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Abstract 

Context: Cyber-Physical Systems (CPSs), when deployed for operation, are inherently prone to uncertainty. Considering their 
applications in critical domains (e.g., healthcare), it is important that such CPSs are tested sufficiently, with the explicit 
consideration of uncertainty. Model-based testing (MBT) involves creating test ready models capturing the expected behavior of 
a CPS and its operating environment. These test ready models are then used for generating executable test cases. It is, 
therefore, necessary to develop methods that can continuously evolve, based on real operational data collected during the 
operation of CPSs, test ready models and uncertainty captured in them, all together termed as Belief Test Ready Models (BMs) 

Objective: Our objective is to propose a model evolution framework that can interactively improve the quality of BMs, based on 
operational data. Such BMs are developed by one or more test modelers (belief agents) with their assumptions about the 
expected behavior of a CPS, its expected physical environment, and potential future deployments. Thus, these models explicitly 
contain subjective uncertainty of the test modelers. 

Method: We propose a framework (named as UncerTolve) for interactively evolving BMs (specified with extended UML 
notations) of CPSs with subjective uncertainty developed by test modelers. The key inputs of UncerTolve include initial BMs of 
CPSs with known subjective uncertainty and real data collected from the operation of CPSs. UncerTolve has three key features: 
1) Validating the syntactic correctness and conformance of BMs against real operational data via model execution, 2) Evolving 
objective uncertainty measurements of BMs via model execution, and 3) Evolving state invariants (modeling test oracles) and 
guards of transitions (modeling constraints for test data generation) of BMs with a machine learning technique.  

Results: As a proof-of-concept, we evaluated UncerTolve with one industrial CPS case study, i.e., GeoSports from the 
healthcare domain. Using UncerTolve, we managed to evolve 51% of belief elements, 18% of states, and 21% of transitions as 
compared to the initial BM developed in an industrial setting.  

Conclusion: UncerTolve can successfully evolve model elements of the initial BM, in addition to objective uncertainty 
measurements using real operational data. The evolved model can be used to generate additional test cases covering evolved 
model elements and objective uncertainty. These additional test cases can be used to test the current and future deployments 
of a CPS to ensure that it will handle uncertainty gracefully during its operations.       

Keywords— Uncertainty; Belief Model; Belief Test Ready Model; Model Evolution; Model-Based Testing.  

——————————      —————————— 

1 INTRODUCTION 
Handling the inherent uncertainty in Cyber-Physical Systems (CPSs) is a well-known challenge, which 

requires novel approaches for understanding, discovering and modeling uncertainty, and verifying 

and validating CPSs under uncertainty [5-8]. Typically, a CPS is developed by integrating various 

physical units (e.g., devices), which are usually black-boxes (with or without the API access) with 

known and uncertain assumptions on its physical operating environments and deployments. Thus, 

when testing a CPS, not only assumptions are made about the internal behavior of the CPS, but also its 

operating environments and deployments. More specifically, when performing model-based testing 

(MBT), the expected behavior of a CPS is modeled with the explicit consideration of uncertainty, 

including uncertain behaviors of its physical environments and uncertain deployments (the focus of 
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our previous work [9]). Such models are typically created by one or more test modelers (belief 

agent(s)) based on his/her/their assumptions about a CPS, its operating environments, and 

deployments and thus the captured uncertainty is subjective to the test modeler(s).  

Naturally, these test ready models, named as Belief Test Ready Models (BMs) in the rest of the paper, 

can be continuously evolved based on real operational data (which introduce objective uncertainty) of 

the current deployment of the CPS such that the evolved models can be used to generate new test 

cases to test future deployments of the CPS with both captured subjective uncertainty and evolved 

objective uncertainty.    

1.1 Challenges and Objectives 

Testing is mainly concerned with sending stimulus (via e.g., test APIs) with test data to a CPS and 

checking the correctness of changes of corresponding states (e.g., test oracles). In the uncertainty-wise 

MBT context, BMs are the key artifacts for generating executable test cases. Therefore, the quality of 

BMs is critical for ensuring the quality of generated test cases and consequently the quality of the CPS 

under various deployments. Hence, the overall scientific challenge is how to ensure the quality of BMs 

such that they are ready for being used to generate test cases. It is challenging because in the context of 

uncertainty-wise MBT for CPSs such BMs are complex (e.g., specified in multiple UML state machines) 

and subjective uncertainty (reflecting test modelers’ belief and specified as part of BMs) need to be 

continuously validated with evidence (e.g., real operational data) continuously collected from existing 

deployments of the CPS.  

Correspondingly, our overall objective is to address this challenge by proposing a model evolution 

framework, called UncerTolve, for evolving BMs, with real operational data collected from real CPS 

applications. This is feasible, as in the context of continuously deploying a CPS for various 

applications (details in Section 1.2), real operational data can be collected from already deployed 

applications of the CPS. Collected real operational data are valuable resources to enhance the initial 

BMs from the perspective of the correctness and completeness, including uncertainty information, test 

oracles, and test data specifications. Moreover, such a process can be continuous in the sense that as 

long as there is new operational data available, the BMs can be evolved to accommodate information 

contained in the data. Evolved BMs will be therefore more complete and correct. Subsequently, testing 

the CPS for future deployments, based on the evolved BMs, will be much better supported. We 

provide a clear correspondence between the sub-challenges and sub-objectives in Table 1. 
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1.2 Context, Scope and Overview 

In the context of an EU project [10], we are developing a model-based and search-based framework for 

testing CPSs under known and unknown uncertainties to assure that CPSs deal with uncertainty during 

their operation and do not harm anyone or anything. Evolving BMs in a systematic manner for 

preparing them for enabling the generation of executable test cases is one of the key components of the 

model-based and search-based framework.  

The overall context is presented in Figure 1, where UncerTum [9] is a UML-based, uncertainty 

modeling framework for constructing BMs, and UncerTest [11] is a model-based and search based test 

case generation and minimization framework. UncerTolve (with its key features, inputs and outputs 

indicated as white boxes in Figure 1) is the framework we propose in the paper for evolving BMs 

developed with UncerTum. Evolved BMs are input for UncerTest to generate executable test cases.  

A CPS may be deployed to more than one applications of the same or different application domains. 

For example, as discussed in [12], in the avionics industry, multiple system instances (i.e., multiple 

deployments) of the same CPS type can be deployed to achieve a common goal. In the context of our 

project, the industrial CPS of GeoSports1 can be deployed for a variety of sports including Bandy and 

Ice Hockey. Each application corresponds to a unique deployment, denoted as D1, D2, ..Dn. UncerTolve 

evolves BMs developed for a CPS with real operational data collected from available deployments of 

1 http://www.u-test.eu/use-cases/ 

Table 1. Sub-challenges and Sub-objectives of UncerTolve 

Sub-challenges Sub-objectives 
How to ensure the syntactic and semantic 
correctness of BMs? 

Model Validation: Validate and update (with proposed 
heuristics) BMs with real operational data, via model execution. 

How to ensure the quality of uncertainty 
information captured in BMs? 

Derivation of Objective Uncertainty Measurements: Derive 
objective uncertainty measurements from real operational data 
and enhance BMs by integrating them with subjective 
uncertainty measurements already specified in the BMs. 

How to ensure the quality of test oracles 
(represented as state invariants) and test 
data specifications (represented as guard 
conditions) of BMs? 

Inference of Test Oracles/Test Data Specifications: Abstract 
invariants (both related to test oracles and test data 
specifications) from real operational data, by relying on existing 
dynamic invariant inference techniques.  

How to achieve the above sub-challenges 
in an integrated manner? 

Methodologies/Heuristics/Process: Define methodologies and 
heuristics on how to update BMs. Suggest a practical process 
that integrates model validation, objective uncertainty 
measurement derivation, and test oracles and test data 
specification inferences, based on real operational data and 
model execution. 
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the CPS. Test cases generated using UncerTest from the BM evolved with UncerTolve can be used to test 

both existing deployments (D1, D2, …Dn) and new ones (Figure 1). Note that the process is naturally 

iterative as the process of introducing new deployments, collecting real operational data, based on 

which the BM is updated, testing new deployments based on the evolved BMs, are all iterative.  

 
UncerTolve consists of three activities (i.e., Modeling, Model Execution, and Invariant Inference) and 

four components (denoted with different colors in the UncerTolve box), as shown in Figure 1.  

The kickoff activity of UncerTolve is about modeling BM. We develop the initial BM for a CPS, 

specified with the Unified Modeling Language (UML) [13]. Such a UML model includes composite 

structure diagrams, class diagrams, constraints specified in the Object Constraint Language (OCL) 

[14], and state machines capturing testing interfaces and behaviors of the application, infrastructure, and 

integration levels of the CPS [9, 15]. UncerTolve relies on UncerTum [9] to explicitly model known and 

subjective uncertainties specified by modelers (i.e., belief agents [15]), as part of the initial BM. 

UncerTum consists of the UML Uncertainty Profile (UUP) [9] and a set of model libraries and utilizes 

the UML Testing Profile (UTP) V.2 [16]. To enable model execution, as part of the UncerTolve 

framework, in this paper, we also propose a modeling methodology (which extends UncerTum) 

particularly for the purpose of developing executable BMs.   

The second activity is to execute BMs with real operational data. This activity involves two 

components: validation of BM and derivation of objective uncertainty measurements. The initial BM 

created in the first activity is executed to validate their syntactic correctness and conformance against 

real operational data. Missing or incorrect model elements might be identified during the model 

execution process and therefore the initial BM can be updated accordingly, based on a set of heuristics 

newly defined as part of UncerTolve. Through model execution with real operational data, objective 

 

Figure 1. The Overall Context and Scope of UncerTolve 
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uncertainty measurements can also be obtained. During this activity, existing model elements in the 

initial BM can be removed or modified, and new ones can be added. Obtained objective uncertainty 

measurements can also be appended to the BM. 

In the third activity is about inferring test oracles (i.e., state invariants) and test data specifications 

(guard conditions) with real operational data using dynamic invariant inference techniques [4, 17, 18]. 

