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Summary. An approach for solving physics-based optimization problems on dynamical
domains is presented. The optimization problems of interest are those where the goal
quantity is a functional and the constraints are sets of partial differential equations. Each
domain may have its own mesh and a Nitsche based finite element method will be used
to discretize the equations and enforce continuity over the interfaces. This method will
be applied to an optimal Poisson problem, which is solved using the software FEniCS,
dolfin-adjoint and moola.

1 MOTIVATION

There are many problems in industry which can be represented by optimization prob-
lems. One example is how to reduce the drag over an airfoil while maximizing the lift. In
this example the lift and drag are goal quantities which we want to minimize or maximize.
Finding the drag and lift for one specific wing design can be done by representing the
physical system as a set of partial differential equations (PDEs). Solving such equations
numerically can be done with the Finite Element Method (FEM).

Another example is the optimization of wind or tidal turbines. Tidal-stream turbines
are one of the most promising technologies to extract tidal stream energy. It is therefore
important to find the optimal configuration of such turbines. Since these turbines consists
of a set of rotating blades, the domain modeled should be representeded by a dynamical
domain.

Currently methods such as the Arbitrary Lagrangian-Eulerian (ALE) formulation1

have been used to model such domains. With ALE, the mesh follows the dynamics of
the domain. If we want to rotate the turbines without constrictions, the mesh would
experience large deformations and degenerate quality. Therefore fixing such deformations
can be done with smoothing or full re-meshing. However, in an optimization setting,
re-meshing is a non-differentiable operation and can be problematic in gradient based
optimization. Gradient based optimization is preferred since it often reduces the number
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of functional evaluations significantly compared to gradient free methods. We therefore
seek another way of handling dynamical domains. The approach chosen is to allow each
domain to have its own mesh and handle the interface conditions over the non-matching
meshes using Nitsche’s method2. Then, the domains can change without the need of
remeshing.

2 OPTIMIZATION AND THE ADJOINT MODEL

We consider an optimization problem with one goal functional and a set of PDE con-
straints

min
u,m

J(u(m),m), (1)

subject to Fi(u(m),m) = 0, i = 1, . . . , N, (2)

where m = (m1,m2, . . . ,mM) is the control quantities, u is the solution of the set of PDEs
Fi(u,m) = 0, i = 1, . . . , N and J is the goal quantity.

Since the goal quantity may be an indirect function of the control variables m, we
create a new function Ĵ(m) = J(u(m),m). This converts the constrained problem to an
unconstrained problem. The new optimization problem is

min
m

Ĵ(m). (3)

When finding the minimum of this functional we need to evaluate it at different points in
the space of the design parameter. Since this evaluation involves solving a PDE that may
be computationally expensive, we want to reduce the number of such evaluations. To do
this we apply gradient based optimization algorithms and therefore we need information
about the gradient of Ĵ with respect to the design parameters m. By applying the chain
rule to the gradient

dĴ

dm
=
∂J

∂u

du

dm
+
∂J

∂m
. (4)

In this equation the Jacobian du/dm is rather hard to compute, since it is a dense matrix of
dimensions (solution space × parameter space). We use the adjoint approach for avoiding
computation of du/dm. This approach starts by considering the set of PDE-constraints
F (u,m) = 0 and take the total derivative of both sides of this equation

dF

dm
=
∂F

∂u

du

dm
+
∂F

∂m
=

d0

dm
= 0. (5)

Suppose that ∂F/∂u is invertible and insert Equation (5) into Equation (4), obtaining

dĴ

dm
= −∂J

∂u

(
∂F

∂u

)−1
∂F

∂m
+
∂J

∂m
. (6)
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By taking the Hermitian transpose of Equation (6) and defining the the adjoint variable
λ to be the solution of the Jacobian acting on a vector we get the following system

dĴ

dm

∗

= −∂F
∂m

∗
λ+

∂J

∂m

∗
, (7)(

∂F

∂u

)∗
λ =

∂J

∂u

∗
. (8)

For finding the solution to Equation (7) we first solve the adjoint equation (8) for λ, then
taking its inner product with (∂F/∂m)∗ and finally adding (∂J/∂m)∗. When solving the
adjoint equation, we need to specify the functional of interest, but we do not need to
specify the design parameter m. Therefore solving the adjoint equation is very efficient
when we have a small number of functionals and a large number of design parameters.

3 DYNAMIC DOMAINS AND NITSCHE FINITE ELEMENT METHOD

Consider Figure 1 illustrating a turbine with two non-matching meshes: the background
mesh T1 and turbine-fitted mesh T2. Note that parts of T2 overlap T1. To illustrate the
concept of dynamic domains we will rotate T2 with a prescribed velocity ω. Therefore,
both T1 and T2 will be time-dependent, T1 = T1(t) and T2 = T2(t). Note that T2 will have
the same topology since only the location of the vertices will change. For T1, different
vertices may become involved in the discretization as T2 move. On Ti we will construct
finite element spaces, Vh,i(t), i = 1, 2 in a quasi-stationary manner.

Of particular interest is the interface Γ(t) = ∂T2(t)∩T1(t) on which we need to enforce
continuity. This is done weakly using a Nitsche formulation. For example, if we consider
a single Poisson problem F (u(m),m) = −∆u − f(m) in the domain Ω = T1(t) ∪ T2(t),
we seek [u] = [n · ∇u] = 0 across Γ(t). This continuity condition can be enforced weakly
using a Nitsche FEM as described in2: For each t, find uh ∈ Vh(t) = Vh,1(t)× Vh,2(t) such
that ah(uh, vh) = L(vh) for all vh ∈ Vh(t), and

ah(uh, vh) =
2∑

i=1

(∇uh,∇vh)Ti − (n · ∇uh, [vh])Γ − (n · ∇vh, [uh])Γ + γ(h−1[uh], [vh])Γ (9)

L(vh) =
2∑

i=1

(f, vi)Ti , (10)

where γ is a positive constant and uh = (uh,1, uh,2), vh = (vh,1, vh,2).

4 IMPLEMENTATION

FEniCS3 has been used for solving the PDEs related to optimization constraints as
well as solving the heat equation. The technology for handling interfaces between non-
matcing meshes in FEniCS is called MultiMesh. For generating the adjoint equations
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for the optimization problem we have extended dolfin-adjoint4 to support non-matching
meshes. Dolfin-adjoint is a framework for deriving the automated adjoint equations. For
solving the optimization problem we have used moola, an optimization framework for
dolfin-adjoint and FEniCS. The combination of these frameworks will allow the solution
of complex PDE-constrained optimization problems with compact of high-level Python
code. Results for optimization of the source term of the Poisson equation for a stationary
domain will be presented, as well as solution of the heat equation with dynamical domains.

Figure 1: An illustration of a turbine represented with non-fitted meshes. The turbine can be rotated
without remeshing. The blue part is T2, the grey part is T1.
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