerators, independent of the subdomain shape. Thus, each accelerator is assigned
a number of cells that is commensurate with its relative computational speed, limited
only by the subdomain size. During each time step, the accelerator communicates the
computed voltages for all of these cells to the CPU. Doing so is expected to yield the
best performance, since load imbalance is expensive due to the computationally heavy
nature of the code, while intra-node communication is cheap.

At the cell level, we have two possible parallelization strategies. The first is a
straightforward assignment of cells to cores, which means that all computations per-
formed for a cell remain on a single core. Alternatively, we can split computations
for the 10,000 calcium release units over the cores of a device. This greatly increases
flexibility and can thus lead to better load balancing. However, due to the fact that
parts of the cell computations have to be performed sequentially, it can lead to some
cores remaining idle during part of the computation. We have performed experiments
to quantify this tradeoff, the results of which are discussed in Sect. 7.2.

In both cases, we use the SIMD vector units to process four (CPU) or eight (Xeon
Phi) calcium release units in parallel on each core. This vectorization is key to obtaining
efficient simulation code. In the following sections, we will give a detailed description
of the techniques used for doing so.

3.3 Binomial Distributions

A salient feature of our model is the stochastic simulation of RyR state transitions.
As described in Sect. 2.1, the dyadic space contains 100 RyRs, each of which can be
in one of four states at any given time. In [15], it was shown that sampling from a
number of binomial distributions equal to the number of state transitions is superior
to the straightforward alternative, i.e. performing two Bernoulli trials per RyR.

The probability mass function of the binomial distribution B(n, p) which gives the
probability of having k successes in n trials with individual probabilities of success p
is defined as follows:

flk,n, p)=Pr(X <k)= (Z)p"(l —p)* (12)

For each of the four states in Fig. 1, we denote the number of RyRs in state i by x;.
We use j and / to denote the two neighbouring states of i, as shown in Fig. 1. Now,
for each state 7, we sample once from a binomial distribution B(n, p;;) where n = x;,

@ Springer

Int J Parallel Prog

and p;; is the transition probability from state i to j computed in the current time
step. We thus obtain a number k;; of RyRs that transition to j in the current time step.
Then, for each state i we simulate the second transition from i to state / by sampling
from B(n — k;j, piy/(1 — pij)), thus obtaining k;;. We use n — k;; since only one
of the two possible transitions can happen for any RyR, and p;;/(1 — p;;) to obtain
an equivalent transition probability relative to n — k;; from p;;, which is correct in
relation to n. Alternatively, one could use sampling from a multinominal distribution,
but this would certainly be computationally more expensive since there are only two
transitions from each state. The RyRs for which neither transition happened remain in
the original state. We add the RyRs that transitioned from neighboring states to obtain
the final number of RyRs in each of the four states. Now, the number of RyRs in each
state in the next time step ¢ + 1 is:

xi(t +1) = x;(t) — kij (1) — ki (t) + kji () + ki () (13)

While the binomial distribution can be approximated using the normal and Poisson
distributions, which are e.g. used in [24], we opt against sacrificing accuracy and
instead design an optimized implementation, details of which are discussed in Sects. 4
and 5.

4 CPU Code Optimization

Our CPU implementation follows the principles outlined in [15]. Based on that, we
performed additional optimizations which apply to both CPU and Xeon Phi.

4.1 Mixed Vectorization

One of the important architectural features of modern processors are wide SIMD vector
units. This implies that in order to make full use of their capabilities, all compute-
bound parts of the code must be vectorized if possible. Modern compilers are capable
of automatically vectorizing simple loops, but fail to do so in more complex cases. On
the other hand, if the complexity of the code is very high, manual vectorization of the
entire loop, while possible, is prohibitively expensive in terms of coding effort and
thus not advisable. In our case, several parts of the innermost dyad-loop (see Fig. 2)
contain conditional statements, making the compiler unable to vectorize the loop on
its own. A feasible solution is to split the the dyad-loop into sections of two different
types. The first type are arithmetic sections which contain expensive computations, but
have a trivial control flow (the first, third and fifth statements of each dyad-iteration in
Fig. 2). The second type on the other hand is characterized by a complex control flow
but relatively inexpensive computations. These sections will be labeled as conditional.
Doing so results in multiple smaller loops which perform the same calculation for all
dyads, rather than completing computations for one dyad at a time. Figure 3 illustrates
this change in control flow.

The main disadvantage of this technique lies in the reduced data locality when
computational loops are split. Instead of performing the entire computation for one

@ Springer

Int J Parallel Prog

Fig. 3 Splitting up the original Random number generation
dyad loop from Fig. 2 into five for (j = 1; j <= dyads; j++)
smaller loops, for the purpose of
enabling mixed automatic and
manual vectorization

L-type probability calculation
for (j = 1; j <= dyads; j++)

L-type opening
for (j = 1; j <= dyads; j++)

Ryr probability calculation
for (j = 1; j <= dyads; j++)

Ryr opening
for (j = 1; j <= dyads; j++)

Ca concentration computation
Dyad diffusion

element, a partial computation is performed for all elements which implies that inter-
mediate results (such as probabilities for RyR state transitions in our code) must be
written to memory and retrieved later, which puts additional pressure on the mem-
ory bandwidth. Figure 3 illustrates this change in control flow in our code. It is often
beneficial to manually vectorize smaller arithmetic sections and merge them with con-
ditional sections in order to overcome the need for additional memory transfers. We
perform a detailed analysis of the benefits of this technique in Sect. 7.

