
Improving Change Recommendation
using Aggregated Association Rules

Thomas Rolfsnes* Leon Moonen* Stefano Di Alesio* Razieh Behjati* Dave Binkley‡

thomgrol@simula.no leon.moonen@computer.org stefano@simula.no behjati@simula.no binkley@cs.loyola.edu

* Simula Research Laboratory, Oslo, Norway

‡ Loyola University Maryland, Baltimore, Maryland, USA

ABSTRACT

Past research has proposed association rule mining as a
means to uncover the evolutionary coupling from a system’s
change history. These couplings have various applications,
such as improving system decomposition and recommend-
ing related changes during development. The strength of the
coupling can be characterized using a variety of interesting-
ness measures. Existing recommendation engines typically
use only the rule with the highest interestingness value in
situations where more than one rule applies. In contrast,
we argue that multiple applicable rules indicate increased
evidence, and hypothesize that the aggregation of such rules
can be exploited to provide more accurate recommendations.

To investigate this hypothesis we conduct an empirical
study on the change histories of two large industrial sys-
tems and four large open source systems. As aggregators
we adopt three cumulative gain functions from information
retrieval. The experiments evaluate the three using 39 dif-
ferent rule interestingness measures. The results show that
aggregation provides a significant impact on most measure’s
value and, furthermore, leads to a significant improvement
in the resulting recommendation.

CCS Concepts

•Software and its engineering → Software evolution;
Software reverse engineering; •Information systems →
Recommender systems; Association rules;

1. INTRODUCTION
As a software system evolves, the number and complexity of
interactions in the code grows. For a developer, it becomes
increasingly challenging to be in control of the impact of a
change made to the system. One potential solution to this
problem, change impact analysis [7, 13, 21, 30], aims to find
artifacts (e.g., files, methods, classes) affected by a given
change. This knowledge can then be used either as direct

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MSR’16, May 14-15, 2016, Austin, TX, USA

c© 2016 ACM. ISBN 978-1-4503-4186-8/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2901739.2901756

feedback to the developer, or as the basis for another down-
stream task such as test-case selection and prioritization.

Traditionally, change impact analysis uses static or dy-
namic dependency analysis [5] (e.g., by identifying the meth-
ods that call a changed method). However, in recent years
there has been growing interest in alternative approaches.
This search is motivated, in part, by limitations in exist-
ing techniques. For example, static and dynamic depen-
dency analysis are generally language-specific, making them
unsuitable for the analysis of heterogeneous software sys-
tems [27]. In addition, they can involve considerable over-
head (e.g., dynamic analysis’ need for code-instrumentation),
and tend to over-approximate the impact of a change [20].

A promising alternative identifies dependencies through
evolutionary coupling. Such couplings differ from the ones
found through static and dynamic dependency analysis, in
that they are based on how the software was changed over
time. In essence, evolutionary coupling taps into the devel-
oper’s inherent knowledge of the dependencies in the sys-
tem. This knowledge can manifest itself in several ways, for
example, through commit-comments, bug-reports, context-
switches in an IDE, etc. In this paper we consider co-change
as the basis for uncovering evolutionary coupling. Co-change
information can, for example, be extracted from a project’s
version control system [8], from its issue tracking system, or
by instrumenting the development environment [22].

The dominant method for mining evolutionary coupling
from co-change data is association rule mining [1]. The re-
sulting mined rules are often characterized using a variety
of interestingness measures that aim to capture how infor-
mative each rule is relative to the others [14, 16]. Existing
approaches that use mined rules to provide change recom-
mendations generally consider only the rule with the highest
interestingness value in situations where multiple rules can
be applied [26]. In contrast, we conjecture that having multi-
ple applicable rules should be seen as corroborative evidence
that the rules capture an important relation or conclusion,
and hypothesize that the aggregation of such rules can be
exploited to provide more accurate recommendations.
Contributions: This paper presents three key contribu-
tions: (1) We investigate a previously unexplored area in
association rule mining by considering rule aggregation. (2)
We present and formalize hyper-rules as a novel approach
to aggregate multiple association rules. (3) We evaluate the
viability of hyper-rules in the context of change recommen-
dation using a large empirical study of four open source sys-
tems as well as two systems from our industry partners.

2016 IEEE/ACM 13th Working Conference on Mining Software Repositories

 73

2016 IEEE/ACM 13th Working Conference on Mining Software Repositories

 73

2016 IEEE/ACM 13th Working Conference on Mining Software Repositories

 73

Overview: Our presentation of aggregated association
rules is organized as follows: Section 2 provides background
on targeted association rule mining. Section 3 describes limi-
tations of classical approaches. Section 4 overviews the forty
interestingness measures used to weight the mined associa-
tion rules. Section 5 introduces the notion of a hyper-rule.
Section 6 presents the three aggregation functions consid-
ered in the experiments. Section 7 describes the setup of
our empirical investigation whose results are presented in
Section 8. Finally, Section 9 discusses the implications of
our results, Section 10 presents the related work, and then
Section 11 provides some concluding remarks.

2. ASSOCIATION RULE MINING
Agrawal et al. introduced the concept of association rule
mining as the discipline aimed at inferring relations between
entities of a dataset [1]. Association rules are implications
of the form A → B, where A is referred to as the antecedent,
B as the consequent, and A and B are disjoint sets. For ex-
ample, consider the classic application of analyzing shopping
cart data: if multiple transactions include bread and butter
then a potential association rule is bread → butter. This rule
can be read as “if you buy bread, then you are also likely to
buy butter.”
In the context of mining evolutionary coupling from co-

change information, the entities are the files of the system1

and the collection (history) T of transactions, is the set of
past commits. More specifically, a transaction T ∈ T is the
set of files that were either changed or added while address-
ing a given bug or feature addition, hence creating a logical
dependence between the files [9].
As originally defined [1], association rule mining generates

rules that express patterns in a complete data set. However,
some applications can exploit a more focused set of rules.
Targeted association rule mining [24] focuses the generation
of rules by applying a constraint. One example constraint
specifies that the antecedent of all mined rules belongs to a
particular set of files, which effectively reduces the number
of rules that need to be created. This reduction drastically
improves the execution time of rules generation [24].
When performing change impact analysis, rule-constraints

are based on a change set, e.g., the set of modified files since
the last commit. In this case, only rules with at least one
changed entity in the antecedent are created. The output of
change impact analysis are the files from the system that are
historically changed alongside the elements of the change set.
For example, given the change-set {a, b, c}, change impact
analysis would uncover files that were changed when a, b,
and c were changed. The resulting impacted files are those
found in the rule consequents. These files can be ranked
based on the rule’s interestingness-measure.
To our knowledge, only a few targeted association rule

mining algorithms have been considered in the context of
change impact analysis: Zimmerman et al. [31], Ying et
al. [28], and Rolfsnes et al. [23] (our previous work). In
contrast, simple co-change algorithms have been well stud-
ied in a variety of contexts [2, 4, 9, 11]. The existing tar-
geted association rule mining algorithms and the simple co-

1 Observe that other levels of granularity are possible, and our
consideration of co-change at the file level is without loss of gener-
ality, as these algorithms are granularity agnostic: provided that
suitably co-change data is available (or computable), the algo-
rithms will relate methods or variables just as well as files.

change algorithms differ in terms of which subsets of the
change-set that are allowed in the antecedent of generated
rules. Consider, for example, the subsets of the change-set
C = {a, b, c, d}:

powerset(C) = {{}, (1)

{a}, {b}, {c}, {d}, (2)

{a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, (3)

{a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}, (4)

{a, b, c, d}} (5)

Of C’s subsets, both Zimmerman’s and Ying’s algorithms
only consider rules based on line 5 (i.e., rules of the form
{a, b, c, d} → X) because these techniques constrain the an-
tecedent to be equal to the change set. At the other end of
the spectrum, co-change algorithms consider rules from the
singleton sets in line 2, such as a → X or b → X. Rolfsnes et
al. introduce Tarmaq, the most versatile among these ex-
isting algorithms. Tarmaq can use the sets from any of lines
2, 3, 4, or 5. The particular line used is dynamically chosen
based on the maximal overlap with the change set [23].