In this paper, we apply one solution, Daikon [4], which produces a set of invariants (corresponding to 

test oracles and test data specifications) with an implemented machine learning technique. These 

invariants are then merged with OCL constraints specified as part of the BM, based on newly defined 

heuristics, which therefore leads to another round of the updating of the BM, i.e., restructuring test 

oracles and test data specifications. Numerous techniques (e.g., aka automata learning [19], data 

mining [20, 21]) have been proposed in the literature in the field of automated inferences of various 

types of information (e.g., properties, protocols, interfaces, specifications) from programs. Although, 

our work relies on an existing work, i.e., Daikon, our work differentiates itself from the existing works 

in terms of the core challenge it tackles, i.e., evolving BMs with both subjective and objective 

uncertainty to eventually support MBT of CPSs under known and evolved uncertainties discovered 

based on real operational data. 

Note that the modeling activity of UncerTolve is the foundation of the other two activities. The other 

two activities are independent to each other, although we recommend to apply them sequentially as 

doing so will improve the overall quality of evolved BMs and this is also how our industrial case study 

was conducted. In summary, theoretically, the output of each activity can be used as the input to 

UncerTest; however, sequentially applying model execution and invariant inference are strongly 

recommended in practice for ensuring the quality of delivered BMs. This is especially important when 

BMs are complex, which is quite common in industrial settings.  

1.3 Contributions 

UncerTolve evolves BMs specified with UncerTum [9], which are essentially stereotyped UML class 

diagrams, composite structure diagrams, and state machines, and therefore contain richer information 

than a typical specification representation (e.g., Finite State Machines (FSMs)) that can be inferred with 

existing techniques (e.g., [19, 22]).  

Distinguishing itself from existing works, UncerTolve takes into account both subjective uncertainty 

information specified as belief elements of the BM and objective uncertainty information derived from 

real operational data and evolves them as part of the integrated BM evolving process.  

Similar to some existing dynamic inference approaches (e.g., [1-3]), UncerTolve uses a machine 

learning technique implemented in Daikon to dynamically infer state invariants (modeling test 
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oracles) and guard conditions (modeling test data specification) of UML state machines. However, 

UncerTolve relies on real operational data collected from real applications of CPSs, instead of execution 

traces of programs. Note that UncerTolve aims to evolve BMs developed for CPSs and therefore 

existing approaches relying on execution traces of programs cannot be applied or at least cannot be 

directly applied without adaptation for the CPS context.  

In conclusion, we summarize the key contributions of UncerTolve as below: 

• UncerTolve has a modeling methodology for creating executable BMs with real operational 

data to support validation of the syntactic correctness of a BM modeled using UncerTum and 

checking conformance of the BM with the real operational data; 

• UncerTolve defines a systematic and automated process for validating a BM with both 

subjective and objective uncertainty and defines a set of heuristic rules (named as tolveR-E) 

to guide test modeler(s) to update the BM based on validation results;  

• UncerTolve is equipped with an automated solution for calculating and abstracting objective 

uncertainty measurements from the real operational data and the obtained measurements 

are appended to the BM; 

• UncerTolve applies a machine learning technique to infer test oracles (state invariants in UML 

state machines) and test data specifications (guard conditions in UML state machines); 

• UncerTolve defines a set of heuristic rules to evolve a BM with inferred state invariants, 

guard conditions and objective/subjective uncertainty measurements; 

• UncerTolve, as a proof-of-concept, is evaluated with one industrial CPS, i.e., GeoSports from 

the healthcare domain. 

1.4 Results and the Structure of the Paper 

With UncerTolve, we managed to evolve 51% of belief elements, 18% of states, and 21% of transitions as 

compared to the initial BM. Thus, we conclude that UncerTolve is successful in evolving BMs with 

subjective and objective uncertainty information. 

The rest of the paper is organized as follows: Section 2 discusses the related work. Section 3 

represents the background. Section 4 represents terminology and running example. Section 5 

represents the overall workflow of UncerTolve. Section 6 represents the methodology of UncerTolve. 

Section 7 presents the evaluation and discussion, whereas we conclude the paper in Section 8. 

2 RELATED WORK 
In this section, we compare UncerTolve with existing works in Section 2.1, whereas comparison with 

our own previous related works in Section 2.2. 
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2.1 Comparison with Existing Works 

Several works (e.g., [4, 23-31]) have been published in the literature that infer, e.g., FSMs, their 

extensions, Live Sequence Charts (LSCs), and properties of software applications from execution 

traces. Most of these works rely on Daikon [4] to dynamically infer invariants from execution traces. 

The work reported in [23] infers deterministic FSMs of black box components from their execution 

information to understand their behavior in the absence of a formal specification. The inferred FSMs 

are further generalized into intentional behavior models by synthesizing graph transformation rules. 

The process involves identifying invariant properties in a similar way as Daikon. The approach was 

evaluated with three different sets of classes implementing data abstractions such as Queue and 

MinSet. 

An empirical study is reported in [24] to evaluate four strategies of inferring FSMs: 1) traces-only, 2) 

invariants-only, 3) invariant-enhanced-traces, i.e., inferring models from execution traces followed by 

enhancing them with invariants), and 4) trace-enhanced-invariants, i.e., inferring models from 

invariants followed by enhancing them with execution traces). Nine open-source libraries were used to 

compare the four strategies based on the quality of the resultant FSMs. The second and third strategies 

were evaluated to be the best ones.   

Lo et al. [25] proposed an approach with a tool to enhance the precision of mining FSMs from code 

and traces by inferring temporal properties and incrementally merging equivalent states. Similarly, 

Walkinshaw and Bogdanov [26] proposed an approach to allow additional inference of state machines, 

based on temporal logic formulas and an extra capability to introduce new formulas during the 

inference process. The proposed approach was evaluated with two software applications. Gabel and 

Du [32] presented a general specification mining framework (Javert) for learning complex temporal 

properties (specified as specification patterns in FSMs) from execution traces.  

Krka et al. [18] proposed an automated approach to infer object-level FSMs from execution traces 

and program invariants. First, it derives an FSM that captures legal invocation sequences of an object’s 

public interfaces based on inferred data-value invariants. Second, it uses collected dynamic invocation 

traces to refine the invariant-based FSM to an object-level FSM.  

Tonella et al [27] [28] proposed an approach to infer FSMs for supporting MBT based on a 

combination of clustering, invariant inference and genetic algorithm (GA). GA was used to optimize 

the quality attributes of inferred FSMs. The approach was evaluated with a small e-commerce 

application.  

Walkinshaw and Taylor [33] proposed an approach to infer deterministic Extended FSMs (EFSMs) 

with WEKA [34] and Daikon and evaluated the approach with five Java and Erlang programs.  

An algorithm is proposed in [26] to extract FSMs with parameters (FSAMs) from interaction traces: 
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sequences of method invocations. FSAMs put constraints on the values of parameters. The algorithm 

has three sequential steps: merging similar traces, deriving constraints with Daikon, and merging 

equivalent states. The Builder design pattern was used to evaluate the proposed approach.  

In [29], an approach was proposed to infer communicating FSMs (CFSMs) from execution traces of 

concurrent programs that has three steps: 1) mining temporal properties (invariants), 2) creating an 

initial CFSM model, and 3) refining the CFSM model. The proposed approach was evaluated with 

three networked systems. The authors of [31] proposed an approach to infer resource-aware FSMs 

from execution logs of the software application by following similar steps. The proposed approach 

was evaluated with a case study on the TCP protocol. 

Berg et al. [30] proposed a way to adapt regular inferences of FSMs from observations of component 

behaviors to construct models of communication protocol entities. The challenge that the authors tried 

to tackle is to infer state machines where messages have arbitrary parameters; however, it only 

handles Boolean parameters. Later on, Berg et al. [19] also made an effort to infer state machines with 

an infinite state space. First, the proposed approach infers finite-state Mealy machines by observing 

the behavior of a communication protocol from a small domain. Second, it transforms them into 

infinite-state Mealy machines by folding the inferred finite-state Mealy machines into compact 

symbolic models.  

Lo et al. [20] presented an approach to mine specifications as restricted LSCs from execution traces 

that are transformed into UML sequence diagrams with a modal profile applied. Later on, Lo and 

Maoz [21] made an effort to integrate the value-based specification mining approach of Daikon with a 

sequence-based approach to mine specifications as LSCs. A scenario-based slicing technique was 

applied to obtain sliced traces. Value-based invariants mining is then applied to both on the original 

traces and the sliced traces to identify scenario-specific invariants. Four software applications were 

used to evaluate the proposed approach.  

Beschastnikh et al. [35] proposed an automated approach to infer invariant constrained models from 

system execution logs, by intentionally reducing the involvement of developers. First, the approach 

mines temporal invariants from logs and generates trace models, from which it generates initial 

models (in the form an authors-defined, edge and node style graphical representation). These initial 

models are then refined and coarsened to explore the space of models.  

Raz et al. [36] proposed a way to infer invariants based on the observations of the behavior of 

dynamic data feeds (i.e., a time-ordered sequence of observations) to detect semantic anomalies in 

online data sources. The approach relies on an augmented Daikon and Mean (i.e., a statistical method 

for estimating a confidence level for the mean of a distribution). The approach was evaluated with 

real-world data. In [37], the authors proposed a heuristics based algorithm to scale up dynamic 
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inferences of properties/invariants of software applications from execution traces. The approach was 

evaluated on JBoss and the Windows kernel. Hangal and Lam [38] proposed an approach (similar to 

Daikon) to detect program invariants from program executions. It also reports detected dynamic 

invariant violations. 

The work reported in this paper builds on an existing work, i.e., Daikon to infer invariants based on 

execution information. However, in our case, real operational data was used from real applications of 

CPSs. To compare with these related works, we distinguish UncerTolve from the following four 

aspects. First, most of the related work directly take programs as input to infer, e.g., specifications and 

API. UncerTolve, however, takes test ready UML models together with explicitly captured subjective 

uncertainty as input and evolve them based on model execution using real operational data, based on 

dynamic inference with Daikon. Second, UncerTolve aims to handle CPSs, not just programs. This 

means that we not only evolve models of applications but also infrastructures and their interactions. 

