
How much delay is there really in current games?

Kjetil Raaen
Westerdals — Oslo School of Arts,

Communication and Technology
1325 Lysaker, Norway

Simula Research Laboratory
University of Oslo

raakje@westerdals.no

Andreas Petlund
Simula Research Laboratory

1325 Lysaker, Norway
apetlund@simula.no

ABSTRACT
All computer games present some delay between human in-
put and results being displayed on the screen, even when no
networking is involved. A well-balanced discussion of delay-
tolerance levels in computer games requires an understand-
ing of how much delay is added locally, as well as in the
network. This demonstration uses a typical gaming setup
wired to an oscilloscope to show how long the total, local
delay is. Participants may also bring their own computers
and games so they can measure delays in the games or other
software.

Results show that local delays constitute such a large
share of the total delay that that it should be considered
when studying the effects of delay in games, often far ex-
ceeding the network delay evaluated.

1. INTRODUCTION
Researchers have worked on how delay influences players

in networked games for some years now [1, 3, 5, 8, 10, 14].
This work has traditionally focused on pure network delay
in multiplayer games. In these games, latency is somewhat
alleviated by locally echoing user actions without waiting
for server confirmation, as well as dead reckoning of other
players postitions [6]. Recently there has been a trend to-
wards studying delays in cloud gaming [11,13]. These delays
are somewhat different, because they occur directly between
the user’s input and the observed output. No techniques are
currently implemented to hide this latency.

What is lacking from from all these publications is a con-
sideration of the local system delay. All of these studies re-
port the network latency. The network latency studied may
be from actual network conditions or artificially induced.
What is missing from the latency analysis are reports on how
much local delay is present in the test setup. Discussions on
the influence of local latency for the player tolerance and
experience is also missing. Such local latency can constitute
a large part of the total latency and vary considerably de-
pending on the hardware used and software configurations.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for
third-party components of this work must be honored. For all other uses,
contact the Owner/Author.

http://dx.doi.org/10.1145/2713168.2713188
MMSys ’15, Mar 18-20, 2015, Portland, OR, USA
Copyright 2015 ACM 978-1-4503-3351-1/15/03 ...$15.00.

Table 1: Some monitors and their response time.
Brand Type Response time
Apple Thunderbolt Display 12 ms [2]
Dell UltraSharp 24 8 ms [12]
Asus ROG SWIFT PG278Q 1 ms [4]

Therefore, knowing what share the network and local delays
constitute is important for a proper analysis of the effect of
one of the components on user experience.

The goal of this work is to investigate and demonstrate
how much total system lag is present in current computer
systems used for gaming. We will allow participants to mea-
sure delays in their own hardware and software. Further, we
propose a method for measuring such delay in experiments
seeking to quantify individual components of gaming delay.
Lastly, we will compare this delay to a similar setup using a
cloud gaming service instead of local rendering.

2. IMPORTANT COMPONENTS IN LOCAL
DELAY

Even in a local game with no networking, there is poten-
tial for delays at levels perceptible to humans, or affecting
human task performance. This section discusses the parts
of the pipeline that add most to the response delay in the
local system. Components in the pipeline from user input
to screen respones are to a large degree black boxes; docu-
mentation about how they work is often lacking. Thus, the
only way to evaluate these delays is by measuring.

2.1 Monitors
Screens used to display output add some delay, which can

be divided into two parts.

2.1.1 Monitor update
LCD screens receive and display updated images at a fixed

rate. This rate is termed screen refresh rate. Most mod-
ern screens update at 60 frames per second (FPS), or every
16.7 ms. Some screens specialised for gaming or other re-
sponse critical applications can update much faster.

2.1.2 Monitor response time
Monitors vary wildly in response time, that is the time

they take from one shade of grey to another, from 1 ms
for screens designed for gaming, to 12 ms for typical office
screens, see table 1 for some examples. The exact procedure
and color values for this test are not standardised, and it is

Frame&1& Frame&2& Frame&3&

Event&triggered& Results&rendering& Results&to&screen&

Figure 1: Timeline for events with double buffering.

reasonable to assume that manufacturers choose the condi-
tions most favorable to their product.

2.2 Frame buffers
A frame buffer is memory used for holding a rendered

frame about to be displayed on the monitor. Modern games
use at least two frame buffers. To avoid showing unfinished
frames on the screen, drawing happens in one buffer, while
the other is being displayed. This practice is termed double
buffering. Further, to avoid showing parts of two different
buffers, it is common to wait for the next screen refresh be-
fore swapping. The terms vertical synchronization or vsynch
are used, because historically the swap was performed when
the electron beam was returned to the start of the frame, a
period of time called the vertical blanking interval.