4.2 Binomial Distribution Sampling

Due to the large number of binomial samples used in the computation, using an opti-
mized implementation is crucial for performance. In [15], a basic implementation of
the binomial sampling technique was described along with several optimizations that
save time when computing the actual distribution can be avoided. Figure 4 shows the
pseudocode:

Since the value of n will be at most 100, we can compute the binomial coefficients
prior to the actual simulation and store them in BC_table. In order to further save
time, we compute the coefficients pknk and plp at the start of the function. The
distribution function F (k, n, p) is then computed iteratively by applying a sequence
of multiplications and subtractions to F'(k — 1, n, p) and subtracting from randval
using the precomputed coefficients. Thus, computation stops when F (k, n, p) effec-
tively exceeds randval and outputs the current iteration number k.

Fig. 4 Core implementation of function Binomial
the binomial distribution Input: n, p, randval
sampling function Output: k

Initialize k = 0
Initialize pknk = (1-p) to the power n;
Initialize plp = p/(1-p);
while(randval > 0) {

bc = BC_tablel[n,k];

sub = bc*pknk;

randval = randval-sub;

pknk = plp*pknk;

k = k+1;}

@ Springer

Int J Parallel Prog

This means that lower results for k take less compute time, which is desirable
since most transition probabilities and thus sampling results are low. For very low
transition probabilities, we first check whether k > 0 is possible for the given value of
randval by comparing against a precomputed threshold, thereby potentially saving
one iteration of the function. In addition, as shown in Fig. 1, transitions from the O1
to the Cl1 state, and those from the C3 to the C2 state have constant probability, which
means that for these cases F(k, n, p) can be precomputed. Doing so further cuts down
the number of actual sampling function evaluations.

The AVX vector instructions of the Sandy Bridge CPU lack several crucial instruc-
tions to select and compare elements within a vector. Therefore, in the CPU code
binomial sampling is not vectorized.

4.3 Use of Precomputed Values

The computation of each dyad in a cell involves a large number of variables, some of
which vary from dyad to dyad, whereas others remain constant within each cell. Con-
sidering that the number of dyads in our detailed cell model is 10,000, pre-calculating
the cell-constant variables outside the innermost £or-loop in Fig. 2 yielded substantial
performance gains, as discussed in [15]. However, further improvements are possible.
A straightforward implementation of the equations in Sect. 2.1 yields a large number
of expressions that compute partially the same values. In these cases, solving expres-
sions for cell-constant variables reveals redundant operations. These can be avoided
by computing intermediate values that are reused, at the expense of register pressure.
Whether doing so is worthwhile depends on the number of times such a value is reused,
which is generally between two and four in most parts of the code, and on the type
of operations performed. For additions and multiplications, this only pays off if the
value is reused many times. However, 64-bit divisions are comparatively expensive
on the Sandy Bridge CPU due to their long latency and because AVX vectorization
can only double their performance [31]. Therefore, avoiding even a single division
in the code in this manner always pays off. While the Xeon Phi does not suffer from
this problem, it still takes an order of magnitude more cycles for a division than it
does for a multiplication [10]. By the same token, replacing divisions with equivalent
multiplications yielded significant performance gains. While these are well known
techniques, neither optimization was performed automatically by the compiler in an
adequate manner.

5 Xeon Phi Code Optimization

Despite the strong similarities between the x86 CPU and the Xeon Phi, porting high
performance code between the two devices is not an easy task. Low sequential per-
formance, long vector units, and higher computational vs. memory performance lead
to several challenges that must be addressed when using the device. In addition to the
points discussed in the last section, the following issues were addressed in the design
of the Xeon Phi code.

@ Springer

Int J Parallel Prog

5.1 Random Number Generation

We use the standard function vdRngUni f orm provided by the Intel MKL library [13]
to generate all required random numbers at the beginning of every time step. Perfor-
mance of this function on the Xeon Phi is quite low compared to the CPU, being almost
40 times slower on a single core (see also Fig. 6). In addition, unlike on the CPU, ran-
dom number generation does not scale perfectly on the Xeon Phi when increasing
the number of threads, making it one of the main performance bottlenecks on the
accelerator.

Since vdRngUniform is a predefined library function, we can perform no fur-
ther optimizations on it. However, we mitigate its impact by skipping over all state
transitions where the number of channels in the starting state is 0, thereby conserving
random numbers. To do so, we keep a count of the random numbers used in the current
time step. At the beginning of the subsequent time step, only the random numbers that
were actually consumed by state transitions must be replaced. Due to eight possible
state transitions for RyR channels and two additional transitions for the L-type chan-
nels, up to ten random numbers per dyad can be used in every time step. The above
technique cuts the average number approximately in half.

5.2 Automatic Vectorization

Since the Xeon Phi relies heavily on its 512-bit vector length to attain high computa-
tional performance, successful vectorization of the arithmetic sections is paramount
to rendering the device competitive. Since all relevant variables use double precision,
vectorization can provide a fourfold speedup on the CPU and an eightfold speedup on
the Xeon Phi. The Intel icc compiler is able to perform this vectorization automatically.

For the intracellular diffusion computations, we found that automatic vectorization
is also beneficial since the instructions to be executed are not data-dependent and
thus the stencil computation can avoid using conditional statements. However, since
these operations are always memory bound, the expected speedup is lower than for
the purely arithmetic operations. For the Sandy Bridge processors we attempted to
improve performance by using manually vectorized code.