Third, UncerTolve evolves belief models including discovering previously unknown belief elements (in 

stereotypes), states, and transitions. Fourth, the ultimate objective of UncerTolve is to facilitate MBT of 

CPSs under known and unknown uncertainty, instead of program comprehension and bug detection 

like most of the related works do.  

2.2 Comparison with Our Previous Works 

To understand uncertainty in general, in our previous work [15], we developed a generic conceptual 

model called U-Model. Our aim was to precisely define uncertainty and its associated concepts for 

CPSs. The U-Model was implemented in two ways: 1) As an extension of an existing restricted use case 

specification language (named as RUCM) [35], to specific uncertainty in use case specifications called 

as U-RUCM [39], 2) Implementation of U-Model as a UML profile—the UML Uncertainty Profile 

(UUP) to enable MBT of CPSs under uncertainty. UUP together with other related profiles and model 

libraries were implemented as a modeling framework—UncerTum [9]. With UncerTum, test modelers 

can create BMs with explicit consideration of subjective uncertainty. As shown in Figure 1, BMs created 

with UncerTum [9] are the key inputs of UncerTolve—the key contribution of this paper. UncerTum only 

focuses on creating BMs for test case generation and cannot be used to further enhance BMs into 

executable ones such that these models can be validated with real operational data. In the context of 

UncerTolve, we propose an extension to UncerTum for converting BMs developed with UncerTum into 

executable ones.  

In [11], we reported UncerTest [11], an uncertainty-wise testing framework. UncerTest implements 

various uncertainty-wise test case generation and minimization strategies that can be used to generate 

test cases from BMs developed with UncerTum [9]. UncerTest [11] can be used to generate test cases 
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from BMs evolved with UncerTolve to test CPSs. However, we may need to define additional test 

strategies in UncerTest [11] to focus specifically on the evolved parts of the evolved models. We plan to 

implement these test strategies in our future work.  

3 BACKGROUND 
In this section, we present the background that is necessary to understand the rest of the paper. In 

Section 3.1, we define a CPS at a generic level, along with three logical levels, at which uncertainty 

may occur. In Section 3.2, we introduce UTP, which is one of the key profiles applied to BMs to enable 

MBT. Section 3.3 presents U-Model, a conceptual model defining uncertainty and its associated 

concepts. Section 3.4 introduces UncerTum, an uncertainty-wise modeling framework to create BMs of 

CPSs with subjective uncertainty, i.e., the key input of UncerTolve. Section 3.5 presents UncerTest, an 

uncertainty-wise test case generation, and minimization framework to generate test cases from BMs 

created with UncerTum and evolved with UncerTolve. 

3.1 Cyber-Physical Systems and Uncertainty Levels 

A CPS is defined as [15]: “A set of heterogeneous physical units (e.g., sensors, control modules) 

communicating via heterogeneous networks (using networking equipment) and potentially interacting with 

applications deployed on cloud infrastructures and/or humans to achieve a common goal” and is conceptually 

shown in Figure 2. Uncertainty in a CPS can occur at the following three logical levels [15]. First, 

uncertainty at the Application level is due to events/data originating from an application (one or more 

software components) of a physical unit of the CPS. An example of application-level uncertainty is the 

indeterminate behavior of a human interacting with a CPS, e.g., not wearing a device sensing heart 

rate properly which leads to uncertain heart rate readings. Second, uncertainty at the Infrastructure 

level is due to data transmission via information network enabled through networking infrastructure 

and/or cloud infrastructure. An example of infrastructure level uncertainty includes the uncertain 

behavior of a CPS due to packet loss in an information network. The third level is the Integration level, 

due to either interactions of applications across the physical units at the application level, or 

interactions of physical units across the application and infrastructure levels (e.g. the abnormal heart 

rate captured by heart rate sensor due to the loss of the connection between heart rate sensor and a 

computer system analyzing the heart rate assuming the heart rate sensor and a computer system are 

connected via wireless network). More details and examples are provided in [15].  
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3.2 UML Testing Profile  

UML Testing Profile (UTP) [39] is a standard at Object Management Group (OMG) for enabling MBT. 

With UTP, the expected behavior of a system under test can be modeled, from where test cases can be 

derived. UTP can be also used to directly model test cases. Transformations from models specified 

with UTP to executable test cases can be performed using specialized test generators. Since UTP is 

defined as a UML profile, it is often applied on UML sequence, activity diagrams and state machines 

for describing behaviors of a system under test or test cases. The key purpose is to introduce testing 

related concepts (e.g., Test Case, Test Data, and Test Design Model and model libraries such as various 

types of test case Verdict (pass, fail)) to UML models for the purpose of enabling automated generation 

of test cases. UTP V.2 is the latest revision of the UTP profile, which is conceptually composed of five 

packages of concepts: Test Analysis and Design, Test Architecture, Test Behavior, Test Data and Test 

Evaluations. Various numbers of stereotypes have been defined for some concepts of these packages. 

Similar to other modeling notations, it is never been an objective to exhaustively apply all the 

stereotypes when using UTP V.2 to annotate UML models with testing concepts. Which stereotypes to 

apply and how to apply them are however problem/purpose specific and should be defined by users 

of the profile. More information about UTP V.2 and the team can be found in [27; 38].  

To enable MBT of CPSs under uncertainty, we rely on UTP V.2 to model the testing aspect of BMs. In 

our context, only a subset of UTP V.2 was used. 

3.3 U-Model 

To understand uncertainty in the general context of software engineering, we developed a conceptual 

model called U-Model [15] to define uncertainty and its associated concepts. The U-Model was 

developed based on an extensive review of existing literature on uncertainty from several disciplines 

including philosophy, healthcare and physics and two industrial case studies.  

 
Figure 2. Conceptual model of CPSs and the Three Uncertainty Levels 
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The U-Model takes a subjective approach to represent uncertainty, which is modeled as a state (i.e., 

worldview) of some agents (called BeliefAgents), who, for whatever reason, do not have complete and 

fully accurate knowledge about some subjects of interest. A Belief is an abstract concept that can be 

expressed in the concrete form via one or more explicit BeliefStatements (a concrete and explicit 

specification of some Belief held by a BeliefAgent about possible phenomena or notions belonging to a 

given subject area). Uncertainty (i.e., lack of confidence) represents “a state of affairs whereby a 

BeliefAgent does not have full confidence in a belief that it holds” [15]. This may be due to several 

factors: lack of information, inherent variability in the subject matter, ignorance, or even due physical 

phenomena such as the Heisenberg uncertainty principle [21]. While uncertainty itself is an abstract 

concept, it can be quantified by a corresponding Measurement, which expresses in some concrete form 

the subjective degree of uncertainty that the agent ascribes to a BeliefStatement. As the latter is a 

subjective notion, a Measurement should not be confused with the degree of validity of a 

BeliefStatement. Instead, it merely indicates the level of confidence that the agent has in a statement. 

Further details on U-Model may be consulted in [15]. 

3.4 UncerTum 

UncerTum [9] (Figure 1) is uncertainty-wise modeling framework to support the development of BMs 

of CPSs, which consists of specialized UML-based modeling notations (named as UUP) for specifying 

uncertainties to enable MBT of CPSs under uncertainty.  

UUP is at the core of UncerTum and implements U-Model [15] (Section 3.3). UUP consists of three 

parts (i.e., Belief, Uncertainty, and Measurement profiles) and an internal library containing 

enumerations required in the profiles. To ease the development of BMs with uncertainty, UncerTum 

additionally defines four sets of UML model libraries: Pattern, Time, Measure, and Risk libraries, by 

extending an existing UML profile for Modeling and Analysis of Real-Time and Embedded Systems 

(MARTE) [40]. UncerTum also includes a small UML profile called the CPS testing levels profile to 

allow stereotyping (labeling) test ready model elements with three CPS test levels (e.g., integration 

level). The purpose is to differentiate model elements from different levels and facilitate defining level 

specific test strategies. Moreover, UncerTum relies on UTP V.2 (Section 3.2) to model BMs for the 

purpose of enabling MBT. Finally, UncerTum defines a set of concrete guidelines (i.e. Measurement 

Modeling) on how to use its modeling notations to construct BMs with uncertainty explicitly specified. 

3.5 UncerTest 

UncerTest [11] (shown in Figure 1) consists of two main part: test case generation and uncertainty-wise 

test case minimization. Test case generation takes the BM using UncerTum as input to automatically and 

systematically generate abstract test cases, according to two proposed test case generation strategies: 
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All Simple Paths (No Loops) and All Paths with a Fixed Maximum Length. These two strategies were 

inspired from the ones reported in [41], but were extended for BMs specified in UncerTum and 

considered various uncertainty aspects such as the number of uncertainties in a test path and overall 

uncertainty of a test path, defined based on Uncertainty Theory [42]. Uncertainty-wise test case 

minimization was proposed because the number of abstract test cases generated by Test Case Generation 

is typically very large for any non-trivial CPS and it is impossible to execute all of them. The 

uncertainty-wise test case minimization problem is a multi-objective search problem with four 

objectives: 1) The average number of uncertainties covered by the subset of the test cases after 

minimization; 2) The average percentage of uncertainty space (defined in Uncertainty Theory [42]) 

covered by the subset of the test cases after minimization; 3) The average uncertainty measure (defined 

in Uncertainty Theory [42]) of the subset of test cases after minimization; and 4) The average number 

of unique uncertainties covered by the subset of test cases after minimization.  

4 TERMINOLOGIES AND RUNNING EXAMPLE  
In this section, we will briefly present a running example together with relevant terminologies. The 

running example will be used in the rest of the paper to explain the key steps of UncerTolve. The 

UncerTolve itself will be presented in Sections 5-6. 

4.1 Belief Test Ready Model 

A belief test ready model (BM) consists of three types of models: a Composite Structure (CS) diagram, a 

set of class diagrams (CDs), and a set of Belief State Machines (BSMs). The belief aspect of BMs is from 

the perspective of modelers (i.e., belief agents), who create the BMs and therefore the BMs reflect their 

(subjective) beliefs on the information specified in the models.  