3. PROBLEM DESCRIPTION
Change impact analysis takes as input a set of (recently)
changed entities, referred to as a change set, and outputs
a set of potentially impacted entities. The application of
association rule mining to change impact analysis involves
looking for the evolutionary coupling between entities (here-
after files) of a system. This search considers files coupled
iff they have changed together in the past. In addition, it
is valuable to capture the strength of a coupling, which is
stronger the more frequently the files change together.

In our previous work [23], which sought to find evolution-
ary couplings through association rule mining of a system’s
version history, we noticed that there are often rules with
different antecedents, but the same consequent. For exam-
ple, consider the following rules involving files a, b, and c:

r1 = {a} → {c}

r2 = {b} → {c}

which can be interpreted as“if you change a, consider chang-
ing c,” and “if you change b consider changing c.” Given
the change set {a, b}, existing recommendations systems will
choose one of the two rules, that recommend c. However,
we argue that using only one of the two rules can be a mis-
take, since having multiple applicable rules for the same
consequent potentially provides increased evidence that the
consequent is relevant. We hypothesize that this increased
evidence can be captured by the aggregation of rules into
hyper-rules that produce more accurate recommendations.
In other words, we seek to combine rules r1 and r2 into the
hyper-rule r3 that captures the cumulative evidence that
c should be recommended for change when a and b are
changed.

A concrete example will help illustrate our goal and also
provide a better intuition into the value of hyper-rule for-
mation. The example involves a sequence of past transac-
tions that each include a set of files that changed together.
The example also motivates the need to aggregate the inter-
estingness values of the rules producing an interestingness
value for the resulting hyper-rule. The example does this

747474

using, as a simple interestingness value, the percentage of
the transactions that give rise to the rule.

Example 1 Consider the following (historic) sequence of trans-
actions:

T = [{a, x}, {b, y}, {c, y}, {d, y}, {a, x}]
and the change set C = {a, b, c, d} where, based on T and C, the
following rules have been mined (the interestingness of each is
given in parentheses):

a → x (40%)

b → y (20%)

c → y (20%)

d → y (20%)

In these rules all the files that occur in an antecedent are part
of change set C while all files that occur in a consequent are
potentially impacted by the change with a certainty reflected by
the rule’s interestingness value.

In Example 1, without aggregation, x is recommended above
y, because it has changed two times with an item in the
change set (a), while y had changed at most once with any
individual item of the change set. However, y has changed
more times with at least one item of the change set than
x. Therefore, there is combined evidence that y should be
recommended above x.

Generalizing this example, our goal is to aggregate mined
association rules into hyper-rules that combine evidence and
ultimately provide more accurate recommendations. To this
end, the remainder of this paper investigates the impact
of three aggregation techniques on the performance of two
association rule mining algorithms using a collection of forty
interestingness-measures.

4. INTERESTINGNESS MEASURES
The relative value of the rules mined by a targeted associ-
ation rule mining algorithm is given by an interestingness
measure. In Agrawal et al.’s seminal paper on association
rule mining [1], two predominant interestingness measures
are introduced, support and confidence. Given a set of trans-
actions T , the support of the rule A → B is defined as the
number of transactions where the union of the antecedent
and consequent is a subset, divided by the total number of
transactions:

support(A → B)
def

=
|{T ∈ T : {A ∪B} ⊆ T}|

|T |
(6)

Intuitively, higher support for a rule means that it is more
likely to hold. Alternatively, rules with low support identify
weaker relations. For this reason, a minimum threshold on
support is often used to filter out uninteresting rules.

Second, confidence is defined as the number of transac-
tions where the union of A and B is a subset, divided by the
number of transactions where A is a subset. It thus gives
the conditional probability of B being a subset, given that
A is a subset. Formally,

confidence(A → B)
def

=
|{T ∈ T : {A ∪B} ⊆ T}|

|{T ∈ T : A ⊆ T}|
(7)

Since the introduction of targeted association rule mining,
numerous alternative interestingness measures have been pro-
posed, too many to detail here. Common to all however, is
the same set of basic probabilistic measures. Given the rule
A → B, an interestingness measure can be defined in terms

Table 1: Overview of probabilistic building blocks where for the
rule A → B X can be A or B and Y the other

Probability Definition

P (X)
|{T∈T :X⊆T}|

|T |

P (¬X) 1− P (X)

P (X,Y)
|{T∈T :{X∪Y }⊆T}|

|T |

P (¬X,¬Y)
|{T∈T :X*T∧Y *T}|

|T |

P (¬X,Y)
|{T∈T :X*T∧Y ⊆T}|

|T |

P (X,¬Y)
|{T∈T :X⊆T∧Y *T}|

|T |

P (X|Y)
P (X,Y)
P (Y)

P (¬X|Y)
P (¬X,Y)

P (Y)

P (X|¬Y)
P (X,¬Y)
P (¬Y)

P (¬X|¬Y)
P (¬X,¬Y)

P (¬Y)

of the probabilities of A, B, ¬A, ¬B and various combina-
tions obtained through unions, fractions, etc.

For example, support is the probability P (A,B) (i.e., the
probability that a transaction includes both A and B). Like-
wise, confidence is the probability P (B|A) (i.e., the condi-
tional probability that B is in a transaction given that A is
there). In some more recent measures non-occurrence of the
antecedent or consequent is also accounted for. For example,
casual support is defined as P (A,B) + P (¬A,¬B). Table 1
lists the probabilistic building blocks we consider and their
definitions.

There is one final detail related to the interestingness
measures that is relevant to our discussion: the range of
a measure, and specifically its ability to measure either neg-
ative, positive, or no correlation between a rule’s antecedent
and consequent. We use the syntax [min..mid..max] to give
the range of an interestingness measures, mid here indicates
the value of no correlation for that measure. When only
[min..max] is used, the value of no correlation is equal to 0.

The range of most measures falls into one of a few cate-
gories. Most existing measures (e.g., support) range between
0 and 1. This [0..1] range is also the easiest to interpret as
a correlation, where 0 naturally indicates no correlation and
any higher value the degree of positive correlation. Another
common range is [-1..1], where 0 again indicates no correla-
tion, but negative correlation is also possible. In addition,
there also exist ranges such as [-∞..∞] and [0..1..∞], where
1 indicates no correlation in the latter case. A complete list
of the interestingness measures used in the study and their
ranges is given in Table 2.

