
Do Agile Methods Work for Large Software Projects?

Magne Jørgensen

Simula Research Laboratory, 1364 Fornebu, Norway
magnej@simula.no

Abstract. Is it true that agile methods do not scale well and are mainly useful
for smaller software projects? Or is it rather the case that it is particularly in the
context of larger, typically more complex software projects that the use of agile
methods is likely to make the difference between success and failure? To find
out more about this, we conducted a questionnaire-based survey collecting
information about 122 Norwegian software projects. Project success was
measured as the combined performance of the project regarding delivered client
benefits, cost control, and time control. We found that that projects using agile
methods performed on average much better than those using non-agile methods
for medium and large software projects, but not so much for smaller projects.
This result gives support for the claim that agile methods are more rather than
less successful compared to traditional methods when project size increases.
There may consequently be more reasons to be concerned about how non-agile,
rather than how agile methods, scale.

Keywords: Agile Development Methods, Project Size, Project Success

1 Introduction

Much has been written about the extent to which agile methods are suitable for large
software projects. An early attempt to summarize what we know about agile methods
and their success when used in large software projects, authored by Dybå and
Dingsøyr [1], concludes: “The evidence […] suggests that agile methods not
necessarily are the best choice for large projects.” Similarly, the review published by
Jalali and Wohlin [2] finds: “[…] there is not sufficient evidence to conclude that
Agile is efficiently applicable in large distributed projects.” More recent reviews, see
for example [3, 4], emphasize challenges related to the use of agile methods for large
software projects and, similarly to the previous reviews, report little or no evidence to
support the use of agile methods for large software projects. Not only is much of the
research literature sceptical about the use of agile methods for large software projects,
but several software professionals also seem to think that agile methods are mainly

for smaller software projects.1 It is, in addition, not difficult to find examples of
failed, large-scale agile software projects.2 A comprehensive review of experience
reports and case studies on the challenges and success factors regarding the
introduction of agile in large-scale software development can be found in [5].

There are also reported cases where agile methods have been successfully used for
large software projects, see for example [6], and reports where agile methods are
claimed to have had a positive impact on the outcome of large software projects, see
for example [7, 8]. Finally, there are guidelines on how to succeed with large-scale
agile projects, such as [9], which claim to be based on the successful completion of
large software projects using agile methods.

These diverging results and opinions on the use of agile on large software project
may appear to be confusing. There are, however, several reasons why we should not
expect consistent results and opinions about the effect of using agile methods on
larger software projects:
• We do not have a clear, commonly agreed upon understanding of what it means

to work agile. Agile is not a well-defined method, but rather a set of values,
principles, and practices. There are consequently many good and bad ways of
implementing and using agile methods. There may, in addition, be external
factors that complicate the use of good agile, such as the use of fixed price
contracts or insufficient involvement by the client [10]. The same problems are
present for non-agile methods, which may include an even larger variety of
practices. There are good and bad ways of using most software development
methods and it is frequently not clear when it is the inexperience and lack of skill
in using a method and when it is inherent flaws in a method that contribute to
software project failures.

• The development method is only one of many factors affecting the success of a
software project. Other factors, especially the level of provider and client
competence, may be even more important to explain the outcome of large
software projects.

• We do not agree on what a large software project is. A large software project
may be defined relatively to those that an organization is used to completing or
with absolute measures such as budget size, number of developers, or number of
development teams [11]. In addition, the difference between a large project (e.g.,
a project consisting of two teams and costing 10 million Euros) and a mega-large

1 For an example of an opinion-based argumentation of why agile is not useful for large
projects, see blog.inf.ed.ac.uk/sapm/2014/02/14/agile-methodologies-in-large-scale-projects-a-
recipe-for-disaster/. This blog post concludes that “Large-scale development projects are
serious business: agile development has no place here.”
2 See, for example, the UK National Audit Office report: www.nao.org.uk/wp-
content/uploads/2013/09/10132-001-Universal-credit.pdf. It is from the report not clear to what
extent they think that it was agile development itself, the actual implementation and use of agile
or the project’s lack of experience with the use of agile that contributed to the failure of the
project.

project (e.g., a project consisting of ten teams and costing 100 million Euros)
may be substantial.