When double buffering is used, rendering follows the se-
quence: An event from an input device is registered during
frame N, frame N+1 contains the result, and at the time of
frame N+2 the result is sent to screen, as shown in figure 1.
This gives a minimum of 1 full frame time from input event
to result on screen. At 60 FPS this adds up to a total of 17
- 33 ms delay. Many games have a target framerate of only
30 FPS. At this rate, the delay from screen refresh and frame
buffer pipeline is 33 - 67 ms. Further, not all hardware is
capable of keeping up with the target framerate at all times.
Slow hardware will lead to significantly longer delays. An in-
creased number of frame buffers in the pipeline will increase
this delay, because more steps are added between rendering
and displaying data. High system load from the game itself
or external tasks can lead to lower frame-rate, and thus add
to this number.

2.3 Input device latency
The best gaming equipment has tailor-made drivers that

have been tweaked for low latency performance. A good
gaming mouse may add ∼2 ms [15] to the latency. Devices
that are not made for gaming may add more.

3. DEMO SETUP
Measuring delays between input and output accurately re-

quires a purpose-built setup. Previous, informal work as de-
scribed in section 5 measured delay by filming the screen and
a button with a high-speed camera while pushing the button
repeatedly. This approach has some limitations. First, it is
limited to the capture rate of the camera. Secondly, it is
difficult to judge exactly when the button was pushed, and
lastly it requires tedious manual work to analyse the videos.

3.1 Exact measurements
To get more exact results this demonstration will use an

oscilloscope to measure the timing difference, see figure 2.
The left most button is connected to the oscilloscope using

Figure 2: Sketch of demo setup.

Figure 3: Capture of trigger event. Yellow line rep-
resent output from the mouse, blue line represents
output from the photosensor. Both are active low.
The difference in time between the two flanks are
shown in green in the bottom-left corner of the os-
cilloscope screen.

an additional wire. A photosensor is held on the screen, and
gives a signal when something bright appear. These signals
are fed to the two channels of the oscilloscope. The partici-
pants find a dark place in the game. Then can they trigger
an in-game effect that lights up the screen fast. Firing a
weapon will in most games achieve this. Participants can
thus see the delay between the two evens with high accu-
racy, by comparing the flank representing the mouse click
(yellow on figure 3) with the flank representing change in
light from the screen (blue on firgure 3).

Our setup is independent of the hardware and software
used to play the game. This allows testing real, commercial
games, without modifying software or hardware. Results
will represent the sum total of all delays. Delay from the
input device, the game software, graphics card drivers, the
graphics card itself or the screen are all added up. Investi-
gating how much delay each part of the test system introduce
requires modifying the test system itself locking the demo
setup to one pre-modified testbed rig. We want participants
to be able to test the delay of computers they bring to the
setup to document the differences shown by a wide range of
setups.

Table 2: Results from experiments.
Experiment Avg. Min. Max.
Rectangle, vsync on 82 ms 73 ms 102 ms
Rectangle, vsync off 27 ms 21 ms 41 ms
UT3, default, vsync off 58 ms 52 ms 66 ms
UT3, default, vsync on 95 ms 79 ms 102 ms
UT3, optimised, vsync off 33 ms 23 ms 38 ms

3.2 Cloud games
To test cloud games, we will present exactly the same

setup, but participants play the game remotely through a
commercial cloud gaming service. In parallel we will also
show the network latency to the cloud gaming provider in
realtime, so participants can see how large proportion of the
delay is due to network latency. This part is contingent on
access to cloud gaming services at the venue of the demon-
stration.

4. PRELIMINARY RESULTS
To evaluate how well this setup works, and highlight how

the results can be useful, we ran some preliminary exper-
iments. For each condition we repeated the test 10 times,
reporting minimum, maximum and average results. We used
only one system for the purposes of this demo, planning a
more exhaustive analysis of a wide range of systems in future
work. This system was a MacBook Pro (Retina, 15-inch,
Early 2013)1, running OSX for the rectangle demo and Win-
dows 7 for the game.

First, we ran a simple program that renders a rectan-
gle in OpenGL in response to mouse-clicks. We compare
this program running with and without vertical synchronisa-
tion. With vertical synchronisation it ran at about 60 FPS,
without vsync the framerate fluctuated between 400 and
700 FPS.

Next we ran the game Unreal Tournament 3 (UT3) and
timed a basic pistol shot, an event that is supposed to be
immediate. For this game we tested using three different
conditions. Firstly, we tested using default settings. These
had vsync off and a resolution of 1024 by 768. At these set-
tings the game ran at about 60 FPS. Then we simply turned
on vertical synchronisation and ran the experiment again,
now the framerate was stable at exactly 60 FPS. Lastly we
ran without vsync and with all settings optimised for faster
framerate. These kind of tweaks are popular with profes-
sional gamers.

As we see in table 2, response time is highly variable,
even in the same game running on the same setup. Average
delays in UT3 vary from 33 ms to 95 ms depending on the
settings.