5. HYPER-RULES
To study the value of aggregating the evidence provided by
a collection of conventional rules, we introduce the concept
of a hyper-rule, which provides an effective summary of the
constituent rules. A key requirement of hyper-rule formation
is devising a method to properly aggregate the conventional
rules’ interestingness measures. This section first provides
a few basic definitions. It then formalizes the notion of a

757575

Table 2: Overview of the 39 interestingness measures considered in our study

Interestingness Measure Range Definition

1 Added Value [−0.5..1] P (B|A)− P (B)

2 Casual Confidence [0..1] 1
2
∗ (P (B|A) + P (¬B|¬A))

3 Casual Support [0..1] P (A,B) + P (¬A,¬B)

4 Collective Strength [0..∞]
P (A,b)+P (¬B|¬A)

P (A)∗P (B)+P (¬A)∗P (¬B)

5 Confidence [0..1] P (B|A)

6 Conviction [0..1]
P (A)∗P (¬B)

P (A,¬B)

7 Cosine [0..1]
P (A,B)√
P (A)∗P (B)

8 Coverage [0..1] P (A)

9 Descriptive Confirmed Confidence [−1..1] P (B|A)− P (¬B|A)

10 Difference Of Confidence [−1..1] P (B|A)− P (B|¬A)

11 Example and Counterexample Rate [0..1] (P (A,B)− P (A,¬B))/P (A,B)

12 Gini Index [0..1]
P (A) ∗ (P (B|A)2 + P (¬B|A)2) + P (¬A) ∗ (P (B|¬A)2

+P (¬B|¬A)2)− P (B)2 − P (¬B)2

13 Imbalance Ratio [0..1]
|P (A|B)−P (B|A)|

P (A|B)+P (B|A)−P (A|B)∗P (B|A)

14 Interestingness Weighting Dependency (k=m=2) [0..∞] (
P (B|A)
P (B)

)(k−1) ∗ (P (A,B))m

15 J Measure [0..1] P (A,B) ∗ log(
P (B|A)
P (B)

) + P (A,¬B) ∗ log(
P (¬B|A
P (¬B

)

16 Jaccard [−1..1]
P (A,B)

(P (A)+P (B)−P (A,B))

17 Kappa [−1..1]
P (A,B)+P (¬A,¬B)−P (A)∗P (B)−P (¬A)∗P (¬B)

1−P (A)∗P (B)−P (¬A)∗P (¬B)

18 Klosgen [−1..1]
√

P (A,B) ∗ (P (B|A)− P (B))

19 Kulczynski [0..1]
P (A,B)

2
∗ (1

P (A)
+ 1

P (B)
)

20 Laplace Corrected Confidence [0..1]
P (A,B)+1
P (B)+2

21 Least Contradiction [−1..1]
P (A,B)−P (A,¬B)

P (B)

22 Leverage [−1..1] P (A,B)− P (A) ∗ P (B)

23 Lift [0..1..∞]
P (A,B)
P (A)

∗ P (B)

24 Linear Correlation Coefficient [−1..1]
P (A,B)−P (A)∗P (B)√

P (A)∗P (B)∗P (¬A)∗P (¬B)

25 Loevinger [−1..1]
P (B|A)−P (B)

1−P (B)

26 Odd Multiplier [0..∞]
P (A,B)∗P (¬B)
P (B)∗P (A,¬B)

27 Odds Ratio [0..1..∞]
P (A,B)∗P (¬A,¬B)
P (A,¬B)∗P (¬A,B)

28 One Way Support [0..∞] P (B|A) ∗ log2(
P (A,B)

P (A)∗P (B)
)

29 Prevalence [0..1] P (B)

30 Recall [0..1] P (A|B)

31 Relative Risk [0..∞]
P (B|A)
P (B|¬A)

32 Sebag Schoenauer [0..1]
P (A,B)
P (A,¬B)

33 Specificity [0..1] P (¬B|¬A)

34 Support [0..1] P (A,B)

35 Two Way Support [0..∞] P (A,B) ∗ log2(
P (A,B)

P (A)∗P (B)
)

36 Varying Rates Liaison [−1..∞]
P (A,B)

P (A)∗P (B)
− 1

37 Yules Q [−1..1] odds ratio−1
odds ratio+1

38 Yules Y [−1..1]
√
odds ratio−1√
odds ratio+1

39 Zhang [0..∞]
P (A,B)−P (A)∗P (B)

max(P (AB)∗P (¬B),P (B)∗P (A,¬B))

767676

hyper-rule and the process of measure aggregation.

5.1 Preliminary Definitions
The following definitions support the definition of a hyper-
rule.

Definition 1 (Antecedent and Consequent) Given a con-
ventional rule, we define two functions: RA and RC , where the
first returns the rule’s antecedent and the second its consequent.
Let r = A → B be a conventional rule. Then

• RA(r) = A

• RC(r) = B

Definition 2 (Normalized Interestingness Measure) An
interestingness measure is normalized if (1) its range contains
the value 0; and (2) the value 0 indicates no correlation between
the rule and the change set.

Most interestingness measures only specify positive cor-
relation, with 0 indicating no correlation. However, some
measures are defined with 1 indicating no correlation (where
< 1 captures a negative correlation and > 1 a positive cor-
relation). In order to formulate a consistent definition of
interestingness measures aggregation, these measures must
be normalized such that no correlation is indicated by 0.
Out of all interestingness measures in Table 2, only lift and
odds ratio are normalized.

Example 2 (Normalizing Around Zero) The lift interesting-
ness measure, has a range of [0..1..∞] with 1 indicating no corre-
lation. To normalize the measure, we subtract 1 from each value,
before aggregation. For example, we map the set of lift measures
{0, 0.5, 10}, to the normalized set of measures: {−1,−0.5, 9}.
The aggregated value is then converted back by adding 1.

5.2 Hyper-Rule Formation Function
A hyper-rule, which intuitively summarizes a set of rules
using a single rule, is formed using the following function:

Definition 3 (Hyper-Rule) Given a set of rules

R = {r1, . . . , rn},
we define the hyper-rule formation function H(R) as

H(R) =
⋃

r∈R

{RA(r)} ⇒
⋃

r∈R

{RC(r)} (8)

Note that the antecedent and the consequent of a hyper-rule
are sets of sets of entities rather than being sets of entities as
found in conventional rules. To help distinguish hyper-rules
and conventional rules, we use a double-arrow ⇒ in a hyper-
rule rather than the single arrow → used with conventional
rules.

Example 3 Rule set R = {{a, b} → {c}}, {{d} → {c}}}
will generate the hyper-rule

H(R) = {{a, b}, {d}} ⇒ {{c}}
Example 4 Rule set R = {{a, b} → {c, f}}, {{a, b} → {c}}}
will generate the hyper-rule

H(R) = {{a, b}} ⇒ {{c, f}, {c}}

Section 3 presented one possible rational for selecting a set
of conventional rules to be combined – based on our ex-
perience with recommendation systems, it is advantageous
to combine rules that have the same consequent. This is,
of course, not the only possibility. For example, to answer
the question “what does this file impact?” we would want
to select for aggregation rules sharing the same antecedent.
Beyond these two, other problem domains may require still
other selection criteria.

5.3 Measure Aggregation
In the same manner that an association rule has an inter-
estingness measure, a hyper-rule has an aggregated interest-
ingness measure, which aggregates the individual interest-
ingness measures of its constituent rules.