• We see it when we believe it (confirmation bias). People are good at summarizing
experience in a way that defends their beliefs. As documented in [12], those who
believe in the benefits of agile will tend to find evidence supporting the use of
agile even in random project data without any true patterns connecting
development method and project success. One example of how to confirm a
strong belief in agile (or other) development methods is to categorize a software
project as non-agile, or at least not using agile methods properly, if it fails, i.e., if
it works it is agile, if it fails it is not true agile.

Despite the above methodological problems we may be able to find out more about
the scalability of agile methods by systematically collecting empirical evidence. If
large software projects using agile methods on typically perform better than projects
using other methods, then this supports the claim that agile methods do scale to larger
projects. It may give this information even if we do not know exactly how agile was
implemented and used by the projects, are unable to use a commonly accepted and
good definition of what a large project is, and there are other factors that also matter
for success. Many companies may have adopted agile methods just recently, which
means that if we find that agile software projects perform worse, but perhaps not
much worse, than non-agile as the project size increases, we may not be able to
conclude that agile methods will work on larger software projects. It may then
improve as their competence in using the methods improves.

In this paper we empirically compare agile and non-agile software development
projects by surveying a set of projects, collecting information about their size (as
measured by their budget), their use of development methods, and their degree of
success. The research question of our study is:

How is the relationship between project size and success affected by the development
method?

As indicated earlier in this section, there are many studies on the use of agile
methods on large-scale software projects, and there are many strong opinions about
which method is the better to use on large projects. In spite of this, we have been
unable to find peer-reviewed research articles empirically analysing size-dependent
differences in success of projects using agile and non-agile development methods. A
non-peer reviewed study by the Standish Group from 20163 reports that projects using

3 There are reasons to be sceptical about the results published by the Standish Group; see our
comments on their survey methods on a previous survey in [13]. In its 2016 report, the Standish
Group improved the definition of success to include not only being on time, on cost, and with
the specified functionality, but also that the project delivers satisfactory results. Satisfactory
results include, they claim, client value (blog.standishgroup.com/post/23). This improvement,
given that it is properly integrated in their survey and that they have improved their sampling of
projects, may make their recent results more valid and useful.

agile development methods performed better than those using waterfall-based
methods for small, medium, and large project sizes, and particularly the largest
projects. For the largest projects, the failure rate was 42% for waterfall projects and
23% for agile projects. For the smallest project, the difference is smaller, with an 11%
failure rate for waterfall and a 4% failure rate for agile projects. This study indicates
that agile methods is not only well suited for large projects, but also increasingly
more suited as the project size increases. This is, to our knowledge, the only related
work we can compare our results with.

The remaining article is organized as follows. Section 2 describes the survey
design, limitations, and results. Section 3 briefly discusses the results and concludes.

2 The Survey

2.1 Survey Design

The respondents of the survey were participants at a seminar on management of
software development projects in Oslo, Norway, March 2015.4 All participants were
asked to provide information about their last project, including:
• The respondent’s role in the project.
• The project’s outcome in terms of client benefits, cost control, and time control.
• The project’s budget.
• The project’s use of agile practices, and the respondent’s assessment of how agile

the project had been.
We received information about 108 projects. An examination of the responses

showed that seven of them did not include the required information regarding one or
more of the variables used in our analysis. Removing these left 101 valid responses in
the data set.

Characteristics of the respondents and their projects include:
• Role: 56% of the respondents were from the client side and 44% from the

provider side.
• Client benefits: 35% were categorized as “successful,” 55% as “acceptable,” and

10% as “unsuccessful” or “failed.”
• Cost control: 30% were categorized as “successful,” 32% as “acceptable,” and

38% as “unsuccessful” or “failed.”
• Time control: 37% were categorized as “successful,” 32% as “acceptable,” and

31% as “unsuccessful” or “failed.”
• Budget: 48% of the projects had a budget less than 1 million Euros, 25% between

1 and 10 million Euros, and 27% more than 10 million Euros.5

4 Results from this survey have not been published earlier, but the design and project
performance measures are similar to those in the survey published in [14].
5 The original survey was in Norwegian and used Norwegian Kroner (NOK) as currency. The
Euro-values are the approximate values corresponding to the NOK-values.