5.3 Manual Vectorization of Binomial Sampling

As discussed in Sect. 4.1, a crucial part in obtaining proper vectorized code is to break
up the dyad loop into arithmetic and conditional sections. The conditional sections,
which mainly perform sampling from binomial distributions, cannot be vectorized by
the compiler. We thus aim to develop a manually vectorized version of the sampling
algorithm in order to benefit from the SIMD capabilities of the Xeon Phi. Of course,
the irregularity of the computation makes it impossible to obtain the full eightfold
speedup, but since the vector units are available on the device, they should be used
whenever possible if any speedup can be obtained from doing so.

For the vectorized version which is shown in Fig. 5, we follow the same strategy
as described in Sect. 3.3, but process sampling for 8 dyads simultaneously, reducing

@ Springer

Int J Parallel Prog

Fig. 5 The vectorized version function VectorizedBinomial

of the binomial sampling Input: Vectors N, P, RANDVAL

computation. Capital letters Output: Vector K

denote vector variables. The Initialize K = 0

principal difference to the scalar Initialize 1P = Vector_subtract(l,P);
version lies in the use of MASK Initialize PKNK = Vector_power (1P,N);
to increase the output value for Initialize P1P = Vector_divide(P,1P);
some vector elements, instead of for (int i = 0; i < max(N); i++) {
using a while loop BC = Vector_gather (BC_table,N,K);

SUB = Vector_multiply(BC,PKNK) ;

RANDVAL = Vector_subtract (RANDVAL,SUB);
PKNK = _mm512_mul_pd(P1P,PKNK) ;

MASK = Vector_mask_compare (REMAINDER > 0);
K = Vector_mask_add(XK,1,MASK); }

their input random number by the probability of their current f (k, n, p) value. Vector
versions of the coefficients PKNK and P1P are initialized as before. Precomputed
binomial coefficients are again stored in BC_table, although it is also possible
to compute them on the fly with approximately the same performance. The key to
vectorizing the code despite the conditional statements lies in the powerful mask
instructions. They allow the SIMD unit to apply vector instructions only on some
elements of the vector, which are determined by a bit mask.

Here we use Vector_mask_compare and Vector_mask_add intrinsics to
determine for which of the dyads the input random number remains positive, and
increase their counter k which determines the output value for the dyad. Once a dyad’s
input random number falls to O or less, it is removed from consideration via the mask,
i.e.the Vector_mask_add will no longer increase its output value, thereby ensuring
correct sampling results.

The main problem with this approach is that the computation runs until the last
sampling is finished. This means that the speedup depends on the ratio between the
sampling results of the 8 dyads within one vector. In case they all happen to be identical,
we can obtain a perfect eightfold speedup, but in practice this will rarely be the case.
In addition, testing if the MASK value is O, which means that all sampling operations
are complete in order to allow early termination of the loop, is expensive, especially
due to lack of branche prediction on the Xeon Phi. We settled for a compromise where
we perform this test after every eight iterations of the for loop, and terminate the loop
if all eight samplings are finished.

Note that sampling from a binomial distribution is not very amenable to vectoriza-
tion, and an implementation that stochastically determines the state of every channel
individually would vectorize better thanks to the compare intrinsics available on
the Xeon Phi. However, the amount of random numbers required for doing so ren-
ders this approach prohibitively expensive, as evidenced by the results shown in [15].
This is even more problematic on the Xeon Phi where random number generation is
disproportionately more expensive.

6 Experimental Setup and Hardware

The Intel Xeon Phi coprocessor is a novel hardware accelerator based on the manycore
design principle. Unlike traditional multicore CPUs which feature a small number of

@ Springer

Int J Parallel Prog

powerful cores, it is composed of a large number of relatively simple cores which are
connected to each other and to the device memory via a ring bus. Each core features
64 KB of level 1 cache and 512 KB of level 2 cache. All caches maintain coherency
among the cores. We use the 5110P model that is equipped with 60 cores, one of which
is used by the operating system and thus not available for our computations. Each core
can run up to four hardware threads concurrently, but a given thread is never run in two
consecutive clock cycles. This means that effectively 118 threads can run in parallel at
half the clock frequency of 1.053 GHz. When using 236 threads, i.e. four per core, each
thread effectively runs for half the available processing resource, which has an effect
that is similar to hyperthreading. The device is equipped with 8 GB of DDRS5 device
memory, featuring a theoretical memory bandwidth of 320 GB/s [12]. However, even
under ideal circumstances, at most half of that is available for applications [10].

Our test system is Abel [29], a supercomputer operated by the University of Oslo.
Abel has four accelerated compute nodes which are equipped with dual Intel Xeon
E5-2670 (Sandy Bridge) processors and two Xeon Phis of model 5510P. Each node
also has 16 CPU cores running at 2.6 GHz, and each core features 64 KB of level
1 cache and 256 KB of level 2 cache. A core can run two hardware threads using
hyperthreading. Unlike the Xeon Phi, each Xeon CPU has 20 MB of L3 cache which
is shared among the cores. The interconnect between the nodes is FDR (56 Gbps)
Infiniband. We use Intel’s icc compiler 15.1.0 for compilation and Intel MPI 5.0.2 for
internode communication.

We spawn only one MPI process per node. This process is controlled by the CPU. To
launch Phi computation and to communicate between accelerator and host, we use the
low-level COI and SCIF interfaces [8]. While these are not particularly user-friendly
or easy to program, doing so gives us full control over the timing of communication
and computation. The Xeon Phi accelerators are thus used in an offload strategy,
even though we do not employ the directive based offload mode offered by the Intel
compiler. Alternatively, it would be possible to use MPI at this level. However, doing
so does not allow the same fine-grained control over the workload distribution, which
is quite important for attaining high performance since the Xeon Phi is rather sensitive
to load balancing problems due to its wide parallelism of at least 118 threads.