Let M denote the set of all normalized interestingness
measures defined over conventional rules, and H denote the
set of all hyper-rules. We define a Unified Measure Aggrega-
tor ⊕ : H×M → R as follows:

Definition 4 (Unified Measure Aggregator) Let M be a nor-
malized interestingness measure defined over conventional rules,
and R = {r1, . . . , rn} be a set of rules. Then ⊕(H(R),M) is a
real number for which the following properties hold:

1. R = {r} =⇒ ⊕ (H(R),M) = M(r)

2. If |R| > 1, then for each r ∈ R the following holds:

⊕(H(R),M)







> ⊕(H(R− {r}),M) M(r) > 0
= ⊕(H(R− {r}),M) M(r) = 0
< ⊕(H(R− {r}),M) M(r) < 0

The first property provides identity by defining the ag-
gregation of a single measure value as the value itself. This
ensures that the hyper-rule transformation of a single rule,
never returns a hyper-rule with a different measure value
than the original rule. The second property ensures mono-
tonicity. For example, it requires that the aggregation func-
tion is strictly increasing when rules with positive measures
are aggregated, and strictly decreasing when rules with neg-
ative measures are aggregated.

6. AGGREGATION FUNCTIONS
Cumulative gain (CG) and discounted cumulative gain (DCG)
are well known performance measures in information re-
trieval [12]. They are typically used to evaluate search re-
sults, and are generally used for evaluating a target list
against an ideal (oracle) list [12].

In this paper we argue that CG, DCG, and a variation
of DCG which we will refer to as DCG2 [6], are also well
suited to the problem of aggregating interestingness values.
Due to space restrictions, we omit formal proofs that the
proposed aggregators satisfy the two properties introduced
in Definition 4 in favor of presenting empirical evidence of
their impact in Section 7.

We first informally introduce CG and DCG using the fol-
lowing example, set in their conventional context:

Example 5 The result of a web search produced the following
list of sites, prioritized from left to right: L = [site1, site4, site2].
A user then ranks the search result by providing relevancy scores
of each site on a scale of 0 to 3, producing the list:

[(site1, 1), (site4, 3), (site2, 2)]

CG and DCG can be applied to the list of relevancy scores [1,3,2],
to provide an overall evaluation of the search result.

CG([1, 3, 2]) = 1 + 3 + 2 = 6

DCG([1, 3, 2]) = 1 + 3/log2(2) + 2/log2(3) ≈ 5.26

In summary, CG assigns to L a score of 6 on a scale from 0
(all sites are not relevant) to 9 (all sites are highly relevant),
indicating that, overall, the list is quite relevant. Note that CG
ignores the order of the sites, and hence a similar list L where
the most relevant site appears last would have the same score.
In contrast, DCG uses a progressively decreasing weight, hence
penalizing the fact that the first document returned is not marked
by the user as very relevant.

777777

6.1 Cumulative Gain

Definition 5 (Cumulative Gain) Given a normalized inter-
estingness measure M and a set of rules

R = {r1, . . . , rn},

the cumulative gain of hyper-rule H(R) is defined as follows:

⊕CG(H(R),M) =

n
∑

i=1

M(ri) (9)

Example 6 (Cumulative Gain) Given the following set of
rules R and their normalized interestingness measure M :

R = {r1, r2, r3}
M = {(r1, 1), (r2, 3), (r3, 2)}

the cumulative gain of H(R) is given by:

⊕CG(H(R)) = 1 + 3 + 2 = 6

Informally, as a simple algebraic sum, CG satisfies the
aggregation properties of Definition 4.

6.2 Discounted Cumulative Gain
We introduce two discounted cumulative gain functions, re-
ferred to as DCG and DCG2 respectively. These functions
use a coefficient to reduce the impact of lower ranked mea-
sures. In particular, when compared to DCG, DCG2 gives
larger weight to highly ranked measures.
We begin by defining the notion of absolute rank, which

is used in the definitions of DCG and DCG2.

Definition 6 (Absolute rank of a rule) Let M be an inter-
estingness measure, and R = {r1, . . . , rn} be a set of rules. Let
L = 〈rr1 , ..., rrn 〉 be a ranking over R based on the absolute val-
ues of M for the rules in R (i.e., |M(ri)|). The first element
in L (i.e., rs1) is the rule for which M has the highest absolute
value. Rules with the same absolute values for M get the same
position in the rank.

We define the absolute rank of a rule as its position in the
ranking L.

In the following, for the sake of simplicity, we use rank+(ri)
to denote rank+(ri, R,M).

Definition 7 (Discounted Cumulative Gain) Given a nor-
malized interestingness measure M , and a set of rules

R = {r1, . . . , rn},

DCG of H(R) for M is defined as follows:

⊕DCG(H(R),M) =

n
∑

i=1

M(ri)× coef (ri) (10)

where coef (ri) is given by:

coef (ri) =

{

1 rank+(ri) = 1
1

log2(rank+(ri))
rank+(ri) > 1

Example 7 (Discounted Cumulative Gain) Given a set of
rules R and a normalized interestingness measure M :

R = {r1, r2, r3}
M = {(r1, 1), (r2, 3), (r3, 2)}

the DCG of H(R) for M is given by:

⊕DCG(H(R),M) = 3 + 2/log2(2) + 1/log2(3) ≈ 5.63

The next aggregator, DCG2, slightly modifies the function
of DCG by assigning larger weight on highly positively or
negatively correlated measures.

Definition 8 (Discounted Cumulative Gain 2 (Adapted))
Given a normalized interestingness measure M , and a set of rules

R = {r1, . . . , rn},

DCG2 of H(R) for M is defined as follows:

⊕DCG2(H(R),M) =

n
∑

i=1

(2|M(ri)| − 1)× coef (ri) (11)

where coef (ri) is defined as:

coef (ri) =

{

1 rank+(ri) = 1
sign(M(ri))

log2(rank+(ri))
rank+(ri) > 1

Note that, in its original definition, DCG2 is only defined
for positive measure values. We adapted the original defini-
tion of DCG2 in order to apply DCG2 to negative measure
values too, and ensure that positive and negative values with
the same absolute value have the same weight. Specifically,
we adapt the definition of DCG2 to (1) consider in the expo-
nent of the summation factor the absolute value of the value
produced by interestingness measure M , and (2) defining
coef such that it has the same sign of the interestingness
measure.

7. EVALUATION
To assess the viability of hyper-rules, and especially the
proposed aggregation functions of Section 6, we perform a
large empirical study. The evaluation investigates the per-
formance of hyper-rules with different aggregation functions,
in the context of various software-systems and various inter-
estingness measures.

While we believe hyper-rules will be useful in a variety of
problem domains, our study focuses on change recommenda-
tion. Specifically, we investigate the following two research
questions:

RQ 1 How frequently are hyper-rules applicable in change rec-
ommendation?

RQ 2 Do hyper-rules positively impact the precision of change
recommendation?

The remainder of this section will give further detail on
our evaluation setup, and is organized as follows: In Sec-
tion 7.1 we explain the software-systems included in the
study. In Section 7.2 we describe how the initial history
is filtered. In Section 7.3 we describe two central concepts
for the evaluation, namely query creation and query execu-
tion. In Section 7.4 we explain the generation of change
recommendations. In Section 7.5 we discuss a slight sim-
plification in the context of our evaluation. In Section 7.6
we explain our method for measuring performance, and in
Section 7.7 we introduce the implementation and execution
environment of the evaluation.