 

 

Figure 3. Composite Structure Diagram of BM (Running Example) 
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The CS diagram of a BM model represents a high-level test/model evolution configuration (referred 

as Configuration in Figure 3) of a CPS under Test. It captures various physical units that constitute the 

CPS, such as components A and B with «PhysicalUnit» applied. The stereotype is defined in the CPS 

profile of UncerTum [9]. Application and infrastructure level testing ports and interfaces of each 

physical unit are also explicitly modeled in the CS diagram. For example, as shown in Figure 3, A has 

one application-level port (aport :: AInterface) and one infrastructure level port (aiport :: IAInterface), 

which are stereotyped with «ApplicationElement» and «InfrastructureElement», respectively. Each 

port has a corresponding interface specified in the class diagram (Figure 4) such as AInterface. The 

integration level interface is stereotyped with «IntegrationElement» (represented as class 

BACommunication in Figure 4) and it is associated with A and B. 

The structure of physical units is modeled as a set of UML class diagrams. Classes in the UML class 

diagrams capture various types of information required for testing, including APIs (e.g., the reset() 

operation of B in Figure 4), state variables (e.g., the active:Boolean attribute of A in Figure 4), test 

configuration parameters (e.g., the cardinality of instances of A in Figure 3), signals (e.g., AdminCancel 

in Figure 4), and signal receptions (e.g., AdminCancel() in BInterface in Figure 4). The class diagrams 

have the CPS profile (Section 3.1) applied to distinguish model elements of the three different levels. 

For example, AInterface is stereotyped as «ApplicationElement» to signify that it is an application level 

interface.  

 

Figure 4. Class Diagram of BM (Running Example) 
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Each physical unit’s test behavior is modeled as one or more BSMs using UncerTum (Section 3.4), 

e.g., as shown in Figure 5 and Figure 6 for A and B respectively. For example, as shown in the BSM for 

physical unit A (Figure 5), «BeliefElement» from UUP is applied to the state machine for A, where the 

confidence of the belief agent about this state machine is specified as 95%. Two key types of OCL 

constraints are defined in BSMs. Each basic state in a BSM is precisely defined with a state invariant 

(e.g., not active associated with the Start state of A, Figure 5) specified as an OCL constraint based on 

state variables defined in the CDs (e.g., attribute active of class A in Figure 4). These state invariants 

serve as test oracles and can be checked at runtime using existing OCL evaluators such as Eclipse OCL 

[43]. Second, each guard condition (e.g., guard [times<3] on the transition from Start to B1 in B, Figure 

5) is specified as an OCL constraint on the input parameters of the associated trigger, which defines 

the valid range of inputs. These constraints in our case are used to automatically generate test data to 

trigger transitions. An OCL solver (e.g., EsOCL [44]) can take these constraints as input and 

automatically generate test data [45]. BSMs are further enriched with UAL such that they can be 

directly executed with the IBM Rational Simulation Toolkit [46]. For example, the self-transition of 

State A1 (Figure 5) has an effect whose body is written in UAL as below: 
aport.send(new A2B_Info(msg.x_, msg.y_)); 

This effect simply sends signal A2B_Info from A to B via aport. Notice that A2B_Info is a signal 

reception in BInterface. Notice that signals in UML are typically used for modeling communications 

across state machines. In our running example, for instance, the state machine of physical unit A 

 
Figure 5. Belief State Machine of A (V1.1) (Running Example) 

 
Figure 6. Belief State Machine of B (V1.1) (Running Example) 
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(Figure 5) communicates with the state machine of physical unit B (Figure 6) via the UAL code of the 

effect of self-transition of state A1 (Figure 5) as also shown in the last paragraph. Similarly, the state 

machine of physical unit B (Figure 6) communicates with the state machine of physical unit B (Figure 

5) via the UAL code written in the effect of the transition from B1 to Start in Figure 6. 

4.2 Executable Belief Test Ready Model 

An executable BM is a Java code, which is semantically equivalent to a BM discussed in Section 4.1. 

Executable BM Java code can be executed either directly with the IBM Rational Simulation Toolkit or 

as a standalone application by simply introducing a main() method. In Section 6.1, how to develop 

executable BM will be discussed in details. 

4.3 Driver Model 

In order to apply UncerTolve, we need to develop a component called Driver Component (e.g., dc: Driver 

Component in the composite structure diagram in Figure 3). A Driver Component is connected to 

physical units of a CPS via UML ports and connectors (Figure 3). A Driver Component has its own class 

diagram (e.g., Figure 7) and state machine (Driver State Machine (DSM), e.g., Figure 8). The class 

diagram contains attributes and operations that are specifically needed to model DSM such as 

attribute isCorrectInput of Driver Component in Figure 7. A DSM is a UML state machine that is 

specifically defined to trigger the execution of BSMs based on real operational data. Data types of the 

real operational data (e.g., x and y) are specified in the class diagrams of BM. Data on signals (e.g., 

SignalD of Figure 4) are sent via ports (e.g., dcport in Figure 3) from DSM to BSMs. Such data includes 

the input of a system actor, environment changes, etc. A DSM can also be enriched with UAL to make 

it executable. The class diagram and DSMs are all together called Driver Model (DM).  

 
The DSM of our running example is shown in Figure 8. The DSM has two regions, i.e., the top 

region is used to communicate with A, whereas the bottom region is for communicating with B. In the 

top region, there is only one state called Sending Data having a self-transition “after 0.01s”. This means 

that every 0.01 seconds, data is sent from Driver Component to A. The following UAL code is embedded 

inside the entry activity of the Sending Data state:  

 

Figure 7. Class Diagram of DM (Running Example) 
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dcPort.send(new SignalD(getX(time), getY(time))); 

The above code obtains values of x and y at a given point in time (from real operational data) and 

sends them to A via SignalD through dcPort. In the bottom region, in the Sending Input Data state, the 

following UAL code is added: 
String pwd_ = parseRealData("input_pwd"); 

dcPort.send(new Input(pwd_)); 
isCorrectInput = checkCorrectInput(pwd_); 

The above code obtains the password from real operational data (the first line), sends it to B via the 

Input signal through dcPort (the second line), and checks whether or not the password is correct with 

the checkCorrectInput (pwd_) operation in the class diagram of Driver Component. 

 

5 ARCHITECTURE AND CURRENT IMPLEMENTATION OF UNCERTOLVE 
In the rest of the section, we first present the overall architecture of UncerTolve (Section 5.1), followed 

by the current implementation of UncerTolve (Section 5.2).  

5.1 Architecture 

The architecture of UncerTolve is represented in Figure 10. The key input of the architecture is real 

operational data collected from existing deployments. Real operational data can be collected 

continuously; therefore a process of using UncerTolve for evolving BMs can be iterative. As long as 

new operational data available, UncerTolve can be used to evolve the current BM and therefore the 

evolved BM can be used to generate new test cases for testing new/future deployments. Real 

operational data are invoked by Driver Model and Executable Belief Test Ready Model (executable UML) 

for enabling model execution. Model execution results (i.e., discovered previously unknown objective 

uncertainty measurements and errors in the initial BM) are used to evolve the BM with a set of 

heuristics (i.e., tolveR-E). Real operational data are also used to support the dynamic invariant 

 

Figure 8. State Machine of DM (Running Example) 
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inference, which produces Invariants, representing either test oracles (i.e., state invariants) or test data 

specifications (i.e., guard conditions). Results of the inference are used to further evolve the belief BM, 

based on another set of heuristics: tolveR-D.  

Figure 2 shows the necessary components of the UncerTolve architecture. An initial Belief Test Ready 

Model, semantically equivalent Executable Belief Test Ready Model, Driver Model, and Real Operational 

Data are key artifacts that need to be constructed in order to use UncerTolve. Definitions and examples 

of these artifacts are presented in Section 4 for references. For each of the activities (i.e., modeling, 

model execution and invariant inference), a set of guidelines (i.e., S1, S2, and S3) is also defined to 

guide users through a non-trivial model evolution process. As part of the guidelines, tolveR-E and 

tolveR-D are the two sets of heuristics defined for refining the initial BM based on model execution and 

invariant inference results.  

There are three evolution ports defined on Belief Test Ready Model: 1) following tolveR-E, based on 

Execution Log (output of model execution), to evolve UML class diagrams, composite structure 

diagrams and BSMs, 2) following tolveR-D, based on invariants derived via Dynamic Invariant 

Inference, to evolve test oracle and test data specifications specified as state invariants and guard 

conditions of BSMs, and 3) appending objective uncertainty measurements derived from model 

execution to the BM. Though, the UncerTolve architecture provides these three evolution ports, it is not 

necessary to use them all at once. Depending on needs and contexts, which one(s) to use and how to 

use them can be customized. 

Note that this architecture is generic since it can be integrated with different technologies (e.g., 

different invariant inference engines) to achieve the same or similar objectives. Section 5.2 discusses 

the current implementation of this architecture.  

 

5.2 Current Implementation of UncerTolve 

In this section, we discuss our current implementation of UncerTolve, focusing on the selection of 

 

Figure 9. The Overall Architecture of UncerTolve 
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technologies and the integration of them. The overall workflow of the current implementation of 

UncerTolve is presented in Figure 10. The selection of technologies and corresponding justifications are 

summarized in Table 2. The recommended methodology for using the current implementation of 

UncerTolve is however discussed in Section 6. 

 
The first activity is to develop and execute BMs (S1/S2 in Figure 10). This activity takes place in 

IBM’s Rational Software Architect (RSA) and its Simulation Toolkit plugin [46]. As shown in Figure 10, 

UncerTum (Section 3.4) is currently implemented in IBM RSA. A user of UncerTolve develops BMs (S1 

in Figure 10) using the guidelines developed for UncerTum (see [9]). To validate BMs, such models 

must be executed with real operational data. To achieve so, we extended UncerTum to provide a set of 

new guidelines to convert BMs into executable ones. The methodology for creating executable models 

is described in Section 6.1. Corresponding to BMs, equivalent Java code is automatically generated by 

the Simulation Toolkit [46], which can either be executed with the Simulation Toolkit or as a 

standalone Java application. The user executes the developed BMs with the real operational data (S1 in 

Figure 10) using the Simulation toolkit [46].  