It is also possible to parallelize over the dyads, i.e. by using OpenMP to split
computations of the 10,000 calcium release units over all cores of a device. While this
increases flexibility and thus can lead to better load balancing, the total impact on the
performance can be negative due to the fact that parts of the cell computations have
to be performed sequentially. Thus, we do not use this method and compute one cell
per thread in parallel, except in Sect. 7.2.

On each node we obtain the intra-node cell distribution by performing a 1D
decomposition of the subdomain cells according to their local index value, thus
ignoring their spatial relations. The key to this decomposition is an input variable
PHIspeedFactor, which we set to the relative measured performance of the Phi
with respect to the CPU. On our test system, we set PHI speedFactor to 1 because
we obtained performance parity between the devices after extensive optimization on
the Xeon Phi of our test system. For other systems, the correct value depends on the
Phi model used and on the performance of the installed CPUs. The resulting number

@ Springer

Int J Parallel Prog

of cells to be computed on the Xeon Phi is then rounded to multiples of 236 ! to ensure
load balance on the Xeon Phi cores. Thus, when using two Phis per node, each Phi
and the CPU process roughly one third of the total cells assigned to the node.

As discussed in Sect. 3, this method has the disadvantage that all cell voltage values,
not only those of the boundary cells, must be communicated. However, considering
that intra-node communication is comparatively fast, and calculating a single time
step even for one cell requires significant computational work, this tradeoff clearly
favors better load-balancing at the (almost insignificant) cost of a higher intra-node
communication volume.

As a consequence, voltage diffusion between the cells is performed by only the
CPUs using Jacobi iterations and a standard 7-point stencil. This technique has been
studied widely [7,15], and thus we do not discuss it any further here. While it is
possible to overlap communication and computation here, our implementation does
not do so due to the extremely limited potential gains.

For all the experiments, a fixed time step size of 0.05 ms is used at both the tissue
level and the cell level. For the tissue-scale simulations, we chose a fixed spatial mesh
resolution of 0.5 mm to discretize the diffusion terms in (11). In all experiments we
run 10,000 time steps which amounts to simulating one cardiac beat of 500 ms. The
cells are stimulated at # = 50 ms. When showing timings for separate sections of the
code, we always show the cumulative time the section takes for 10,000 time steps.
The number of cells computed varies by experiment, but each cell always has 10,000
dyads.

7 Experimental Results and Analysis

We perform a series of experiments to assess the performance of our heterogeneous
code. We begin by studying the performance improvements obtained through our
code optimizations. Next, we investigate additional aspects that influence device per-
formance. We conclude this section with the results for scalability of the multi-node
system.

7.1 Vectorization

The primary goal of our optimizations is to improve the single-thread performance
of the Xeon Phi. The main tool for doing so is the correct use of vectorization. The
original CPU code used in [15] cannot benefit from automatic vectorization at all
because it mixes arithmetic and conditional sections within the same loop. Separating
the code sections as shown in Sect. 4.1 enables the compiler to automatically vec-
torize the arithmetic sections. We then use manual vectorization on the conditional
sections. Figure 6 shows the effect of these optimizations measured on a single cell.
The experiment is run on a single core. In addition, we show results for reducing the
amount of random numbers generated per time step here.

! This value also varies slightly depending on the Phi model used.

@ Springer

Int J Parallel Prog

Effects of code vectorization

Random number generation
L-type probability calculation
L-type opening

Ryr probability calculation

Ryr opening

Ca concentration computation

Dyad diffusion

uulH |y|\| IH

Improvement |~ {

T T T 1

0 100 200 300 400
Running time in sec.

No vectorization & Automatic vectorization & Manual vectorization
Random number reduction i Equivalent CPU performance

Fig. 6 Performance improvement of the individual functions in the dyad computations due to three opti-
mization techniques when using a single Xeon Phi thread. The three optimizations are applied cumulatively.
Thus, the values for manual vectorization contain the improvements due to automatic vectorization, and the
random number reduction method reflects the sum of all three optimizations. Improvement shows the sum
of reductions in running time over all code sections due to each optimization. Equivalent CPU performance
is the time a CPU core takes for a section, multiplied by the ratio of threads (i.e. 118 to 16). This is done in
order to highlight the relative strengths and weaknesses of the compute devices

Clearly, enabling automatic vectorization gives the most effective improvement.
For the CPU performance approximately doubled compared to our previous results
reported in [15]. Similar can be attained by manually vectorizing the arithmetic sec-
tions, but doing so is time-consuming and provided no benefit. Manual coding does
allow vectorization of the conditional sections though.

Overall, the Calcium concentration computation section sped up by a factor of 8,
which is the maximum set by the vector length. Even though it is a purely arithmetic
section L-type probability calculation attained a factor of only 6. The reason for this
lies in the fact that it contains few calculations but sizeable memory transfers, and thus
it is most likely memory bound. The intracellular diffusion sped up fivefold. It is quite
amenable to vectorization, but the speedup is mostly an artifact of the low performance
of a single Xeon Phi core. Because this section is also memory bound, it will not scale
perfectly if it is run by many threads at the same time, as discussed in Sect. 7.2. Finally,
the speed of the Ryr probability calculation quadrupled. We found that the principal
reason inhibiting further speedup is the use of a single exponential function, which
takes up the majority of the compute time there and cannot be vectorized perfectly.

