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Abstract  
There are large skill differences among software developers, and clients and managers will 
benefit from being able to identify those with better skill. This study examines the relations 
between low effort estimates, and other commonly used skill indicators, and measured 
programming skill. One hundred and four professional software developers were recruited. After 
skill-related information was collected, they were asked to estimate the effort for four larger and 
five smaller programming tasks. Finally, they completed a programming skill test. The lowest 
and most over-optimistic effort estimates for the larger tasks were given by those with the lowest 
programming skill, which is in accordance with the well-known Dunning-Kruger effect. For the 
smaller tasks, however, those with the lowest programming skill had the highest and most over-
pessimistic estimates. The other programming skill indicators, such as length of experience, 
company assessed skill and self-assessed skill, were only moderately correlated with measured 
skill and not particularly useful in guiding developer skill identification. A practical implication 
is that for larger and more complex tasks, the use of low effort estimates and commonly used 
skill indicators as selection criteria leads to a substantial risk of selecting among the least skilled 
developers. 
 

1. Introduction	
 

«I am wiser than this man, for neither of us appears to know anything great and good; but he 
fancies he knows something, although he knows nothing; whereas I, as I do not know anything, so 
I do not fancy I do. In this trifling particular, then, I appear to be wiser than he, because I do not 
fancy I know what I do not know.» Socrates in Plato's Apology (399-389 BC) 

 
Ideally, software developers would know their skill level and estimate the required 

work effort for carrying out tasks. This implies that clients and managers could safely select 
developers and evaluate their skill relative to other developers based on their effort estimates. 
This may occasionally be the case: A study of seven offshoring companies, with approximately 
equally good performance evaluations from previous clients and with similar experience level, 
demonstrated that the developers from the company with the lowest effort estimate spent the 
least effort and delivered the best quality [1]. The opposite, however, was observed in a study 
of four Norwegian companies, also developing the same software [2], where the developers 
from the company with the lowest effort estimate required the most effort and delivered the 
lowest quality. The finding that the least skilled developers can often be found among those 
with the lowest effort estimates is in accordance with the so-called Dunning–Kruger effect [3], 
a cognitive bias in which less skilled people also tend to be unaware of their lack of 
competence owing to poorer metacognitive skills, and therefore tend to be more over-
optimistic in their predictions of their own performance. The original finding was on people’s 
assessment of their skill relative to others’ skill, but the effect has also been found to include 
other types of performance predictions [4]. 

The explanation of the Dunning–Kruger effect is still under debate. It has been 
proposed that it is caused by an anchoring-and-adjustment heuristic or a regression-towards-
the-mean effect [5], and that it is a task-related artefact stemming from the more complex 
problem of task understanding by those with lower skill [6]. In spite of a lack of a commonly 
accepted explanation and the methodological problems of the original study [4], the Dunning–



Kruger effect itself, i.e. that lower skill is connected with more over-optimistic performance 
estimates, appears to persist across studies in academic [7], sport [8] and work-related [9] 
settings. 

From prior studies, it is known that selecting software developers based on low effort 
estimates, or low-price bids derived from low effort estimates, increases the likelihood of 
selecting over-optimistic developers, which in turn increases the risk of project problems, as for 
example, in the study on ‘the winner’s curse’ described in [10]. To the authors’ knowledge, the 
relation between an emphasis on low effort estimates and the increased likelihood of selecting 
developers with low programming skill has not previously been investigated. It may be the 
case that the observed problems connected with developer or provider selection based on low 
effort estimates or prices are not only that the plans become unrealistic and the providers make 
financial losses and behave opportunistically [11], but also that a focus on low effort estimates 
leads to selecting less skilled software developers. 

The above observations motivate the first research question: 
 

RQ1: What are the relations between effort estimates and programming skill in software 
development?  

 
Low-skilled software developers will not be selected if the skill assessments by the 

companies or the skill self-assessments by the developers, e.g. as described in their CVs, were 
reliable indicators of actual programming skills. This motivates the second research question: 

 
RQ2: How well do commonly used skill indicators, including company and self-assessed skill 
indicators, correspond with measured programming skill? 

 
The remainder of this paper describes the study design and characteristics of the 

collected data (Section 2), the results (Section 3), discusses the results, possible explanations of 
the findings and limitations of the work (Section 4) and concludes (Section 5). 
 

2. Study	design	

2.1 Participants 
Two software companies were contacted and asked to provide Java developers as 

participants in the study. One of the companies, located in Poland, had more than 500 software 
developers, had completed software projects for clients around the world for more than ten 
years. Their work processes were mainly based on agile development. The other company, 
located in Ukraine, was a branch of a larger international software development company with 
more than 1000 software developers. This company had mainly clients from US and Europe in 
sectors such as government, banking, real estate and tourism. The development processes were 
typically agile for product development. 