• Agile practices: When asked to rank their project with respect to how agile it was
from 1 (very agile) to 5 (not agile at all), 17% responded with 1, 25% with 2,
40% with 3, 14% with 4, and 4% with 5.

The participants were asked to name the agile practices they had used in their last
project. Comparing those descriptions, emphasizing the use of product backlogs,
frequent/continuous delivery to client, the use of scrum or similar management
processes, and the use of velocity to track progress, with responses regarding the
degree of agility of the project using the scale from 1 to 5, we found it reasonable to
cluster the projects as “agile” if the response was 1 or 2, “partly agile” if the response
was 3, and “not agile” if the response was 4 or 5, including. As can be seen, most
projects included in the survey were, to some extent, perceived to be agile, but the
degree of use of agile practices varied.

Our measure of a project’s level of success used a combination of three success
dimensions: client benefits, cost control, and time control. To be categorized as
“acceptable”, we require a score of at least “acceptable” on all three dimensions.
Fifty-four percent of the projects were categorized as acceptable using this definition.
Notice that the inverse of “acceptable” (46% = 100% - 54%) is the set of projects
assessed to have a non-acceptable outcome on at least one of the success dimensions,
i.e., the set of “problematic” projects. To be categorized as “successful,” we require
that all three dimensions should be assessed as “successful.” Only 12% of the projects
belonged to that category.

2.2 Limitations

The survey has a number of limitations that it is important to be aware of when
interpreting the results, including:
• Representativeness. Our sample consists only of Norwegian software projects

and is a convenience sample based on input from people visiting a seminar on
software project management. The common use of agile methods in our data set
suggests that many of the companies represented by the participants had
(possibly much) experience in the use of agile methods. From more in-depth
studies of software projects in similar contexts, see [10], (and common sense) we
know that companies tend to have more problems in the initial phase when they
introduce agile methods compared to subsequent projects. The level of agile
maturity and other largely unknown sample characteristics, may affect how valid
it is to extrapolate our results to other context.

• Perception, not measurement: Several of the survey questions, particularly those
related to project outcome, are based on the respondents’ perceptions, not
measured data. This has some drawbacks, for example, different people may
have different viewpoints regarding the same project. It may also have some
advantages. The degree of success in time control, for example, may be more
meaningfully assessed subjectively. In one context, a 10% time overrun may
point to a time control failure, while in another context, the same overrun may be
acceptable.

• Role bias. We decided to join the responses of those on the client and the
provider side, even though there may have been systematic differences in their
responses. For example, those in the client role seem to have been less critical
than those in the provider role when assessing the outcome of the projects. Using
our measure of acceptable outcomes, those on the client side found 66% of the
projects to be acceptable, while the figure was 46% when assessed by those on
the provider side. Those on the client and the provider side gave however
approximately the same average score regarding client benefits, i.e., 37% of the
projects assessed by the clients were successful regarding client benefits, while
the figure was 32% when assessed by the providers. If the role bias is not
dependent on the degree of use of agile methods, which we believe is the case,
joining the responses of the two roles will not affect the direction of the
interaction effect reported later in this paper.

• Correlation vs. causation. There may be systematic differences in the non-
measured characteristics of the agile and the non-agile software projects. In
particular, it may be that the client and/or provider competence was higher for
those using one type of development method, e.g., providers and clients using
agile methods may have been more competent than those using non-agile
methods. This will exaggerate the effect of a development method if the most
competent clients and providers are more likely to choose the better development
method. As with role bias, the direction of the interaction effects from project
size is less likely to be affected by such differences.