For the conditional sections, our expectations are different. Performance is data
dependent here because the computation time of a single sampling of a binomial
distribution is data dependent, and in the vectorized version the time taken by each
group of eight samples is determined by the one that finishes last. Thus, the speedup

@ Springer

Int J Parallel Prog

depends on how homogeneous the values of n, p, and the random numbers in each
group of 8 dyads are (see Sect. 3.3 for details). For the L-type channels, we have
n = 15 for every dyad in a cell. Consequently, we observe a large speedup due to
vectorization there, about a factor of 5. On the other hand, states of the RyR channels
vary widely, and thus we observe a speedup of only 18 % there. Thus, the improvements
due to the manual vectorization are much smaller than those obtained from automatic
vectorization on the arithmetic sections. Finally, we see that saving unused random
numbers cuts the time taken by random number generation by half.

While the performance of the entire device cannot be inferred from such single-
core measurements due to imperfect scaling, it clearly shows which computations are
relatively more time consuming on the Phi than on the CPU.

7.2 Dyad Level Parallelization

Due to the large number of dyads per cell, there are two different possibilities of
using OpenMP shared memory parallelization. The first method parallelizes over the
cells, assigning each cell entirely to a single thread. The second is more fine grained.
It distributes the computation of the dyads among the cores. This has the obvious
advantage of enabling more fine-grained load balancing. However, in our experiments
it turned out to be highly inefficient, being overall 101 % slower on the CPU and 345 %
slower on the Xeon Phi. We therefore adopt cell based OpenMP parallelization as the
standard, but we study the reasons for this discrepancy in performance. Figure 7 shows
the total compute time for dyad level parallelization.

Total compute time for dyad level parallelization

1000
o
Q
(7]
£ 100 1
]
€
B
&
= 10
c
S
x
1
1 2 4 8 16 32 59 118 236
Threads
==Cell computations (Phi) =Entire time step (Phi) Cell parallelized (Phi)
= =Cell computations (CPU) = Entire time step (CPU) Cell parallelized (CPU)

Fig. 7 Compute time for the cell computation and for the entire time step including intercellular diffusion
on the CPU and Xeon Phi using dyad-level OMP parallelization. Clearly, this type of parallelization cannot
benefit from hyperthreading. Furthermore, the additional effort, which is negligible on the CPU, renders
dyad-level parallelization uncompetitive on the Xeon Phi. In contrast, the cell-level parallelization scales
better, benefits from hyperthreading, and attains parity between CPU and Phi (Results given only for entire
computation)

@ Springer

Int J Parallel Prog

Distribution of compute time for dyad level parallelization (Phi)

E 100 % - —
B
& 80 % 7 : .» N N T B - i T
- —
5 60% 1 H = = B B =
L
o
g:o 40 %
©
‘E [a—
8 20% 1 — |——] J— — [— - B
S
Al BN Bl BN BN BN BN BN Em .

1 2 4 8 16 32 59 118 236

Threads
& Random number generation i L-type channel
Ryr channels I& Ca concentration computation

Dyad diffusion

Fig. 8 Distribution of the compute time among the code sections when using dyad-level OMP paralleliza-
tion on the Xeon Phi. Clearly, the main detriment to scaling performance is the intracellular diffusion

Clearly, the additional overhead during every time step which is run sequentially
is quite significant on the Xeon Phi, but not on the CPU. More importantly however,
placing two threads on each core, i.e. using hyperthreading, is detrimental on the CPU,
reducing the performance by 46 %. Going from 118 to 236 threads has no effect on
the Xeon Phi performance. On the other hand, when using cell based parallelization,
performance due to hyperthreading increased by 25 % on the CPU and 36 % on the
Xeon Phi. Note that the term hyperthreading is only used for the CPU by the vendor,
and implies running two hardware threads per core. However, doing so on the Xeon
Phi is not equivalent since using only one thread per core causes the cores to idle in
every second clock cycle. Running four threads per core creates an equivalent situation
where every thread shares the effectively available compute units with one other thread.

However, the principal detriment to performance in the dyad-level parallelization
is the intracellular diffusion. Figures 8 and 9 show the distribution of running time
among the different sections of the compute code. The percentage of the diffusion
part increases since it is memory bound, and thus cannot be expected to scale with
the number of threads. When using cell based parallelization, the same accesses to
memory are distributed over a longer stretch of time since the cell computations are
not synchronized, thus making more efficient use of the available memory bandwidth.

On the other hand, Fig. 9 clearly shows the impact of hyperthreading as the differ-
ence between the 16 and 32 thread columns. The conditional sections are significantly
accelerated, while diffusion is slowed down in comparison. This shows that partially
hiding latency via hyperthreading is crucial in the latency-bound conditional sections
of the code.