 

Table 2. Steps, techniques/tools/languages, and corresponding justifications of the current implementation of UncerTolve 
Step Techniques/tools/languages Justification of using selected techniques/tools/languages 
S1, S2 IBM Rational Software 

Architect (RSA) 
IBM Simulation Toolkit 

UML Action Language (UAL) 
Eclipse OCL 

Java Implementation of 
heuristics tolveR-E: Execution 
Logger and Log Analyzer 

The overall approach of the U-Test project is implemented in the CertifyIt4 
tool, which is a plug-in to IBM RSA. UAL is implemented based on the OMG 
Alf standard and is used by the IBM RSA Simulation Toolkit. Thus, IBM RSA, 
Simulation Toolkit, and UAL were selected in the current implementation of 
UncerTolve.  

Eclipse OCL is one of the commonly used OCL evaluation tools, which is built 
on EMF and fits well with the tooling of our overall technical solution.  

Given that execution log cannot be used automatically to modify BMs, 
heuristics tolveR-E are implemented to propose a set of actions to the user to 
modify BMs with uncertainty. 

S2 Java Implementation of 
Objective Uncertainty 
Measurement Analyzer 

Our approach is based on subjective uncertainty. To further validate it, we 
calculate the frequency (objective uncertainty measurements) based on the real 
operational data.  

S3 Daikon Invariant Detector 

Invariant Converter (Java 
Implementation planned) 

Several dynamic inference tools exist in the literature [1-3]; however, we 
decided to use Daikon because it implements a set of optimizations that 
facilitates its applications to complex problems [4]. 

S3 Java Implementation of 
heuristics tolveR-D: Invariant 
Analyzer 

Daikon outputs invariants. Links must be established between the inferred 
invariants and models elements of BMs. Thus, we developed heuristics tolveR-
D to link Daikon invariants with state invariants and guard conditions 
(specified as OCL constraints and representing test oracles and test data 
specifications) of the BMs. 

S1-S3 Java implementation of the 
integrated solution (Figure 
10) 

None 
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The second activity of is Execution Analyzer (S2), which is used to analyze the results of the execution 

of BMs based on real operational data. Execution Analyzer is composed of Execution Logger, Log 

Analyzer, and Objective Measure Analyzer. Once the BMs are executed, Execution Logger logs the 

execution as execution log. The execution log includes information such as at one point of time, which 

trigger was fired with which data. Such log is used by Log Analyzer as an input to suggest various 

actions for the user to update BMs based on the set of heuristics of tolveR-E (Section 6.2.1). Based on 

suggested actions, the user may update BMs (S1’ in Figure 10). This log is also used by Objective 

Uncertainty Measurement Analyzer to calculate conditional probabilities, e.g., the frequency of 

occurrence of a particular transition (details in Section 6.2.2).  

The third activity is about the analysis of invariants using a machine learning technique 

implemented in the Daikon Invariant Detector [4]. The user may command (S3 in Figure 10) to infer 

invariants based on real operational data using the API we developed to invoke Daikon and access the 

real operational data. As a result, Daikon outputs a set of invariants, which are converted to OCL 

constraints by the Invariant Converter that we implemented in Java. The converted OCL constraints are 

inputted to Invariant Analyzer to further evolve invariants in BMs based on the set of heuristics of 

tolveR-D (Section 6.3), and the output is suggested OCL constraints as a feedback to the user. The user 

may accept, reject, or modify the suggested OCL constraints. 

6 RECOMMENDED METHODOLOGY 
The recommended methodology for applying the current implementation of UncerTolve is presented in 

Figure 11, from which one can see that it is iterative and has three sequential steps. In the rest of the 

 

Figure 10. The Overall Work Flow of the Current Implementation of UncerTolve  
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section, each of these steps is discussed in details. Section 6.1 presents our proposed modeling 

methodology to create executable BMs including activities for creating BMs and UML models for 

Driver Component; Section 6.2 presents a set of activities for validation BMs and DMs and evolve 

objective uncertainty measurements (S2); Section 6.3 presents the process of evolving BMs in terms of 

invariants using dynamic invariant inference (S3). 

 

6.1 Creating BM and Driver Model (S1) 

As we previously discussed, with UncerTum [9], BMs can be created. Using UncerTest, executable test 

cases can be generated from the BMs specified in UncerTum. However, an extension of UncerTum is 

required to make BMs executable such that they can be validated against real operational data. This 

section only focuses on the aspects that are required to make BMs executable and other details on 

UncerTum are provided in [9]. As shown in Figure 12, S1 is broken down into three activities: S1M1, 

S1A1, and S1M2.  

As the first step of the UncerTolve methodology, a modeler (belief agent) needs to apply UncerTum 

(which integrates the modeling notations of UML, UUP for specifying uncertainty, UAL for model 

execution, OCL for specifying constraints, and UTP V.2 for capturing testing aspects, e.g., 

«BeliefElement» in Figure 5 and Figure 6) to create BM (V1), i.e., the initial version of BM for a CPS 

under test (S1M1). UUP and UTP V.2 profiles are implemented in IBM RSA. As discussed in Section 

4.1, the BM created by the modeler based on her/his subjective opinions and the BM is composed of a 

 
Figure 11. Recommended Methodology of using the Current Implementation of UncerTolve 
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set of class diagrams, a composite structure diagram and a set of BSMs. 

 
To make the BM executable, UAL code should be added to relevant model elements of BSMs of the 

BM such as entry, exit, and do activities of a state and effect on a transition. The second output of S1M1 is 

Executable BM (V1), which is Java code automatically generated from the initial version of BM (V1) by 

IBM RSA, and can be automatically executed by the IBM Simulation Toolkit [46] or as a standalone 

program. For example, Figure 5 and Figure 6 present the diagrams of the BM (V1) of the running 

example. The key elements of the model have been discussed in Section 4. 

Note that a modeler can specify a subjective uncertainty measurement as part of the applied 

«BeliefElement» on a model element on the BM model. For example, as shown in Figure 6, the 

subjective uncertainty measurement (denoted as SM B1.2) for «BeliefElement» applied on the 

transition from Start to B1 is ‘Likely’. The transition from Start to B2 however ‘Unlikely’ occurs (see SM 

B1.1). Note that SM means Subjective Measurement and encoding of BX.Y means that the X round of 

the derivation of subjective uncertainty measurement for the Y element with «BeliefElement» applied. 

Since the executable UML implemented in IBM RSA doesn’t support converting OCL constraints 

into Java code and consequently cannot evaluate constraints at the runtime, we implemented 

OCLUtility in Java. This utility links IBM Simulation Toolkit with the Eclipse OCL library to evaluate 

OCL constraints at runtime (S1A2). Using this activity together with S1M1, executable BM (V1) is 

developed. Notice that OCLUtility is generic and needed to be developed once. 

Activity S1M2 is to connect the Driver Component to the BM using the same composite structure 

diagram developed for the BM (e.g., Figure 3), create class diagrams to keep information required to 

create a DSM, and create DSMs to drive the execution of BSMs for the purpose of validating and 

evolving them (Section 4.3). Recall that all these models together are called DM. The outputs of this 

activity are then DM (V1) and its equivalent Java code Executable DM (V1).  

For our running example, we show the composite structure diagram of the BM in Figure 3 (which is 

shared with the DM), the class diagram in Figure 7, particularly developed for the Driver Component, 

and the DSM in Figure 8. Please refer to Section 4.3 for a detailed discussion of the DM model. 

 
S1M1, S1M2 – manual action; S1A1  -- automated action 

Figure 12. The Structured Activity of Create Belief Model and Driver Model 
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6.2 Validate BM and Driver Model, and Evolve Objective Uncertainty Measurements (S2) 

The second step (Figure 13) is to validate the BM and DM against real operational data and evolve 

objective uncertainty measurements on the BSMs based on the real operational data. Note that subjective 

uncertainty measurements are the ones defined by the belief agent when the initial version of the BM 

was created. 

 
The first step (S1A1) automatically executes the BM with real operational data using the DM. 

Results of the execution are stored in the Execution Log. Note that the UAL code for generating the 

execution log is added in the DSM and BSMs for this purpose. The second step (S2A2) automatically 

analyzes the generated execution log to identify errors and obtain objective uncertainty measurements 

such as the frequency of the occurrences of a transition in a BSM. If an error is obtained, manual 

correction and completion of BSMs (S2M1), based on the analysis results obtained in S2A2 are then 

required. Sequentially, UncerTolve automatically establishes the link with Eclipse OCL (S2A3). The 

process of identifying errors continues until no error is identified, in which case UncerTolve 

automatically adds discovered objective uncertainty measurements to the BM (S2A4). Notice that the 

whole process of keeping updating the BM (V1) is continued until the validation is finished. At this 

moment, the BM (V2), along with the Executable BM (V2), DM (V2) and Executable DM (V2) are 

generated for S3 to take them as input to evolve BM (Figure 11). In the rest of the section, we discuss 

the key steps of S2. 

6.2.1 Analysis of Errors and Fixing Models (S2A2, S2A3, and S2M1) 

In S2A2, UncerTolve systematically and automatically checks the execution log for various types of 

errors. We classify errors into two high-level categories: Syntactic and Semantic errors. Syntactic errors 

are related to missing, incorrect, and redundant model elements in the BM and DM. For example, a 

redundant state means that its state invariant is subsumed by the state invariant of another state. A 

semantic error occurs when the models are syntactically correct, but the semantics of the models 

introduced using the UAL code have logical errors.  

 
* S2M1 – manual action; S2A1~S2A4—automated action 

Figure 13. The Structured Activity of Validating BM, DM and Evolving Objective Uncertainty Measurements 
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We proposed a set of heuristics for the validation purpose (i.e., tolveR-E, Appendix A) in UncerTolve. 