• Few observations. There are few projects for several combinations of
development method and project size category, in particular for the non-agile
projects. The low statistical power means that tests of the statistical significance
of the interaction effect on the development method are not feasible. It also
implies that there are limitations regarding the robustness of our results and that
small to medium large differences in success rates are caused by random variance
in outcomes. Our results should consequently be understood as initial,
exploratory results to be followed up with more empirical research.

2.3 Results

Table 1 gives the proportion of observations per budget and development method
category. It shows that agile and partly agile methods are frequently used even for the
largest projects. They are used in 33% and 56% of the largest projects, respectively.
While this does not say anything about the usefulness or harm of using agile methods
as project size increases, it documents that many of the software professionals
involved considered agile and partly agile development methods to be useful for
larger projects. Notice the increase in use of partly agile as the project size increases
from medium to large. This may suggest that some software professionals believe less
in working fully agile when projects get large.

Table 1. Proportion use of development method per budget size category

Budget size Agile Partly agile Not agile # projects
Small 37% (18) 42% (20) 21% (10) 48
Medium 58% (15) 19% (5) 23% (6) 26
Large 33% (9) 56% (15) 11% (3) 27
projects 42 40 19 101

Table 2 and Figures 1–5 show the interacting effect of development methods on
the connection between project size and:
i) Proportion of acceptable projects (Figure 1)
ii) Proportion of successful projects (Figure 2)
iii) Mean score for client benefits (Figure 3)
iv) Mean score for cost control (Figure 4)
v) Mean score for time control (Figure 5)

The scores of the success dimensions are coded with 4 for successful, 3 for
acceptable, 2 for unsuccessful, and 1 for failed projects. This scale is, according to
measurement theory, an ordinal scale. We believe, nevertheless, that the mean scores
(which strictly speaking require at least an interval scale) give a good indication of the
typical outcome regarding client benefits, cost control, and time control.

Our results do not support the claim that projects using agile or partly agile
methods do worse than non-agile methods on larger projects. Quite the opposite, the
data indicates that large projects using agile or partly agile methods were more likely
to be assessed as acceptable than medium large projects using these methods. The
non-agile projects performed reasonably well for the smallest projects, just a little
worse than the agile and partly agile projects, but very badly on the medium and large
software projects. In fact, among the non-agile projects of medium and large size,
there were no projects in our data set that met the criterion of being perceived
acceptable or better on all success criteria. Although consisting of a small sample,
only nine projects used non-agile methods for medium and large projects; this weakly
indicates that it is non-agile rather than agile methods that have most problems with
larger software projects. This result—i.e., that non-agile methods score relatively
poorly compared to agile projects and that the performance difference increases as the
project size increases—is similar to that reported in the Standish Group’s Chaos
Report for 2016.

For most of the measures, there were not much difference in the assessed outcome
for projects using agile and only partly agile. The most notable exceptions were
projects assessed to be successful in all three dimensions (Figure 2), wherein agile
performed better than partly agile for large, but worse for medium large projects

Table 2. Success with use of development method per budget size category

Budget size Agile Partly agile Not agile
Total success (% acceptable)

Small 72% 60% 60%
Medium 46% 40% 0%
Large 67% 60% 0%

Total success (% successful)
Small 28% 10% 10%
Medium 7% 20% 0%
Large 11% 7% 0%

Client benefits (mean score)
Small 3.5 3.1 3.1
Medium 3.3 3.4 3.0
Large 3.4 2.8 2.3

Cost control (mean score)
Small 3.2 2.9 2.9
Medium 3.5 2.8 1.8
Large 3.4 2.9 1.0

Time control (mean score)
Small 3.3 3.3 2.8
Medium 2.9 2.6 1.7
Large 2.8 2.9 2.5

Fig. 1. Proportion of acceptable projects

Fig. 2. Proportion of successful projects

Fig. 3. Client benefits

Fig. 4. Cost control

Fig. 5. Time control

3 Discussion and Conclusion

There are analytical arguments both in favour and against good performance of
agile methods on large projects. An example of an argument in favour of their use is
that it is increasingly more unlikely that requirements will remain stable as the size of
the software project increases. The understanding of needs is likely to change during
the course of the project, and there will most likely be external changes leading to
requirement changes. Agile development methods, implementing a process where
change is a more integrated part, may consequently be better able to deal with the
high requirement volatility of many large projects [10, 14]. An example of an
argument sometimes used against the use of agile methods on large software projects
is that the lack of upfront planning and architectural thinking, make projects more
risky with increasing size.6 Consequently, it is possible to analytically argue in favour
of both agile and more plan-driven, non-agile software development methods. To find
out which argumentation in practice is the stronger, and whether agile methods
typically are good for large projects, requires empirical evidence.