7.3 Heterogeneous Scaling

We perform a weak scaling experiment for a simulation time of 400 ms, using up
to four Phi-accelerated nodes and 10,000 dyads per cell as usual. In this experiment,

@ Springer

Int J Parallel Prog

Distribution of compute time for dyad level parallelization (CPU)

100% 7 —
]
£
o 80% 1 -
£
c
S 60% 1 — —
1Sy
G
g 40% 7 - — T - R
g —— — [— [E— [E— —
g 20% T —
3 [—|
0% — |
1 2 4 8 16 32
Threads
W Random number generation & L-type probability calculation L-type opening
& Ryr probability calculation & Ryr opening Ca concentration computation

Dyad diffusion

Fig. 9 Distribution of the compute time among the code sections when using dyad-level OMP paralleliza-
tion on the CPU

Weak scaling of the heterogeneous computation

/

60000

50000 /

o
2
> 40000 /
c
k]
©
5 30000 4 /
Q
§ /
S
= 20000 g
3 / /_/

10000 g -

=
0 . ; .
1 (236x2x3) 2 (236x2x6) 3 (236x2x9) 4 (236x2x12)

Nodes (Grid dimensions)
==-CPU only Phionly =+=CPU+1Phi =¢=CPU +2 Phi

Fig. 10 Performance of weak scaling tests of tissue level simulations

the PHIspeedFactor parameter was set to 1. We used grids of size 236 x 2 x 3
per node. Using multiples of 236 for the grid size is the best case for the Xeon Phi,
since this matches the number of available threads. The actual grid dimensions have
no effect on performance however. While the code can deal with an arbitrary number
of Phis per node, the number of cells per Phi is limited to about 2000 due to the limited
device memory. Knights Landing, the second generation of Xeon Phi [16], no longer
has this limitation.

On our test system, there are two Phis available per node, and we also study “’strong”
scaling when varying the number of Phis per node. Figure 10 shows the results. Perfor-

@ Springer

Int J Parallel Prog

t=0 ms 10 ms 20 ms
30 ms 40 ms
60 ms 70 ms 100 ms
-100 W 50
mV

Fig. 11 Activation pattern in a 3D human ventricular tissue

mance is given in cell computations per second. The total number of cell computations
performed is 4000 times the grid size.

Clearly, the scaling is essentially perfect, which is to be expected due to the heavy
computation and light communication. While our test system lacks the number of
Phi-accelerated nodes required to perform more extensive weak scaling tests, results
in [15] show very good scaling on up to 128 CPU nodes using essentially the same
MPI communication code. Thus, it is to be expected that the simulations will scale
well even for very large systems.

8 Cardiac Simulations

In this section we present some results of our cardiac simulations under healthy con-
ditions. The aim of this section is twofold. First, we illustrate the scientific goals of the

@ Springer

Int J Parallel Prog

A F
504 ~ 0
— W 0.1
2 9 < 02
E 50 S 031
>] 8 .04
-100 : , , - : : ,
0 500 1000 1500 0 500 1000 1500
B G
—~ 50/ s
- %0 = 400
L -100 5
= -150 5 200+
Z © 4
= 2001 o
0 500 1000 1500 0 500 1000 1500
C
0+ 1.4
T Z 10/
< € 061
= -104 8§ 067
_(-) _15_ T T 1 02- T T 1
0 500 1000 0 500 1000 1500
D |
. 04 -
w03 =
< o024 P
X 014 O
01 ‘ ‘ 3
0 500 1000 1500 1.5 e 0.1
E J
0.8
= = a4
L 06 z .
< S
< o4 = 2
X
=02 o 1
0 >)
0 500 1000 1500 0 500 1000 1500
Time (ms) Time (ms)

Fig. 12 Action potentials, electrophysiological currents and calcium concentration (Ca) values in a 3D
tissue-center cell at steady state. a Membrane voltage (V). b Fast Na current (/). ¢ L-type Ca current
(Icqr)- d Slow component of delayed rectifier K current (/g). ¢ Rapid component of delayed rectifier K
current (/). f Na-Ca exchange current ({/y4cq)- g Ca in the dyadic space (Cagyqq)- h Intracellular Ca in
the myoplasm (Ca;) averaged over 10,000 dyads. i Simulated line-scan image of Ca; along the long-axis
of the myocyte and j Junctional sarcoplasmic reticulum concentration (JSR) averaged over 10,000 dyads

simulation code, and second we verify consistency of the simulations with published
results.

Our first experiment simulates the ventricular activation in a 3D tissue of dimensions
32 mmx32 mmx32 mm. Results are shown in Fig. 11. The tissue is stimulated at a
plane at t = 0 ms. The excitation wavefront travels in a rectilinear manner and by 70
ms the entire tissue is depolarized. The estimated conduction velocity, 45.7 cm/s (32
mm divided by 70 ms), is consistent with the reported value of 46.4 cm/s in a human
ventricular tissue [9].

Figure 12 shows the action potentials (APs), important electrophysiological currents
and calcium concentration (Ca) values of the cell at the center of the 3D tissue for three
steady-state beats at a cycle length of 500 ms. The AP (Panel A), currents (panel B, C,

@ Springer

Int J Parallel Prog

D, E and F) and Ca values (panel H, J) (averaged over 10,000 dyads) are consistent with
the ORd model of the undiseased human ventricular cell [22]. Note that we have used
a cell model that includes B-adrenergic effects adopted from [21]. The corresponding
simulated line-scan image of intracellular Ca in the myoplasm (Ca;) along the long-
axis of the myocyte (panel I) and Ca in the dyadic space (Cagyqq) (panel G) are also
shown for clarity.

These results demonstrate the ability of the parallel 3D tissue simulator to predict
normal ventricular activation patterns consistent with the reported values. The simu-
lator also predicts cellular APs, Ca values and currents consistent with those reported
in published human ventricular cell models.