7.1 Subject Systems
To assess hyper-rules in a variety of conditions, we selected
six systems having varying size and frequency of commits.
Two of these systems come from our industry partners, Kongs-
berg Maritime (KM) and Cisco Norway. KM is a leading

787878

company in the production of systems for positioning, sur-
veying, navigation, and automation of merchant vessels and
offshore installations. Specifically, we consider a common
software platform KM uses in applications in the maritime
and energy domain. Cisco Norway is the Norwegian division
of Cisco Systems, a worldwide leader in the production of
networking equipment. In particular, we evaluated hyper-
rules on a software product line for professional video con-
ferencing systems developed by Cisco Norway. The other
four systems are parts of well known open-source projects,
namely Apache HTTP Server, Linux Kernel, MySQL, and
Git. Table 3 summarizes descriptive characteristics of the
software systems used in the evaluation. The table shows
that the systems we selected vary from medium to large
size, with up to forty thousand different files committed in
the transaction history. Furthermore, the oldest transac-
tions from the system histories are fifteen years old in the
case of KM. Note that all the systems are heterogeneous,
i.e., they involve more than a one programming language.

7.2 History Filtering
In Table 3 we can see that commits with ten or fewer changed
files are the most common. For this reason, and because we
assume that larger commits often consist of unrelated files
committed together because of a directory reshuffle or license
change, we follow the work of Zimmerman et al. [31] and
remove commits of more than thirty files from the original
history. The resulting sequence of commits becomes the
filtered history Hf , from which we will mine the association
rules.

7.3 Query Creation
Conceptually, a query Q represents a set of files that a devel-
oper changed since the last synchronization with the version
control system. The key idea behind our evaluation is to
generate, starting from a transaction T , a set of queries that
emulate a developer errantly forgetting to update some sub-
set of T .

From the filtered history Hf , we sample fifty commits of
each size between two and ten. By sampling evenly over
this range, rather than sampling all available commits of
each size, we avoid a bias towards the smallest commits of
size 2-3, which are far more common [23]. The resulting 450
commits are used to form queries that are executed in the
various contexts we want to investigate.

To mimic a developer forgetting to change one or more
files, we partition each transaction T into a non-empty query

Q and a non-empty expected outcome E
def

= T \ Q. In this
way, we can evaluate the ability of a recommendation to
infer E from Q.

To investigate a range of query sizes, we generate one
query for each size from 1 to |T | − 1. For example, for a
transaction of size 4, we generate three queries of sizes 1, 2,
and 3, whose expected outcomes thus have sizes 3, 2 and 1,
respectively. Note that we do not sample commits of size
one because they cannot be split into a query and expected
outcome.

7.4 Generating Change Recommendations
All queries are executed using two different targeted asso-
ciation rule mining algorithms, namely Tarmaq and Co-

Change (presented in Section 2). Executing a query Q, cre-
ated from a transaction T, creates a set of association rules.

The rules may differ based on which algorithm that was
used. Moving from a set of rules to a change-recommendation
with respect to Q, requires giving weight to the rules such
that they can be sorted. In this paper we consider all the
of the interestingness measures of Table 2 for this purpose.
Moreover, and key to the purpose of this paper, we also con-
vert the set of weighted rules into their aggregated versions,
according to the hyper-rule definition of Section 5 and the
aggregation functions of Section 6.

The rules, and interestingness measures used to weight
rules, are based on patterns in previous commits, and for
this purpose we use the 10,000 commits made prior to T.
Note that this means that all queries are executed over their
actual previous history. The use of 10,000 commits repre-
sents a balance between to short a history, which would lack
sufficient connections, and to long a history, which is ineffi-
cient and can even be misleading when previously connected
files are no longer connected.

7.5 Aggregation of only Positive Measures
As discussed in Section 4, interestingness measures typically
capture either only positive, or both positive and negative
correlations between the antecedent and consequent of a
rule. In our evaluation, we decided to consider only pos-
itive correlations. This means that for the interestingness
measures that can produce both positive and negative cor-
relations, we ignore any rule which has a negative measure
value. This is in line with our problem domain, i.e., “if I
change ‘this’, what else should be changed?”, rather than:
“if I change ‘this’, what else should not be changed?”.

Moreover, existing targeted association rule mining algo-
rithms show a clear bias toward mining only positive rules
(typically based on entities that have changed together in
the past). Thus the interestingness measures that have the
ability to measure both negative and positive correlations
will be heavily skewed towards the positive correlations.

Looking forward, there is potential value in combining the
two types of correlation. Investigating such is left to future
work.

7.6 Performance Measure
To evaluate a recommendation we use the average precision
(AP) measure:

Definition 9 (Average Precision) Given a recommendation
R, and an expected outcome E, the average precision of R is
given by:

AP(R)
def

=

|R|
∑

k=1

P (k) ∗ △r(k) (12)

where P (k) is the precision calculated on the first k files in the
list (i.e., the fraction of correct files in the top k files), and △r(k)
is the change in recall calculated only on the k− 1th and kth files
(i.e., how many more correct files where predicted compared to
the previous rank).

Note that since we consider only rules with single conse-
quents, △r(k) will always be equal to either zero or 1/|E||,
i.e., a rank either does not contain a file from the expected
outcome, or it contains exactly one file from the expected
outcome. Table 4 illustrates the computation of AP , P (k),
and△r(k) given the ranked list [c, a, f, g, d] and the expected
outcome {c, d, f}.

As an overall performance measure of a group of factors,
e.g., a certain rule generation algorithm using a certain in-
terestingness measure, we use the mean average precision

797979

Table 3: Characteristics of the evaluated software systems

Software System Unique Avg. transaction History covered by Languages used*
files size (# files) 10 000 transactions

MySQL 21854 10.1 2.34 years C++ (54%), C (19%), JavaScript (17%), 23 other (10%)
Git 2141 1.9 4.2 years C (45%), shell script (35%), Perl (9%), 14 other (11%)
Apache HTTP Server 7905 6.9 7.18 years XML (56%), C (32%), Forth (8%), 19 other (4%)
Linux Kernel 9021 2.2 0.15 years C (94%), 16 other (6%)
Kongsberg Maritime 35111 5.1 15.97 years C++, C, XML, other build/config (% undisclosed)
Cisco Norway 41701 6.2 1.07 years C++, C, C#, Python, Java, XML, other build/config (% undisclosed)

* data on the languages used by the open source systems was obtained from https://www.openhub.net/

(MAP) computed over all the queries executed using that
factor combination.

7.7 Experimental Setup
All rule generation algorithms, interestingness measures, and
hyper-rules have been implemented in Ruby. We performed
the experiment on a m4.2xlarge Amazon EC2 instance.2

8. RESULTS
This section presents the results of the study described in
Section 7. We discuss the implications of these results in
Section 9. The results are broken into two parts. First, in
Section 8.1, we consider RQ1, the applicability of hyper-rule
formation and then, in Section 8.2, we turn to RQ2 and the
impact of hyper-rule formation.

8.1 Applicability of Hyper-Rules (RQ 1)
Even if a technique has been proven to increase performance,
it can be of little practical value if the prerequisites for its
application are too restrictive. As such, it is of great interest
to gain insight into how often hyper-rules are applicable in
the change recommendation context.

To investigate this aspect, we calculated the percentage
of recommendations having at least two rules with the same
consequent. In answer to RQ1, the percentages are given in
Table 5. For Co-Change 70% of all recommendations have
at least two rules from which a hyper-rule can be formed.
The percentage for Tarmaq, 15%, is notably lower, but still
provides opportunities for hyper-rule formation.