A mixture of junior, intermediate and senior Java developers were requested. Junior, 
intermediate and senior were skill categories used by the companies to, amongst others, 
determine the hourly payment rates. A senior developer was typically compensated 20% more 
than an intermediate, and an intermediate 20% more than a junior. The companies were 
compensated for the participation of their developers using their ordinary hourly payment rates. 
It was indicated that the estimation and programming work would require four to five hours, 
and at least half a year of experience in Java development was a requirement.  

Both companies accepted the request and offered, in total, 104 (57 + 47) software 
developers as participants. Among them, 27% were categorised by the companies as junior, 
43% as intermediate and 30% as senior developers. Seven out of the 104 developers were 
female. 

The steps of the study were as follows: 
1. Collection	of	information	about	the	participants	(described	below)	
2. Provision	of	the	estimates	of	each	of	the	nine	tasks	(see	Section	2.2)	
3. Completion	of	the	five	smaller	tasks	(see	Section	2.3)	



All steps were typically collected in one session. If there was a need for a longer break, 
this should be done between Step 2 and Step 3. The full questionnaire of the information 
collection and estimates will be sent upon request. 

The collection of information about the participants requested information about length 
of experience, self-assessed programming and effort estimation skill. The self-assessed skill 
measures used a scale from 1 (novice) to 5 (expert). Table 1 describes characteristics of the 
developers, including a separation into their payment category (company assessed skill-
category). 
 
Table 1: Education, experience and self-assessed general skill 

Characteristic  Mean (stddev) Median Minimum Maximum 
Experience as software 
professional (years) 

Total 7.5 (7.4) 6.0 0.7 27.0 
Junior 3.0 (2.2) 2.4 0.7 8.6 
Intermediate 7.3 (5.2) 6.0 2.1 26.0 
Senior 11.9 (5.4) 11.3 2.0 27.0 

Experience as Java programmer 
(years) 

Total 5.7 (4.4) 5.0 0.5 18.3 
Junior 2.0 (1.1) 1.6 0.5 5.0 
Intermediate 5.3 (2.9) 5.0 0.5 18.0 
Senior 9.7 (4.7) 10.0 1.0 18.3 

Number of projects completed Total 9.3 (7.8) 8 1 50 
Junior 6.9 (8.3) 4.5 1 40 
Intermediate 8.2 (4.4) 8.0 2 20 
Senior 13.1 (9.9) 10 4 50 

Self-assessed general 
programming skill (1 … 5) 

Total 3.5 (0.8) 4 2 5 
Junior 2.9 (0.8) 3 2 5 
Intermediate 3.6 (0.6) 4 3 5 
Senior 4.0 (0.7) 4 2 5 

Self-assessed skill in Java-
programming (1 … 5) 

Total 3.7 (0.8) 4 2 5 
Junior 3.0 (0.9) 3 2 5 
Intermediate 3.9 (0.7) 4 2 5 
Senior 4.2 (0.7) 4 3 5 

Self-assessed skill in estimation 
of software development effort 
(1 … 5) 

Total 3.0 (0.9) 3 1 5 
Junior 2.3 (0.9) 2.5 1 4 
Intermediate 3.1 (0.7) 3 2 4 
Senior 3.4 (1.0) 4 2 5 

 
Seventy percent of the developers had previously been responsible for estimating 

software projects, and 96% had been responsible for the estimation of their own work. As can 
be seen from Table 1, an increase in company assessed skill-category, e.g., from junior to 
intermediate or from intermediate to senior, corresponded with an increase in the mean and 
median length of experience, number of projects completed and self-assessed skill. 

 

2.2 Task estimation 
Following the provision of information about themselves, the software professionals 

were asked to estimate the effort, in work-hours and minutes, they thought it would most likely 
be required to complete nine different tasks using the programming language Java in their 
ordinary development environment. Four of the tasks were larger tasks (or smaller projects), 
where the participants were asked to develop new software systems using Java. The remaining 
five, which were later used in the evaluation of their programming skill, were smaller Java 
programming tasks in which, typically, existing Java code should be modified. The sequence 
of the estimation work was randomised for each participant, using the randomiser function in 
the survey tool Qualtrics (www.qualtrics.com). The same survey tool was used for the data 
collection of the estimates as well as the self-reported experience and skill information.  