9 Summary and Conclusions

We have shown how detailed 3D tissue simulations of electrical activity and calcium
handling in a human cardiac ventricle can be implemented to run on modern hard-
ware accelerators. The attained performance of one Xeon Phi accelerator is roughly
comparable to two Sandy Bridge CPUs with highly optimized code. This is in line
with many other studies that outline the difficulties in unlocking the full potential of
the accelerator, e.g. [6,30]. However, the performance attained is valuable for two
other reasons. First, the second generation (Knights Landing) of Xeon Phi has shown
far better performance than the first generation Knights Corner. Thus, we expect it
to accelerate the manycore code beyond the CPU performance, even on the powerful
new Broadwell generation of CPUs. The second reason is that some of the fastest
current supercomputers such as Stampede [26] and TianHe-2 [27], and many future
supercomputers such as those planned in the CORAL initiative [2], are based on Xeon
Phi accelerators. Due to the immense computational power required to handle such
detailed simulations, it is necessary to run them on the fastest computers available,
and make full use of their computational resources.

While performing a large number of smaller code optimizations, we found that in
addition to algorithmic improvements such as using binomial distributions and sav-
ing random numbers, the largest gains come from judicious use of both manual and
automatic vectorization. Furthermore, correct use of nontrivial OpenMP paralleliza-
tion plays a major role in obtaining high performance for complex manycore codes.
These results on effective Xeon Phi performance optimization also apply to many
other scientific codes.

Our future work will focus on refining and testing the simulator on large scale sys-
tems, and using it on the Knights Landing generation of Xeon Phi. We also intend to use
GPUs as accelerators for which preliminary experiments have shown that performance
superior to that of the CPU can easily be obtained.

References

1. Adler, C., Costabel, U.: Cell number in human heart in atrophy, hypertrophy, and under the influence
of cytostatics. Recent Adv. Stud. Card. Struct. Metab. 6, 343-355 (1975)

@ Springer

Int J Parallel Prog

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

. Brueckner, R.: A closer look at Intel’s Coral supercomputers coming to Argonne. http://insidehpc.

com/2015/04/intel-build- coral-supercomputers-argonne-200-procurement/ (2015)

. Chai, J., Hake, J.E., Wu, N., Wen, M., Cai, X., Lines, G.T., Yang, J., Su, H., Zhang, C., Liao, X.:

Towards simulation of subcellular calcium dynamics at nanometre resolution. Int. J. High Perform.
Comput. Appl. 29, 51-63 (2015). doi:10.1177/1094342013514465

. Chai, J., Wen, M., Wu, N., Huang, D., Yang, J., Cai, X., Zhang, C., Yang, Q.: Simulating cardiac

electrophysiology in the era of GPU-cluster computing. IEICE Trans. Inf. Syst. E96—-D(12), 2587
2595 (2013). doi:10.1587/transinf.E96.D.2587

. Cheng, H., Lederer, W., Cannell, M.B.: Calcium sparks: elementary events underlying excitation-

contraction coupling in heart muscle. Science 262(5134), 740-744 (1993)

. Crimi, G., Mantovani, F,, Pivanti, M., Schifano, S., Tripiccione, R.: Early experience on porting and

running a lattice Boltzmann code on the Xeon-Phi co-processor. Proc. Comput. Sci. 18, 551-560
(2013). doi:10.1016/j.procs.2013.05.219

. Datta, K., Murphy, M., Volkov, V., Williams, S., Carter, J., Oliker, L., Patterson, D., Shalf, J., Yelick,

K.: Stencil computation optimization and auto-tuning on state-of-the-art multicore architectures. In:
International Conference for High Performance Computing, Networking, Storage and Analysis, SC
2008 (2008). doi:10.1109/SC.2008.5222004

. Dong, X., Wen, M., Chai, J., Cai, X., Zhao, M., Zhang, C.: Communication-hiding programming

for clusters with multi-coprocessor nodes. Concurr. Comput.: Pract. Exp. 27(16), 4172-4185 (2015).
doi:10.1002/cpe.3507

. Durrer, D., Van Dam, R.T., Freud, G., Janse, M., Meijler, F., Arzbaecher, R.: Total excitation of the

isolated human heart. Circulation 41(6), 899-912 (1970)

Fang, J., Sips, H., Zhang, L., Xu, C., Che, Y., Varbanescu, A.L.: Test-driving Intel Xeon phi. In:
Proceedings of the Sth ACM/SPEC International Conference on Performance Engineering, ICPE 14,
pp. 137-148. ACM (2014). doi:10.1145/2568088.2576799

Gaur, N., Rudy, Y.: Multiscale modeling of calcium cycling in cardiac ventricular myocyte: macroscopic
consequences of microscopic dyadic function. Biophys. J. 100(12), 2904-2912 (2011)

Intel Xeon Phi coprocessor peak theoretical maximums. http://www.intel.com/content/www/us/en/
benchmarks/server/xeon-phi/xeon-phi-theoretical-maximums.html

Intel Math Kernel Library—documentation. https://software.intel.com/en-us/articles/
intel-math-kernel-library-documentation (2015)

Jeffers, J., Reinders, J.: Intel Xeon Phi Coprocessor High Performance Programming, 1st edn. Morgan
Kaufmann Publishers Inc., Waltham (2013)

Lan, Q., Gaur, N., Langguth, J., Cai, X.: Towards detailed tissue-scale 3D simulations of electrical
activity and calcium handling in the human cardiac ventricle. Algorithms and Architectures for Parallel
Processing. Lecture Notes in Computer Science, vol. 9530, pp. 79-92. Springer, Berlin (2015)
Morris, J.: Intel’s next big thing: knights landing Xeon Phi. http://www.zdnet.com/article/
intels-next-big-thing-knights-landing/ (2015)