8.2 Ability to Improve Precision (RQ 2)
The results for RQ1 indicate that there exist opportunities
to apply hyper-rule formation. To address RQ2, we evalu-
ate the benefit that their formation brings. The evaluation
considers three aspects: the rule generation algorithm used
(Co-Change or Tarmaq), the interestingness measure used

2 https://aws.amazon.com

Table 4: Example of average precision calculation

Consider as relevant files: c, d, f

Rank (k) File P (k) △r(k)

1 c 1/1 1/3
2 a 1/2 0
3 f 2/3 1/3
4 g 2/4 0
5 d 3/5 1/3

AP = 1/1 ∗ 1/3 + 1/2 ∗ 0 + 2/3 ∗ 1/3 + 2/4 ∗ 0 + 3/5 ∗ 1/3 ≈ 0.75

to rank the rules, and the aggregation function used to form
the hyper-rules.

The investigation considers the impact of hyper-rule for-
mation on the average precision attained by a recommen-
dation. In doing so, we also identify the best performing
aggregator(s) for each of the algorithm and interestingness-
measure combination. Hereafter we refer to an (algorithm,
measure) combination as a case.
The overall results are shown in Table 6. Each column

shows the percentage increase or decrease in mean average
precision for the three different aggregators, compared to no
aggregation.

8.2.1 Cases where hyper-rules change precision

To test if aggregation has a significant impact on the recom-
mendations, we use the Friedman Test on each case. This
test was used because the distributions are not necessarily
normal. In Table 6, we highlight with a dashed box the
case (Tarmaq, kappa) that produced the largest p-value, of
0.021. In all other cases, we found a highly significant dif-
ference between aggregation and no aggregation. Note that
the Friedman test does not indicate that aggregation has a
positive effect, only that it has an effect.

8.2.2 Best performing measure aggregators

For each significant difference, a post-hoc test is used to
determine the aggregators that caused the difference. For
this purpose, we use multiple one-tailed, paired Wilcoxon
signed rank tests with the Bonferroni adjustment. The ad-
justment accounts for the multiple comparisons by lowering
the significance threshold for the p-values, in order to ad-
dress potential false positive resulting from multiple tests.
To obtain a partial ordering of the aggregators, we first run
three tests that compare the aggregators against no aggre-
gation. Thereafter, we perform three additional tests be-
tween the aggregators, for a total of 6 tests (comparisons).
Note that the Bonferroni adjustment is α divided by the
number of comparisons, which gives us an adjusted α of
0.05/6 ≈ 0.008,
The results of the Wilcoxon tests are shown in Table 6,

where bold and underlined values indicate the aggregator

Table 5: Percentage of recommendations where at least two rules
could be aggregated into a hyper-rule

Applicable Non Applicable

Co-Change 70% 30%

Tarmaq 15% 85%

808080

Table 6: The change in Mean Average Precision for the various aggregator functions compared to recommendations without aggregation.

A
dd
ed

V
al
ue

C
as
ua
l
C
on
fid
en
ce

C
as
ua
l
Su
pp
or
t

C
ol
le
ct
iv
e
St
re
ng
th

C
on
fid
en
ce

C
on
vi
ct
io
n

C
os
in
e

C
ov
er
ag
e

D
es
cr
ip
ti
ve

C
on
fir
m
ed

co
nfi
de
nc
e

D
iff
er
en
ce

of
C
on
fid
en
ce

E
xa
m
pl
e
an
d
C
ou
nt
er
ex
am

pl
e
R
at
e

G
in
i
In
de
x

Im
ba
la
nc
e
R
at
io

In
te
re
st
in
gn
es
s
W
ei
gh
ti
ng

D
ep
en
de
nc
y

J-
M
ea
su
re

Ja
cc
ar
d

K
ap
pa

K
lo
sg
en

K
ul
cz
yn
sk
i

L
ap
la
ce

C
or
re
ct
ed

C
on
fid
en
ce

L
ea
st
C
on
tr
ad
ic
ti
on

L
ev
er
ag
e

L
ift

L
in
ea
r
C
or
re
la
ti
on

C
oe
ffi
ci
en
t

L
oe
vi
ng
er

O
dd
m
ul
ti
pl
ie
r

O
dd
s
R
at
io

O
ne

W
ay

Su
pp
or
t

P
re
va
le
nc
e

R
ec
al
l

R
el
at
iv
e
R
is
k

Se
ba
g
Sc
ho
en
au
er

Sp
ec
ifi
ci
ty

Su
pp
or
t

T
w
o
W
ay

Su
pp
or
t

V
ar
yi
ng

R
at
es
L
ia
is
on

Y
ul
es
Q

Y
ul
es
Y

Z
ha
ng

Co-Change algorithm

CG 7% 2% 26% 24% 7% 3% 14% 83% -2% 7% -2% 32% 53% 3% 80% 11% 11% 5% 9% 26% 0% 14% 19% 14% 7% 8% 4% 142% 18% 38% 8% 3% 100% 14% 53% 19% 7% 11% 9%

DCG 7% 5% 26% 24% 7% 3% 11% 83% -2% 7% -2% 32% 53% 3% 80% 8% 11% 2% 9% 30% 0% 11% 14% 11% 7% 8% 4% 142% 18% 31% 8% 5% 100% 14% 53% 14% 7% 11% 9%

DCG2 5% -9% -19% -24% 5% -3% 0% 17% -5% 5% -5% 32% 13% 0% 80% 3% 0% 0% -12% -19% -2% 3% 5% 0% 2% -8% -11% 142% 5% 13% -4% 3% 27% 3% 53% 5% -19% -15% -32%

Tarmaq algorithm

CG 35% 19% 35% 7% 19% 9% 26% 37% 15% 35% 15% 23% 24% 0% 56% 5% 7% 19% 47% 67% 4% 24% 7% 21% 19% 12% 11% 56% 9% 8% 6% 9% 56% 11% 24% 7% 17% 17% 17%

DCG 35% 19% 35% 7% 19% 9% 21% 37% 15% 35% 15% 23% 24% 0% 56% 5% 7% 19% 47% 67% 4% 24% 7% 21% 19% 12% 11% 56% 9% 8% 6% 9% 56% 11% 24% 7% 17% 17% 17%

DCG2 35% 15% 30% 3% 15% 9% 16% 32% 15% 35% 15% 23% 19% 0% 56% 5% 7% 19% 37% 60% 0% 20% 67% 16% 15% 18% 17% 56% 9% 0% 47% 9% 56% 7% 24% 67% 17% 17% 17%

Bold and underlined values indicate aggregators that performed significantly better than no aggregation, as well as the other (non-bold) aggregators for
that interestingness measure and algorithm. The three values in the marked rectangle are the only ones for which there was close to no statistical difference
between the aggregators according to a Friedman test (p-value of 0.021 with α = 0.05).

that performed significantly better than the others for each
interestingness measure. In the cases where there are N > 1
bold values, there is no significant difference between the top
N aggregators. For example, in the case (Tarmaq, casual
confidence), CG and DCG are distinctively better than no
aggregation and the DCG2 aggregator. In another case (Co-

Change, J-measure) CG, DCG, DCG2 were all found to be
significantly better than no aggregation.

As seen in Table 6 by the substantial presence of bolded
values, hyper-rule formation has had an overall positive im-
pact on recommendation performance.

9. DISCUSSION
This section discusses the implications of the results pre-
sented in Section 8.

9.1 Applicability of Hyper-Rules (RQ 1)
In Section 8.1 we found that Co-Change generated recom-
mendations from which hyper-rules could be formed 70%
of the time while Tarmaq does so only 15% of the time.
However, this relatively large difference should not come as
a surprise. In the problem domain of change recommenda-
tions, a rule-set is convertible to a hyper-rule if all the rules
shared the same consequent. Thus the nature of the algo-
rithm that generates the rule-set affects the applicability of
hyper-rule formation.