We provide below a subset of tolveR-E as examples:  

1. If the state invariant of a state in a BSM evaluates to be false, then it leads to three possible fixing 

scenarios: adding a new state, changing an existing one, and/or deleting an existing one.  

2. If a guard condition evaluates to be false, then it leads to two options: adding a new transition 

with an unknown trigger to an unknown state and changing an existing transition. 

3. If a signal is sent from the DSM to a BSM (which is supposed to transit to a known state) but the 

signal is not received by the BSM, then this indicates that one or more model elements (e.g., 

connector) are missing from the BM model. 

4. If a signal is sent from the DSM to a BSM (which it is supposed to transit to a known state) but 

the BSM transits to an unexpected state, it means that one or more model elements (e.g., the 

expected state) are incorrect. 

5. If a signal is sent from the DSM to a BSM and more than one states of the BSM become active in 

one region at the same time, this may suggest redundant states. 

Regarding the running example, one can observe the following changes to the StateMachine_B BSM 

of the BM (V1) (Figure 6): 1) adding new state B3 (along with the definition of its state invariant as an 

OCL constraint), 2) adding two new transitions (between states Start and B3) and 3) applying 

«BeliefElement» on the two new transitions. The changes are reflected in the new version of the BSM 

(blue in Figure 14). This series of changes were triggered because, in S2A2, UncerTolve identified that 

the real operational data reflects the situation that from state Start, under the condition of times=4, the 

systems ends up at the B3 state.  

 
As discussed in Section 4, OCL constraints are used to specify state invariants (serving as test 

oracles) and guard conditions, which are for generating test data for the input parameters of associated 

triggers. Based on the real operational data, these OCL constraints are validated by executing the 

 
Figure 14. Belief State Machine of B (V2.1) 
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executable BM and as the result, new constraints may be added or existing ones are changed by a user 

based on the suggested actions provided by UncerTolve. For example, as shown in Figure 14, a new 

OCL constraint is added to state B3 as its state invariant. 

6.2.2 Identifying Objective Uncertainty Measurements (S2A4) 

UncerTolve analyzes the execution log and calculates the frequency of traversing a state or transition, 

based on which it defines an objective uncertainty measurement for the state or transition. Especially 

for transitions, UncerTolve calculates conditional probabilities of the transitions leaving from the same 

state. For example, as shown in Figure 14, the StateMachine_B BSM of the BM (V2) contains three 

objective uncertainty measurements (i.e., OM B1.1, OM B1.2 and OM B1.3). Note that OM means 

Objective Measurement and encoding of BX.Y means that the X round of the derivation of the 

objective uncertainty measurement for the Y element with «BeliefElement» applied. OM B1.2=92.1% 

implies that based on the real operational data, the probability of transiting from Start to B1 via the 

transition is 92.1%. Note that the subjective uncertainty measurement for this transition was initially 

defined as ‘Unlikely’ by the modeler (Figure 6). In this case, the objective uncertainty measurement 

conforms to the subjective uncertainty measurement. In the case that a nonconformity is observed, 

UncerTolve alerts the modeler, but the evolving process of the models continues, as in steps S3 and S4, 

the objective uncertainty measurements might be updated, which provides more evidence to the 

modeler. The modeler can then decide whether or not to adjust her/his belief on the subjective 

uncertainty measurement in the next or future rounds of S2. Notice that more real operational data 

used in the evolving process leads to the higher precision of derived objective uncertainty 

measurements. 

Intermediate versions of the subjective and objective uncertainty measurements can be saved such 

that different types of analyses can be performed and eventually advanced test generation strategies 

can be derived, which is one of the items of our future work. 

6.3 Evolve Belief State Machines with Dynamic Invariant Analysis (S3) 

In the first step (S3A1), UncerTolve executes the Executable BM (V2), together with the real operational 

data in the Daikon tool, which produces a set of invariants (Figure 15). In S3A2, UncerTolve 

automatically converts Daikon invariants into OCL constraints. The obtained OCL constraints are then 

taken as the input of S3M1/A3 to evolve the BM (V2) to BM (V3). UncerTolve implements a set of 

heuristics for this step (see details in Appendix B), some of which are listed below as examples:  

1. If an invariant inferred by Daikon supersedes an existing constraint, then there are three options 

for the modeler to manually evolve the models: 1) keep the original constraint, 2) split the 

original constraint such that one or more states (transitions) are newly introduced, or 3) keep the 
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original state (transition) but update the constraint. 

2. If an invariant inferred by Daikon subsumes a set of existing constraints (named as 

EConstraints), there are three options for the modeler to manually evolve the models: 1) keep 

things unchanged (if the invariant inferred by Daikon is irrelevant), 2) merge the invariant 

inferred by Daikon with a set of existing states and transitions, corresponding to EConstraints, 3) 

create a composite state to group a set of existing states and transitions that are associated to 

EConstraints. 

 
In the running example, the input of S3 is Figure 14, and the output of S3 is Figure 16. In Figure 16, 

newly added and changed model elements are highlighted as green. Note that in the figure that state 

B4 is newly introduced to the StateMachine_B BSM of the BM (V3). As a result, two transitions are 

added between B4 and Start. Introducing the transition from Start to B4 leads to the updates of a list of 

objective uncertainty measurements: OM B1.1-OM B1.3. This is because the sum of the objective 

uncertainty measurements for all the four transitions leaving state Start (to states B1, B2, B3, and B4) is 

100%; therefore, introducing a new transition triggers the change of OM B1.2 (=92.1% in Figure 14) to 

OM B2.2 (=91.0% in Figure 16). The objective uncertainty measurement for the newly added transition 

from Start to B4 is calculated as: OM B2.4 = OM B1.2 – OM B2.2 = 92.1% - 91.0% =1.1%. The rationale 

behind the calculation is that in S3, UncerTolve, based on the real operational data, evolves the state 

invariant of B1 by adding clause ‘a.active’ to it, which leads to the discovery of the new state B4 (whose 

state invariant contains the clause ‘not a.active’, the negation of the newly added clause of B1’s state 

invariant). Therefore, OM B2.2 and OM B2.4 are the results of the splitting of OM B1.2. As also shown 

in Figure 16, the state invariants of states B2 and B3 are also updated in S3 by introducing the same 

clause ‘not a.active’ to each of the invariant. The objective uncertainty measurements of OM B1.1 and 

OM B1.3 remain unchanged. 

 

 
* S3A1 – manual action; S3A2 -- automated action; S3M1/A3 – semi-automated action 

Figure 15. The Structured Activity of Evolve BM with Dynamic Invariant Analysis 
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7 EVALUATION 
In this section, we present the evaluation of UncerTolve as a proof-of-concept using the industrial case 

study available to us as part of the project. The case study is called GeoSports (GS) from the healthcare 

domain provided by Future Position X, Sweden2. The GeoSports case study is about monitoring Bandy 

players for their performance and health conditions during the game for early intervention and 

prevention. Coaches use data produced by the GeoSports system to improve the performance of 

individual players and the team together. We had access to real operational data of five real games 

that were used to evaluate UncerTolve. The first versions of the BMs with uncertainty were developed 

with UncerTum, together with the industrial partner during the four workshops hosted at its site. 

Below, we present the results of evaluation according to each key activity (i.e., S1, S2 and S3, Section 

7.1 to Section 7.3). Section 7.4 presents the results of the overall validation of the final evolved models. 

Section 7.5 presents discussion and experiences. In 7.5, we report the effort required to build the test 

ready model of the GS case study, and the possibility of adopting UncerTolve in a commercial tool 

setting. The threats to validity are discussed in Section 7.7. 

7.1 Results of Creating BM and DM (S1) 

Table 3 presents the descriptive statistics of the initial versions (V1) of BMs and driver models for the 

case study. The #C column shows the total number of classifiers (including classes, components, 

signals, interfaces and data types) defined in a BM/DM. The #R column presents the total number of 

relationships among the classifiers such as associations and compositions. The #RP column presents 

the total number of signal receptions specified in all the class diagrams of a BM/DM. Similarly, for the 

2 www.fpx.se 

 
Figure 16. Belief State Machine of B (V3.1) 

                                                           
 



Simula Research Laboratory, Technical Report 2016-12,                                                            March, 2017 (Version 2) 
28                                                  
composite structure diagram (CSD) developed for a BM, we present the total number of ports (#P) and 

connectors (#CN). For the state machines, we present the total number of states (#S) and transitions 

(#T). The #BE column presents the total number of model elements in a BM, where the 

«BeliefElement» stereotype was applied. For each driver model, we present the total number of classes 

and components (#C), states (#S) and transitions (#T). 

Based on the descriptive statistics shown in Table 3, GS has the belief model with 62 classifiers, 56 

relationships and 37 signal receptions in the class diagrams, 10 ports and 11 connectors in the 

composite structure diagram, and 82 states and 106 transitions in all the state machines of its BM.  

 

7.2 Results of Validation and Evolution via Model Execution (S2) 

Table 4 summarizes the results of S2 for the GS case study. We provide the total number of missing 

model elements (#MS), incorrect model elements (#IN), and redundant model elements (#RD). In 

addition, we report the total number of errors discovered in the semantics of the models (#SM). We 

report these descriptive statistics for the model elements of the BSMs of a BM: states (S), transitions (T), 

and elements with «BeliefElement» (BE) applied. Similarly, we report the statistics for the DSM of a 

BM, communications between the BSMs and the DSM and vice versa (BSM2DSM and DSM2BSM). In 

addition, we present the percentage of the elements evolved as compared to V1 in the % row with the 

following formula: (#MS - #RD)/(#V1 + #MS - #RD), where #V1 is the total number of the model 

elements of a BM V1 (the initial version of the BM, comparison baseline). 

 
As it can be seen from Table 4, UncerTolve evolved 37% of the belief elements, 11% and 9% of states 

and transitions in the BM V2 as compared to the BM V1. Notice that the loop inside the S2 activity 

(S2A1S2A2S2M1S2A3S2A1, Figure 13) was executed seven times until no further errors were 

discovered. In addition, 8% of connectors for enabling the communications from the BSMs to the DSM 

(BSM2DSM) were evolved as shown in Table 4. 