MPICH: High-performance portable MPI. https://www.mpich.org

Nivala, M., de Lange, E., Rovetti, R., Qu, Z.: Computational modeling and numerical methods for
spatiotemporal calcium cycling in ventricular myocytes. Front. Physiol. 3, 114 (2012)

Nivala, M., Qu, Z.: Calcium alternans in a couplon network model of ventricular myocytes: role of
sarcoplasmic reticulum load. Am. J. Physiol. Heart Circ. Physiol. 303(3), H341-H352 (2012)
Nivala, M., Song, Z., Weiss, J.N., Qu, Z.: T-tubule disruption promotes calcium alternans in failing
ventricular myocytes: mechanistic insights from computational modeling. J. Mol. Cell. Cardiol. 79,
32-41 (2015)

O’Hara, T., Rudy, Y.: Quantitative comparison of cardiac ventricular myocyte electrophysiology and
response to drugs in human and nonhuman species. Am. J. Physiol. Heart Circ. Physiol. 302(5),
H1020-H1030 (2011)

O’Hara, T., Virdg, L., Varrd, A., Rudy, Y.: Simulation of the undiseased human cardiac ventricular
action potential: model formulation and experimental validation. PLoS Comput. Biol. 7(5), €¢1002,061
(2011)

Qu, Z., Garfinkel, A.: An advanced algorithm for solving partial differential equation in cardiac con-
duction. IEEE Trans. Biomed. Eng. 46(9), 1166—1168 (1999)

Restrepo, J.G., Weiss, J.N., Karma, A.: Calsequestrin-mediated mechanism for cellular calcium tran-
sient alternans. Biophys. J. 95(8), 3767-3789 (2008)

@ Springer

http://insidehpc.com/2015/04/intel-build-coral-supercomputers-argonne-200-procurement/
http://insidehpc.com/2015/04/intel-build-coral-supercomputers-argonne-200-procurement/
http://dx.doi.org/10.1177/1094342013514465
http://dx.doi.org/10.1587/transinf.E96.D.2587
http://dx.doi.org/10.1016/j.procs.2013.05.219
http://dx.doi.org/10.1109/SC.2008.5222004
http://dx.doi.org/10.1002/cpe.3507
http://dx.doi.org/10.1145/2568088.2576799
http://www.intel.com/content/www/us/en/benchmarks/server/xeon-phi/xeon-phi-theoretical-maximums.html
http://www.intel.com/content/www/us/en/benchmarks/server/xeon-phi/xeon-phi-theoretical-maximums.html
https://software.intel.com/en-us/articles/intel-math-kernel-library-documentation
https://software.intel.com/en-us/articles/intel-math-kernel-library-documentation
http://www.zdnet.com/article/intels-next-big-thing-knights-landing/
http://www.zdnet.com/article/intels-next-big-thing-knights-landing/
https://www.mpich.org

Int J Parallel Prog

25.

26.
27.
28.
29.
30.

31.

32.

Song, Z., Ko, C.Y., Nivala, M., Weiss, J.N., Qu, Z.: Calcium-voltage coupling in the genesis of early
and delayed afterdepolarizations in cardiac myocytes. Biophys. J. 108(8), 1908-1921 (2015)
Stampede—Texas Advanced Computing Center. https://www.tacc.utexas.edu/stampede/

Tianhe-2 (Milky Way-2) Supercomputer. http://www.tianhe2.org

Top500 Supercomputing Sites. http://www.top500.org

The Abel computer cluster. http://www.uio.no/english/services/it/research/hpc/abel/

Venetis, L.E., Goumas, G., Geveler, M., Ribbrock, D.: Porting FEASTFLOW to the Intel Xeon Phi:
lessons learned. Tech. rep, Partnership for Advanced Computing in Europe (PRACE) (2014)
Vladimirov, A.: Arithmetics on Intel’s Sandy Bridge and Westmere CPUs: not all FLOPs are created
equal. Tech. rep, Colfax International (2012)

Williams, G.S., Chikando, A.C., Tuan, H.T.M., Sobie, E.A., Lederer, W., Jafri, M.S.: Dynamics of
calcium sparks and calcium leak in the heart. Biophys. J. 101(6), 1287-1296 (2011)

@ Springer

https://www.tacc.utexas.edu/stampede/
http://www.tianhe2.org
http://www.top500.org
http://www.uio.no/english/services/it/research/hpc/abel/

	Accelerating Detailed Tissue-Scale 3D Cardiac Simulations Using Heterogeneous CPU-Xeon Phi Computing
	Abstract
	1 Introduction
	1.1 Challenges in Heterogeneous Computing
	1.2 Detailed 3D Tissue-Scale Cardiac Simulations

	2 Mathematical Models and Numerical Methods
	2.1 Physiologically Detailed Cell Modeling
	2.2 Tissue Modeling
	2.3 Numerical Strategy

	3 Implementation Strategy
	3.1 Target Hardware
	3.2 Heterogeneous Multi-Level Parallelization
	3.3 Binomial Distributions

	4 CPU Code Optimization
	4.1 Mixed Vectorization
	4.2 Binomial Distribution Sampling
	4.3 Use of Precomputed Values

	5 Xeon Phi Code Optimization
	5.1 Random Number Generation
	5.2 Automatic Vectorization
	5.3 Manual Vectorization of Binomial Sampling

	6 Experimental Setup and Hardware
	7 Experimental Results and Analysis
	7.1 Vectorization
	7.2 Dyad Level Parallelization
	7.3 Heterogeneous Scaling

	8 Cardiac Simulations
	9 Summary and Conclusions
	References