5. RELATED WORK
We have not been able to find any references to scientific

publications measuring the local system latency for games.
The community for hardware component benchmarking and
game optimisation, however, have touched on the topic on
occasion.

Rendering Pipeline [15] finds values of between 76 ms and
112 ms for the game Half Life 2 using realistic settings.

12.4 GHz Intel Core i7, 16 GB 1600 MHz DDR3, NVIDIA
GeForce GT 650M

Blur Busters, test multiple games [7]. They get results of
72–77 ms for Battlefield 4, 52–59 ms for Crysis 3 and 22 ms
to 40 ms for Counter Strike: Global Offense.

These numbers indicate that different games handle input
in very different ways. Also, we know that network delays as
low as 50 ms affects player performance in some games [9]. It
is therefore important to investigate how player performance
is affected by local delays of similar magnitudes.

6. CONCLUSIONS
When evaluating the effect of latency on the perceived

performance of game systems, it is important to consider
that the network delay is added to the delay of the local
system. Preliminary results from this demo show delays of
up to 100 ms. This shows that not only is the local delay at
the same order of magnitude as network delays, it might in
many cases be larger.

When discussing the tolerance levels for latency in net-
worked games, both cloud gaming and traditional games,
care should be taken to know the local delay as it may vary
greatly between platforms depending on both hardware and
software, in addition to software configuration.

This local latency may influence the measured tolerance
levels in QoE experiments and bias the numbers reported
as tolerance levels. It is therefore important that studies
of the effects of other types of delay measure the inherent
system delay when presenting numbers on how delays affect
players. We propose using the setup presented in this demo
to calibrate such experiments. Without such measurements
it is very difficult to compare results from different studies
on response time requirements.

In the future, we would like to investigate an array of
different games and hardware under varied conditions. This
will increase our understanding of delays in local gaming
systems, and could likely be important in related fields such
as Human-Computer Interaction (HCI).

Acknowledgements
The work in this paper was part-funded by the European
Community under its Seventh Framework Programme through
the Reducing Internet Transport Latency (RITE) project
(ICT-317700) and part funded by the Research Council of
Norway under the ”TimeIn” project (No: 213265). The
views expressed are solely those of the author(s).

7. REFERENCES
[1] Amin, R., Jackson, F., Gilbert, J., Martin, J.,

and Shaw, T. Assessing the Impact of Latency and
Jitter on the Perceived Quality of Call of Duty
Modern Warfare 2. In Human-Computer Interaction.
Users and Contexts of Use, M. Kurosu, Ed., vol. 8006
of Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2013, pp. 97–106.

[2] Apple. Apple Thunderbolt Display.

[3] Armitage, G. An experimental estimation of latency
sensitivity in multiplayer Quake 3. In The 11th IEEE
International Conference on Networks 2003
ICON2003 (2003), IEEE, pp. 137–141.

[4] Asus. Asus ROG SWIFT PG278Q.

[5] Beigbeder, T., Coughlan, R., Lusher, C.,
Plunkett, J., Agu, E., and Claypool, M. The

effects of loss and latency on user performance in
unreal tournament 2003. In Proceedings of 3rd ACM
SIGCOMM workshop on Network and system support
for games (New York, NY, USA, 2004), NetGames
’04, ACM, pp. 144–151.

[6] Bernier, Y. Latency compensating methods in
client/server in-game protocol design and
optimization. Game Developers Conference 98033, 425
(2001).

[7] BlurBusters. Preview of NVIDIA G-SYNC.

[8] Claypool, M. The effect of latency on user
performance in Real-Time Strategy games. Computer
Networks 49, 1 (Sept. 2005), 52–70.

[9] Claypool, M., and Claypool, K. Latency and
player interaction in online games. 40–45.

[10] Claypool, M., and Claypool, K. Latency Can Kill
: Precision and Deadline in Online Games. Proceedings
of the First ACM Multimedia Systems Conference

(2010).

[11] Claypool, M., and Finkel, D. The Effects of
Latency on Player Performance in Cloud-based
Games. In NetGames 2014(in print) (2014).

[12] Dell. Dell UltraSharp 24 Ultra HD Monitor.

[13] Jarschel, M., Schlosser, D., Scheuring, S., and
Hoß feld, T. An Evaluation of QoE in Cloud
Gaming Based on Subjective Tests. 2011 Fifth
International Conference on Innovative Mobile and
Internet Services in Ubiquitous Computing (June
2011), 330–335.

[14] Li, S., Chen, C., and Li, L. Evaluating the Latency
of Clients by Player Behaviors in Client-Server Based
Network Games. 2008 3rd International Conference on
Innovative Computing Information and Control
(2008), 375–375.

[15] Measuring Input Latency. Measuring Input
Latency.