In the case of Co-Change, only rules with a single an-
tecedent and a single consequent are generated, while Tar-

maq generates rules where the antecedent is potentially equal
to the change-set. Thus the number of rules generated by
Co-Change is potentially much larger than the number
generated by Tarmaq. With this in mind, the percentages
in Table 5 provide a positive outlook for hyper-rule forma-
tion. We conclude this because Co-Change and Tarmaq

likely represent two ends of a spectrum, making, the per-
centage of applicable recommendations for other algorithms
likely to lie in the range 15% – 70%.

9.2 Ability to Improve Precision (RQ 2)
From the results presented in Table 6, we can observe the
following for our two studied algorithms:

• For Co-Change, DCG2 stands out as overall having
less, and sometimes even negative impact. On the

other hand, CG and DCG improve the recommenda-
tions for 30 of 39 interestingness measures.

• For Tarmaq, all aggregators consistently perform bet-
ter across most interestingness measures compared to
Co-Change. There is also less difference between
the aggregators. In a few cases however, DCG2 per-
forms much better than CG and DCG. Aggregation
improved recommendations for 32 of 39 interestingness
measures.

The reason behind these differences comes back to the na-
ture of the two algorithms. For example, in the case of Tar-
maq, we see less difference between aggregators as a result
of having fewer rules to aggregate.

The differences also bring out a more subtle behavior of
the DCG2 aggregator. DCG2 is a fast growing function for
larger measures. It thus can have a large impact on ordering
in recommendations even when there are only a few rules.
From Table 6 we see that this has a positive effect when
used with Tarmaq, and an adverse effect when used with
Co-Change. This difference is evident with the measures
Lift, Relative Risk, and Varying Rates Liaison. All of these
measures have a range whose right bound is ∞, and are
thus much more likely to grow fast when DCG2 is used as
an aggregator. We see that this faster growth has a positive
effect in the “short term”, i.e., aggregation of only a few
rules.

To summarize, in general hyper-rule formation has a pos-
itive effect on change recommendation. However, the rule
generation algorithm and interestingness measure effect the
outcome, which is not surprising. In this paper, we have sug-
gested and evaluated three aggregators, but it is potentially
beneficial to investigate a wider range of aggregators for each
measure. In particular, for the interestingness measures for
which we found no significant recommendation improvement
when aggregated, other aggregators should be investigated.

9.3 Threats to validity
Problem Domain used in Evaluation: We evaluated
hyper-rules in the context of change recommendations. How-
ever, the different interestingness measures studied might
not fit well into all problem domains [25]. Still, since we
evaluated hyper-rules by looking at the difference in preci-
sion compared to not using hyper-rules, rather than looking

818181

at the actual precision, we believe that the effect of the prob-
lem domain is minimized.
Implementation: We implemented and thoroughly tested
all algorithms, aggregators and interestingness measures stud-
ied in this paper in Ruby. However, we can not guarantee the
absence of implementation errors which may have affected
our evaluation.
Variation in software systems: We evaluated hyper-
rules on two industrial systems and four large open source
systems. These systems vary considerably in size and fre-
quency of transactions (commits), which should provide an
accurate picture of the performance of hyper-rules in various
contexts. However, despite our careful choice, we are likely
not to have captured all variations.
Commits as basis for evolutionary coupling: The
evaluation of this paper is grounded in predictions made
from analysing patterns in change-histories. The transac-
tions that make up the change-histories are however not in
any way guaranteed to be “correct” or “complete”, in the
sense that they represent a coherent unit of work. Non-
related files may be present in the transactions, and related
files may be missing from the transactions. However, the in-
cluded software-systems in our evaluation all (except KM)
use Git for version control. As Git provides developers with
tools for history-rewriting, we do believe that this might
cause more coherent transactions.

10. RELATED WORK
We distinguish related work on aggregating association rules,
clustering and pruning association rules, and on comparing
interestingness measures.
Aggregating Association Rules: To the best of our
knowledge, no other work has investigated the aggregation
of association rules with the goal of combining the evidence
(or interestingness) provided by individual rules.

Massoud et al. address the challenge of mining multi-
dimensional association rules that aim to combine and relate
association rules generated from two or more different sets of
transactions [19]. They do not aggregate rules that combine
evidence for the same conclusion but aim to create aggregate
rules that span the dimensions of all transactions.
Clustering and Pruning Association Rules: Several
authors investigate methods to discover the most informa-
tive or useful rules in a large collection of mined association
rules, for example by clustering rules that convey redun-
dant information, or by pruning non-interesting rules. Thus,
while our method aims to aggregate rules to combine all ex-
isting evidence, this work tries to keep (or only generate) the
“most important” rules. Toivonen et al. present association
rule covers as a method to reduce the number of redundant
rules [26]. Their method first groups rules which shared the
same consequent, and then filters this set by considering
the size of the antecedent in combination with the interest-
ingness measures of the rules. No association rules or inter-
estingness measures are aggregated. Kannan and Bhaskaran
empirically study how such rule clusters are distributed over
different interestingness measures [15]. Zaki introduces the
closed frequent itemset as an alternative association rule
mining technique that only generate non-redundant asso-
ciation rules [29]. The number of redundant rules produced
by the new approach is dramatically smaller than the rule
set from the traditional approach but this is achieved at
generation time, i.e., no association rules or interestingness

measures are aggregated. Baralis et al. investigate an as-
sociation rule mining technique that combines schema con-
straints (i.e., rule constraints) and rule taxonomies to filter
out redundant rules [3]. As with Zaki’s approach, this is
achieved at generation time, and no association rules or in-
terestingness measures are aggregated. Liu et al. introduce
direction setting rules as a method of summarizing the set
of rules for a human user [17]. Essentially, direction setting
rules are simple rules which capture part of the same rela-
tionships also captured in larger rules, i.e., they are more
concise.
Selecting and Comparing Interestingness Measures:
In Table 6, we provide empirical evidence that shows which
aggregator performs best with each interestingness measure.
Several authors have investigated properties of interesting-
ness measures, and addressed how selecting the right mea-
sure for the problem domain in question can affect recom-
mendation accuracy [25, 16, 18, 10]. To apply hyper-rules in
a given problem domain we advise that these works be con-
sulted, to help select an appropriate measure. Then Table 6
can be used to choose the best aggregator for the selected
measure and algorithm.

11. CONCLUDING REMARKS
This paper introduces a novel approach that aggregates mined
association rules forming hyper-rules that combine the evi-
dence brought by each of the constituent rules. We evaluate
the viability of hyper-rule formation in the context of change
recommendation using a large empirical study of four open
source systems as well as two systems from our industry
partners. Based on this study, this paper makes the follow-
ing contributions: (1) We identify an opportunity, missed
by traditional recommendation systems, to increase accu-
racy using the increased evidence that is indicated by having
multiple applicable rules in support of a particular conclu-
sion. (2) We provide a theoretical foundation for rule ag-
gregation using hyper-rules, and present three aggregation
strategies for their interestingness measures (each rooted in
existing work from information retrieval), (3) We empirically
investigate how frequent rule aggregation can be applied in
practice for two different association rule mining algorithms.
(4) We provide empirical evidence that aggregation increases
precision in 30 of the 39 interestingness measures when using
Co-Change, and 32 of the 39 when using Tarmaq. (5) Re-
sults from our empirical study, can be used to select the best
aggregator for use with each interestingness measure.
Directions for Future Work: In the future we would
like to address the following: (1) Investigate the behav-
ior of hyper-rules with additional algorithms in the change-
recommendation domain. (2) Explore the use of hyper-rules
in other domains. (3) Define interestingness measures di-
rectly on hyper-rules, rather than calculating aggregated
measures. (4) Applying pre-filtering techniques such as those
presented in Section 10, which may further improve the vi-
ability of hyper-rules.