Table 4 also presents the errors discovered in the BMs and DMs of GS. For example, as shown in 

Table 3. Descriptive statistics of the initial BMs (V1)* of the GS case study 

# Class Diagram 
Composite 

Structure Diagram State Machine #BE 
#C #R #RP #P #CN #S #T 

Belief Model (BM) 62 56 37 10 11 82 106 49 
Driver Model (DM) 1 0 0 2 NA 5 11 NA 

C: Classifiers, R: Relationships, RP: Signal Receptions, P: Ports, CN: Connectors, BE: Belief Elements 
 

Table 4. Results of BM V2 and DM V2* 
 Belief Model Driver Model 
 BSM BSM2DSM DSM DSM2BSM 
 #BE #S #T #RP #P #CN #S #T #RP #P 

#Missing 9 11 12 1 0 1 0 0 0 0 
#Incorrect 0 3 3 2 1 2 0 1 0 0 

# Redundant 0 1 2 1 0 0 0 0 0 0 
#Semantic Problems 0 2 1 0 0 0 1 1 0 0 

% 37% 11% 9% 0% 0% 8% 0% 0% 0% 0% 
* BSM: Belief State Machine, DSM: Driver State Machine, RP: Signal Receptions, P: Ports, CN: Connectors, BE: Belief Elements, 
BSM2DSM: BSM to DSM communication, DSM2BSM: DSM to BSM communication, MS: Missing Model Elements, IN: Incorrect Model 
Elements, RD: Redundant Model Elements, SM: Semantic Problems, %: Percentage of evolved elements as compared to V1. 
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Table 4  (#SM row, DSM column in GS block), UncerTolve found two semantic errors in its DSM, one 

error state, and one error transition. These two semantic errors are located in the UAL code in the 

entry/do/exit activity of the error state and the effect of the error transition. Notice that since the 

semantic errors were located in the UAL code of the DSM, it does not result in the evolution of any BM 

model element. This is why the % row in the DSM column for GS shows 0% for both #S and #T.  

7.3 Results of Dynamic Inference (S3) 

Table 5 shows the results of activity S3 for the case study. The #EP column presents the total number 

of model elements in the BSMs of a BM. These model elements were the points of evolution (e.g., State 

S4 in Figure 16). The #RF column presents the total number of refined model elements (e.g., state 

invariants in OCL and belief elements). The #ES column presents the total number of states that were 

newly added to or deleted from BSM V3 as the result of evolution. The #ET column represents the 

total number of transitions that were added to and deleted from BSM V3 as the result of evolution. 

Finally, the #EB column represents the total number of belief elements that were added to or deleted 

from BSM V3. The % row for #EP provides the percentage of model evolution points as compared to 

the total number of model elements in BSM, i.e., #EP/(#S+#T). Similarly, the percentage of #RF is 

calculated as #RF/(#S+#T). For ES, the percentage is calculated as #ES/#S, for ET as #ET/#T, and for 

EB as #EB/(#S+#T). In these formulas, #S and #T represent the total number of states and transitions 

in BSM V3. 

 
As shown in Table 5, UncerTolve identified 5 model elements (2%) that can be evolved, whereas 27% 

of the existing model elements were refined. In the case of states, transitions, and belief elements, 8% 

of states, 13% of transitions, and 29% of belief elements were added/deleted to BSM V3 as compared 

to V2.  

7.4 Overall Validation  

Once the evolved version V3 of the BSMs was obtained after the S3 activity, we verified it with the real 

operational data by performing the S2 activity once again. Results are shown in Table 6. As one can see 

from the table, we found 11 validation problems in belief elements, whereas we discovered 3 

validation problems with states and 2 with transitions. In total, we verified 99 belief elements. For 

states, we verified in total 100 states. Similarly, for transitions, we verified in total 134 transitions, but 

we couldn’t verify 5 transitions once again due to unavailability of real operational data.  

Table 5. Results of the evolution of BSM V3* 

Model Element Type # Evolution points # Modified/ Refined 
Elements # Evolved States # Evolved 

Transitions 
# Evolved Belief 

Elements 
# 5 56 8 18 32 
% 2% 27% 8% 13% 29% 

*#Evolved States: the total number of evolved states excluding the modified ones, #Evolved Transition: total number of evolved 
transitions excluding the modified ones, #EB: total number of evolved belief elements excluding the modified ones 
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Table 7 shows the results of the percentage increase in the number of evolved model elements of BM 

across the three versions (V1 to V3). In addition, we also show the percentages for the verified version 

of V3, i.e., V3’. The last column shows the mean percentage of increase in the number of model 

elements in V3’ as compared to V1 and is calculated as M=(#V3’-#V1)/#V3’, where #V3’ is the 

number of model elements in V3’ and #V1 is the number of model elements in V1. For EP, we also 

show the mean percentage of increase in the evolution points in BM from V1 to V2, from V2 to V3 and 

from V3 to V3’.  

As shown in Table 7, in the stage of V3’, 51% of belief elements, 18% of states, and 21% of transitions 

were evolved as compared to the first version (V1). For EP, 19% of new evolution points were 

discovered in V2, 11% in V3, and 1% in V3’. 

7.5 Effort to Build Belief Test Ready Models and Adoption of UncerTolve 

The BMs of GS were initially built by Simula researchers (the first three authors of the paper). These 

models were further confirmed with the industrial partner (last author of the paper). First, the first 

author (second year Ph.D. candidate) created the first version of the models, which were iteratively 

discussed with the second (a senior scientist) and third (a chief scientist) authors. Second, two 

workshops (2 days each) were held to present and discuss the models with the industrial partner to 

check their conformance with real scenarios. Third, the Simula researchers modified the models and as 

a result, the final version of models was produced that was used as input of UncerTolve (Figure 11). 

Table 8 shows the rough estimate of efforts for developing the models and presenting them to the 

industrial partner. 

We classify effort in terms of how much time it took to build the models using standard UML 

notations and additional effort to apply various profiles and model libraries defined in UncerTum. As 

shown in Table 8, for standard Class/Composite structure diagrams, it took 37.5 hours (about a week), 

whereas it took additional 3.5 hours to apply UncerTum profiles and model libraries. For standard 

UML state machines, it took 52.5 hours and an additional 12.5 hours for UncerTum modeling. The last 

column shows additional effort required with UncerTum as compared to standard UML, i.e., roughly 

Table 6. Results of the validation of BSM V3* 
Model Element Type #Belief Elements #States #Transitions 

#Missing 0 0 0 
#Incorrect 0 0 0 

#Redundant  11 0 0 
#Semantic Problems 0 3 2 

#Model Elements 99 100 134 
Table 7. Overall results of the evolution across the versions (%) 

Model Element Type % Belief Elements %States %Transitions %Evolution Points 
V1     V2 37% 11% 9% 19% 
V3 29% 8% 13% 11% 
V3' -11% 0% 0% 1% 

M= (#V3’-#V1)/#V3’ 51% 18% 21%  
* V3’: Verified version of V3 with S2, M is (#V3’-#V1)/#V3’, - means not applicable. 
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15%. The last row of Table 8 shows the effort we spent to present the models to our industrial partner.  

 
In the project [10], we have a dedicated tool vendor (Easy Global Market 3 ) responsible for 

implementing research results including UncerTolve into Smartesting’s commercial model-based 

testing tool called CertifyIt4 and transfer of the results to the industrial partners. Such adoption of the 

UncerTum, UncerTest, and UncerTolve is on-going and will be completed by the end of the project.  

7.6 Discussion and Experiences  

In this section, we present discussion and our experiences of applying UncerTolve to the industrial case 

study, based on the results presented in Sections 7.1-7.4.  

Based on our experience of designing drivers for model execution and evolution, we discovered that 

the design of a driver is highly dependent on the characteristics of a CPS. For example, in our case, we 

have no direct access to its testing API or internal states. In addition, GS doesn’t provide feedback to 

its users, i.e., Bandy players. It only records the readings from the Bandy players and transmits these 

via radio connections to the central system, where these data are processed. Because of these two 

characteristics of the CPS, the driver for GS was simpler since there was less information available for 

GS. In addition, the feedback from the CPS to the driver was not required to be modeled in GS. This 

might not be the case for other CPS case studies where we may have direct access to testing APIs and 

there is feedback from CPS, which will consequently lead to complex driver design.  

In our case study, time events were used in models to capture timing aspects. Consequently, this 

had an impact on designing BMs, DMs and model evolution. However, GS only sampled data after a 

fixed interval of time and thus the design of BMs was simpler, which may not be the case for other 

case studies that have much more complex timing constraints.    

In terms of the generalization of UncerTolve, theoretically speaking, as long as BMs of a CPS is 

specified in UncerTum [9] (a generic modeling methodology to create BMs of CPSs with subjective 

uncertainty) and real operational data are available, it is applicable to any case study. Our proposed 

modeling methodology (reported in Section 6.1) to create executable BMs is also generic and can, 

therefore, be tailored. In addition, our heuristics rules to update models based on the results of 

validation of executable models (Section 6.2), the process of calculating and abstracting objective 

3 www.eglobalmark.com 
4 www.smartesting.com/en/certifyit/ 

Table 8. Efforts in terms of time (hours) to develop and present BMs 

 
Class/Composite Structure Diagrams State Machine 

% of Time 
Standard UML 

Modeling 
UncerTum 
Modeling 

Standard UML 
Modeling 

UncerTum 
Modeling 

Effort to develop 37.5 3.5 52.5 12.5 15% 
Effort to present 7.5 15 - 
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uncertainty and reflecting them in BMs (Section 6.2.2), and rules to evolve BMs (Section 6.3) are not 

specific to any case study and are thus generic. At its current state, we assessed UncerTolve with one 

CPS case study from the EU project as a proof-of-concept. In order to provide further evidence related 

to the generalization of UncerTolve, we indeed need to conduct additional case studies, which will be 

the focus of our near future work.  