The results from this study do this and provide evidence about how projects with
agile practices perform on important success criteria. As pointed out in Section 2.2
there are several threats to the validity of our results, but the results do give some
evidence in support of that the typical medium and large software projects using agile
practices perform acceptably on essential success criteria. This was not the case for
typical software projects using non-agile methods in our data set. Consequently, our
data suggests that the question is not so much whether agile methods work well for
large software projects, but rather how well non-agile software development methods
work for such projects. Large projects are inherently risky, and our data suggests that
the failure risk is reduced rather than increased with the use of agile methods instead
of non-agile methods.

References
1. Dybå, T. and T. Dingsøyr, Empirical studies of agile software development:

A systematic review. Information and software technology, 2008. 50(9): p.
833-859.

2. Jalali, S. and C. Wohlin, Global software engineering and agile practices: a
systematic review. Journal of software: Evolution and Process, 2012. 24(6):
p. 643-659.

3. Khalid, H., et al., Systematic literature review of agile scalability for large
scale projects. International Journal of Advanced Computer Science and
Applications (IJACSA), 2015. 6(9): p. 63-75.

6 See for example: www.6point6.co.uk/an-agile-agenda, which predicts that UK is wasting 37
billion GBP annually on failed agile projects. This number is based on a survey of CIOs,
suggesting a 12% complete failure rate of agile projects. They did not calculate the waste on
failed non-agile projects.

4. Turk, D., R. France, and B. Rumpe, Limitations of agile software processes.
arXiv preprint arXiv:1409.6600, 2014.

5. Dikert, K., M. Paasivaara, and C. Lassenius, Challenges and success factors
for large-scale agile transformations: A systematic literature review. Journal
of Systems and Software, 2016. 119: p. 87-108.

6. Dingsøyr, T., et al., Exploring software development at the very large-scale:
a revelatory case study and research agenda for agile method adaptation.
Empirical Software Engineering, 2016: p. 1-31.

7. Lagerberg, L., et al. The impact of agile principles and practices on large-
scale software development projects: A multiple-case study of two projects
at ericsson. in ESEM. 2013. Baltimore, MD, USA: IEEE.

8. Ebert, C. and M. Paasivaara, Scaling Agile. IEEE Software, 2017. 34(6): p.
98-103.

9. Elshamy, A. and A. Elssamadisy, Applying agile to large projects: new agile
software development practices for large projects, in Agile Processes in
Software Engineering and Extreme Programming, G. Concas, et al., Editors.
2007, Springer: Como, Italy. p. 46-53.

10. Jørgensen, M., P. Mohagheghi, and S. Grimstad, Direct and indirect
connections between type of contract and software project outcome.
International Journal of Project Management, 2017. 35(8): p. 1573-1586.

11. Dingsøyr, T., T.E. Fægri, and J. Itkonen. What is large in large-scale? A
taxonomy of scale for agile software development. in International
Conference on Product-Focused Software Process Improvement. 2014.
Springer.

12. Jørgensen, M., Myths and Over-simplifications in Software Engineering.
Lecture Notes on Software Engineering, 2013. 1(1): p. 7-11.

13. Jørgensen, M. and K. Moløkken-Østvold, How large are software cost
overruns? A review of the 1994 CHAOS report. Information and Software
Technology, 2006. 48(4): p. 297-301.

14. Jørgensen, M., A survey on the characteristics of projects with success in
delivering client benefits. Information and Software Technology, 2016. 78:
p. 83-94.