References

[1] R. Agrawal, T. Imielinski, and A. Swami. “Mining as-
sociation rules between sets of items in large databases”.
In: ACM SIGMOD International Conference on Man-
agement of Data. ACM, 1993, pp. 207–216.

828282

[2] T. Ball, J. Kim, and H. P. Siy. “If your version con-
trol system could talk”. In: ICSE Workshop on Process
Modelling and Empirical Studies of Software Engineer-
ing. 1997.

[3] E. Baralis et al. “Generalized association rule mining
with constraints”. In: Information Sciences 194 (2012),
pp. 68–84.

[4] D. Beyer and A. Noack. “Clustering Software Arti-
facts Based on Frequent Common Changes”. In: 13th
International Workshop on Program Comprehension
(IWPC). IEEE, 2005, pp. 259–268.

[5] S. Bohner and R. Arnold. Software Change Impact
Analysis. CA, USA: IEEE, 1996.

[6] C. Burges et al. “Learning to rank using gradient de-
scent”. In: Proceedings of the 22nd international con-
ference on Machine learning - ICML ’05. Vol. pages.
New York, New York, USA: ACM Press, 2005, pp. 89–
96.

[7] G. Canfora and L. Cerulo. “Impact Analysis by Min-
ing Software and Change Request Repositories”. In:
11th IEEE International Software Metrics Symposium
(METRICS). IEEE, 2005, pp. 29–37.

[8] S. Eick et al. “Does code decay? Assessing the evidence
from change management data”. In: IEEE Transac-
tions on Software Engineering 27.1 (2001), pp. 1–12.

[9] H. Gall, K. Hajek, and M. Jazayeri. “Detection of log-
ical coupling based on product release history”. In:
IEEE International Conference on Software Mainte-
nance (ICSM). IEEE, 1998, pp. 190–198.

[10] L. Geng and H. J. Hamilton.“Interestingness measures
for data mining”. In: ACM Computing Surveys 38.3
(Sept. 2006).

[11] A. Hassan and R. Holt. “Predicting change propaga-
tion in software systems”. In: 20th IEEE International
Conference on Software Maintenance, 2004. Proceed-
ings. IEEE, 2004, pp. 284–293.

[12] K. Järvelin and J. Kekäläinen. “Cumulated gain-based
evaluation of IR techniques”. In: ACM Transactions on
Information Systems 20.4 (Oct. 2002), pp. 422–446.

[13] M.-A. Jashki, R. Zafarani, and E. Bagheri. “Towards
a more efficient static software change impact analy-
sis method”. In: 8th ACM SIGPLAN-SIGSOFT Work-
shop on Program Analysis for Software Tools and En-
gineering (PASTE). ACM, 2008, pp. 84–90.

[14] R. Kamber, Micheline and Shinghal. “Evaluating the
Interestingness of Characteristic Rules”. In:KDD. 1996,
pp. 263–266.

[15] S. Kannan and R. Bhaskaran.“Association Rule Prun-
ing based on Interestingness Measures with Cluster-
ing”. In: Journal of Computer Science 6.1 (Dec. 2009),
pp. 35–43.

[16] T.-d. B. Le and D. Lo. “Beyond support and con-
fidence: Exploring interestingness measures for rule-
based specification mining”. In: 2015 IEEE 22nd In-
ternational Conference on Software Analysis, Evolu-
tion, and Reengineering (SANER). IEEE, Mar. 2015,
pp. 331–340.

[17] B. Liu, W. Hsu, and Y. Ma.“Pruning and summarizing
the discovered associations”. In: Proceedings of the fifth
ACM SIGKDD international conference on Knowl-
edge discovery and data mining - KDD ’99 (1999),
pp. 125–134.

[18] K. Mcgarry. “A survey of interestingness measures for
knowledge discovery”. In: The Knowledge Engineering
Review 20.01 (2005), p. 39.

[19] R. B. Messaoud et al. “Enhanced mining of associ-
ation rules from data cubes”. In: Proceedings of the
9th ACM international workshop on Data warehous-
ing and OLAP - DOLAP ’06. New York, New York,
USA: ACM Press, 2006, p. 11.

[20] A. Podgurski and L. Clarke. “A formal model of pro-
gram dependences and its implications for software
testing, debugging, and maintenance”. In: IEEE Trans-
actions on Software Engineering 16.9 (1990), pp. 965–
979.

[21] X. Ren et al. “Chianti: a tool for change impact analy-
sis of java programs”. In: ACM SIGPLAN Conference
on Object-oriented Programming, Systems, Languages,
and Applications (OOPSLA). 2004, pp. 432–448.

[22] R. Robbes, D. Pollet, and M. Lanza. “Logical Cou-
pling Based on Fine-Grained Change Information”. In:
Working Conference on Reverse Engineering (WCRE).
IEEE, 2008, pp. 42–46.

[23] T. Rolfsnes et al. “Generalizing the Analysis of Evo-
lutionary Coupling for Software Change Impact Anal-
ysis”. In: 23rd IEEE International Conference on Soft-
ware Analysis, Evolution, and Reengineering (SANER).
2016, p. 12.

[24] R. Srikant, Q. Vu, and R. Agrawal. “Mining Associ-
ation Rules with Item Constraints”. In: International
Conference on Knowledge Discovery and Data Mining
(KDD). AASI, 1997, pp. 67–73.

[25] P.-N. Tan, V. Kumar, and J. Srivastava. “Selecting the
right objective measure for association analysis”. In:
Information Systems 29.4 (June 2004), pp. 293–313.

[26] H. Toivonen et al. “Pruning and Grouping Discovered
Association Rules”. In: Workshop on Statistics, Ma-
chine Learning, and Knowledge Discovery in Databases.
Heraklion, Crete, Greece, 1995, pp. 47–52.

[27] A. R. Yazdanshenas and L. Moonen. “Crossing the
boundaries while analyzing heterogeneous component-
based software systems”. In: IEEE International Con-
ference on Software Maintenance (ICSM). ICSM ’11.
Washington, DC, USA: IEEE, Sept. 2011, pp. 193–
202.

[28] A. Ying et al. “Predicting source code changes by min-
ing change history”. In: IEEE Transactions on Soft-
ware Engineering 30.9 (2004), pp. 574–586.

[29] M. J. Zaki.“Generating non-redundant association rules”.
In: Proceedings of the sixth ACM SIGKDD interna-
tional conference on Knowledge discovery and data min-
ing - KDD ’00. New York, New York, USA: ACM
Press, 2000, pp. 34–43.

838383

[30] M. B. Zanjani, G. Swartzendruber, and H. Kagdi. “Im-
pact analysis of change requests on source code based
on interaction and commit histories”. In:Working Con-
ference on Mining Software Repositories (MSR) (2014),
pp. 162–171.

[31] T. Zimmermann et al. “Mining version histories to
guide software changes”. In: IEEE Transactions on
Software Engineering 31.6 (2005), pp. 429–445.

848484