7.7 Threats to Validity 

Internal validity threats in our context are due to the use of existing tools, including Daikon and IBM 

Rational Simulation Toolkit. Notice that Daikon has been extensively used in the literature for 

dynamic inference of invariants as we discussed in Section 2 and thus the chances of results being 

impacted by its use are minimum. IBM Rational Simulation Toolkit is a commercial product that we 

used for model execution and has a well-tested implementation. Therefore, it is highly unlikely that 

the results were impacted by its use as well. As part of an academic initiative by IBM, we were able to 

use fully functional version free of any cost. 

Currently, we evaluated UncerTolve with only one industrial case study; however, to generalize the 

results, UncerTolve must be evaluated with other case studies. We plan to conduct additional industrial 

CPS case studies in addition to using the same case study with additional real operational data. 

8 CONCLUSION 
Given that Cyber-Physical Systems (CPSs) are tested with the assumptions on its internal behavior, its 

operating environment, and potential deployments, it is necessary that belief test ready models (BMs) 

developed to test the CPSs are continuously evolved using their real operational data including 

observed uncertainties. Such evolved models can be used to generate additional test cases to be 

executed on the current and future deployments of the same CPS. To this end, we proposed a test 

ready model evolution framework called UncerTolve. The framework was specially designed and 

developed to evolve BMs of CPSs with explicitly captured subjective uncertainty. Our aim is to not 

only improve the quality of BMs and evolve captured uncertainty, but also potentially discover 

unspecified uncertainty.  

UncerTolve used several methods to evolve the models and uncertainty measurements including 

validation and evolution using model execution with real operational data collected from the 

application of a CPS and evolving constraints with a machine learning technique implemented in 

Daikon—dynamic invariant detection tool based on real operational data. UncerTolve was evaluated as 

a proof-of-concept with one industrial CPS case study from the healthcare domain, where we 

managed to evolve 51% of belief elements, 18% of states, and 21% of transitions. In the future, we are 

planning to use the evolved models to generate additional test cases by defining new test strategies 
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focusing on the evolved parts of BM. Such test strategies will be implemented in our uncertainty-based 

test case generation and minimization framework called UncerTest. In addition, we are planning to 

conduct further case studies to evaluate UncerTolve.  
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Appendix A.  TOLVER-E 
ocl.evaluate is a function that is used to evaluate the constraint specified in OCL. The result of the 
evaluation is either true or false. The catch TriggerException represents the exception in case none of 

the specified triggers occur. For example, S1
Tran1
�⎯⎯�  S1, the event of the trigger of Tran1 is kind of 

TimeEvent and the effect of Tran1 is “throw new TriggerException(S1.name)”. 

# Definition in OCL Suggested Action 
R1 context State 

not ocl.evaluate(self.stateInvariant)  
One of R1.1, R1.2, or R1.3 will be selected. 

R1.1 State.allInstance->excludes(self)-> 
select(s:State|ocl.evaluate(s.stateInvariant))->size()=0 

Modify this State or Add an unknown State 
with applied «BeliefElement» 

R1.2 State.allInstance-> excludes(self)-> 
select(s:State|ocl.evaluate(s.stateInvariant))->size()=1 

Add a new Transition with the same Trigger 
with applied «BeliefElement» 

R1.3 State.allInstance-> excludes(self)-> 
select(s:State|ocl.evaluate(s.stateInvariant))->size()>1 

Check the redundant problem, and add the 
transitions with the same Trigger with 
applied «BeliefElement» to these states if they 
are correct  

R2 context State 
catch TriggerException and ocl.evaluate(self.stateInvariant) 

One of R2.1, R2.2, or R2.3 will be selected. 

R2.1 context State 
self.outgoings->exists(t:Transition| t.triggers-> 
exists(t:Trigger|t.event.ockIsKindOf(CallEvent))) 

Check invocation of operation 

R2.2 context State 
self.outgoings->exists(t:Transition| t.triggers-> 
exists(t:Trigger|t.event.ockIsKindOf(SignalEvent))) 

Check composite structure diagram and state 
machine of  driver 

R2.3 context State 
self.outgoings->exists(t:Transition| t.triggers-> 
exists(t:Trigger|t.event.ockIsKindOf(TimeEvent))) 

Check the TimeExpression 

R2.4 context State 
self.outgoings->exists(t:Transition| t.triggers-> 
exists(t:Trigger|t.event.ockIsKindOf(ChangeEvent))) 

Check the ChangeExpression 

R3 context State 
catch TriggerException and not ocl.evaluate(self.stateInvariant) 

One of R3.1, R3.2, or R3.3 will be selected. 

R3.1 Refer to R1.1  Add an unknown transition to an unknown 
state with applied «BeliefElement» 

R3.2 Refer to R1.2 Add an unknown transition to a known state 
with applied «BeliefElement» 

R3.3 Refer to R1.3 Check the redundant problem, and add the 
unknown transitions to these states if they are 
correct. 

R4 context Transition 
not self.guards->forAll(c:Constraint| ocl.evaluate(c)) 

One of R4.1 or R4.2 will be selected. 

R4.1 context Transition 
self.triggers-> exists(t:Trigger|t.event.ockIsKindOf(CallEvent)) 

Modify the guard of call event / Add new 
transition with applied «BeliefElement» 

R4.2 context Transition 
self.triggers-> exists(t:Trigger|t.event.ockIsKindOf(SignalEvent)) 

Modify the guard of signal event/ Add new 
transition with applied «BeliefElement»/ 
Check the signal from DM 

Appendix B. TOLVER-D 
The value ranges to make constraint true is represented as below, 

C(x0, … xn) = C0(x0) ∩ …∩ Cn(xn) 

The possible situations whereby the invariant needs to be modified are described as follows (Corg 

represents the original constraint, and Cdai represents the invariant from daikon). Note that any of 

them should apply «BeliefElement» by default. 
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# Description 
D1 Corg  ⊃  Cdai , we suggest  

1 
The variables in both constraints are the same. For example, S1

Tran1
�⎯⎯�  S2, the state invariant of S2 is {x > 1}, then 

the invariant from Daikon is {x > 2}, so 1) Split S2 into two states with the same trigger, S1
Tran1
�⎯⎯�  S2.1 {x > 2} and 

S1
Tran1
�⎯⎯�  S2.2 {x > 1 and x ≤ 2}; 2) Modify the state invariant of S2 to {x > 2}; 3) No change 

2 

The number of variables is more than the original constraints. For example, S1
Tran1
�⎯⎯�  S2, the state invariant of S2 is 

{x > 1}, then the invariant from Daikon is {x > 1 and y = 0}, so 1) Split S2 to two states with the same trigger, S1
Tran1
�⎯⎯�  S2.1 {x > 1 and y = 0}  and S1

Tran1
�⎯⎯�  S2.2 {x > 1 and y ≠ 0} , 2) Modify the state invariant of S2 to {x >

1 and y = 0}; 3) No change 
D2 Corg  ⊂  Cdai , we suggest 

1 
The variables are the same. For example, S1

Tran1
�⎯⎯�  S2, the state invariant of S2 is {x > 1}, then the invariant from 

Daikon is {x > 0}, so 1) Merge relevant states which may reach (e.g. S2
Tran2
�⎯⎯�  S3 {x > 0 and x < 1}) to a composite 

state S1
Tran1
�⎯⎯�  {S2

Tran2
�⎯⎯�  S3}, 2) Modify the state invariant of S2 to {x > 0}; 3) No change 

2 

The number of variables is less than in the original constraints. For example, S1
Tran1
�⎯⎯�  S2, the state invariant of S2 

is {x > 1 and y = 0}, then the invariant from Daikon is {x > 1}, so 1) Merge relevant states which may reach (S2
Tran2
�⎯⎯�  S3 {x > 1 and z > 2}, S2

Tran3
�⎯⎯�  S3 {x > 1 and t = 0}) to a composite state S1

Tran1
�⎯⎯�  {S2

Tran2
�⎯⎯�  S3, S2

Tran3
�⎯⎯�  S3}, 2) 

Modify the state invariant of S2 to {x > 1}; 3) No change 
D3 Corg  ∩  Cdai  ≠ ∅ and Corg ⊄  Cdai and Corg ⊅  Cdai ,  we suggest 

1 
The variables are the same. For example, S1

Tran1
�⎯⎯�  S2, the state invariant of S2 is {x > 1}, then the invariant from 

Daikon is {x < 2}, so 1) Make intersections of  Corg  and  Cdai, then S1
Tran1
�⎯⎯�  S2{x > 1 and x < 2}, 2) Use constraint 

from Daikon S1
Tran1
�⎯⎯�  S2{x < 2}; 3) No change 

2 
The variables are different. For example, S1

Tran1
�⎯⎯�  S2, the state invariant of S2 is {x > 1 and y = 0}, then the 

invariant from Daikon is {y = 0 and z > 2}, so 1) Make intersections of  Corg   and  Cdai , then  S1
Tran1
�⎯⎯�  S2{x >

1 and y = 0 and z > 2}, 2) Use the constraint from Daikon S1
Tran1
�⎯⎯�  S2{y = 0 and z > 2}; 3) No change 

D4 Corg  ∩  Cdai  = ∅ ,  we suggest 

1 
The variables are the same. For example, S1

Tran1
�⎯⎯�  S2, the state invariant of S2 is {x > 1}, then the invariant from 

Daikon is {x < 0}, so 1) the first solution is to make unions of  Corg  and  Cdai, then S1
Tran1
�⎯⎯�  S2 ¬{x ≤ 1 and x ≥ 0}, 

2) use constraint from Daikon S1
Tran1
�⎯⎯�  S2{x < 0}; 3) unchanged 

2 
The variables are different. For example, S1

Tran1
�⎯⎯�  S2, the state invariant of S2 is {x > 1}, then the invariant from 

Daikon is {y = 0}, so 1) Make unions of  Corg  and  Cdai, then S1
Tran1
�⎯⎯�  S2 ¬{x ≤ 1 and y ≠ 0}, 2) Use constraint 

from Daikon S1
Tran1
�⎯⎯�  S2{y = 0}; 3) No change 
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