Table 2 presents the descriptions and estimates of the four larger tasks (Tasks A–D), 
including the median estimates per company-assessed skill category (junior, intermediate and 
senior). These tasks were only estimated and not completed. The table includes the actual 
effort by other developers to complete the tasks, when this information was available (Tasks A 



and B). When the actual effort spent by other developers was not available (Tasks C and D), 
the median and interquartile ranges of estimates, as provided by developers not participating in 
this study, are presented.  

The effort needed for the completion of the Task A-D will naturally vary from develop 
to developer, depending on, amongst others, tool support and relevance of competence. The 
median estimates in this study is, nevertheless, not far off from the actual or estimated effort 
values in other studies. This supports the impression that the estimation work was taken 
seriously by the developers in this study.  

There was no clear connection between the median estimate of a task and the company-
assessed skill category. Notice that those categorized as junior developers, i.e., those assessed 
to be least competent by the companies, had the lowest median estimates for Task A, C and D 
and the second lowest for Task B. The task specifications will be sent to interested readers 
upon request. 

 
Table 2: Characteristics of the larger tasks (projects) 

Task Description Actual effort or effort estimates 
by other developers 

Effort estimates of developers in 
this study 

A Development of a web 
system with an 
interface to an xml file 
containing information 
about scientific articles. 

Six different companies spent 29, 
84, 187, 242, 474 and 527 
(median 215) work hours, see [1]. 

The median estimated effort was 62 
work hours. Median estimates of 
junior, intermediate and senior 
developers were, respectively, 40, 50 
and 80 work-hours. 

B Development of a 
database with 
information about 
research studies, with 
links to other databases 
and user interface. 

Four different companies spent 
85, 90, 108 and 155 (median 99) 
work hours, see [2]. 

The median estimated effort was 158 
work hours. Median estimates of 
junior, intermediate and senior 
developers were, respectively, 140, 
160 and 120 work-hours. 

C  Development of a web-
based system that 
graphically displays on 
a world map the 
connections between 
different countries 
(such as number of 
outsourced projects). 

The median estimated effort, as 
estimated by 78 software 
professionals, was 40 work hours, 
see control group estimates for 
Project A in [12]. 

The median estimated effort was 40 
work hours. Median estimates of 
junior, intermediate and senior 
developers were, respectively, 40, 40 
and 60 work-hours. 

D Development of a 
standalone desktop 
system with rule-based 
support for selection of 
jogging shoes. 

The median estimated effort, as 
estimated by 126 software 
professionals, was 112 work 
hours, see control group estimates 
for Project B in [12]. 

The median estimated effort was 56 
work hours. Median estimates of 
junior, intermediate and senior 
developers were, respectively, 49, 68 
and 80 work-hours. 

 
The smaller tasks (Tasks E–I) were first estimated and then completed by the 

developers. Table 3 presents the descriptions, actual completion efforts, proportion completed 
correctly and effort estimates for these tasks. It also includes a separation into the company-
assessed skill-categories junior, intermediate and senior. 

As can be seen, there is a tendency towards overly high estimates of the effort required 
to complete the smaller tasks amongst those providing a correct solution1. Based on the tasks 
with a correct solution, the median overestimation was as much as 80 min. An over-estimation 
of relatively small tasks is a frequently observed phenomenon, dating back as early as 1868 in 
results reported by Vierordt [13], and summarised for the context of effort estimates in [14]. 
The overestimation may, to some extent, be because the smaller tasks appeared more complex 
than they were in reality. For example, the inclusion of the Java code that should be understood 
and updated made the task material more extensive and complex than the task completion 
itself, as most of the tasks were fairly simple. It may also be that estimates of the smaller tasks, 

                                                
1	It	is	not	meaningful	to	calculate	the	estimation	error	for	incomplete	or	incorrect	solutions,	and	these	are	
consequently	excluded	from	the	estimation	error	measurement.	It	should	be	noticed	that	this	leads	to	a	
selection	bias	affecting	the	error	measurement,	i.e.	only	the	best	developers	are	included.	



when estimated after a larger task, are affected by the previous task estimates, i.e., a type of 
anchoring or assimilation effect increasing the effort estimates of the larger tasks [15]. More on 
possible explanations for the observed estimation over-pessimism of the smaller tasks in 
Section 3. As opposed to the larger tasks, there is no clear connection between company 
assessed skill-category (junior, intermediate and senior) and median estimates. The junior 
developers did worse than the intermediate and the senior on the two most complex tasks 
(Tasks G and I, i.e., the tasks with the lowest proportion of correct solution), but had otherwise 
similar median actual effort and proportion of correct solution. 

 
Table 3: Characteristics of the smaller tasks 

Task Description Median actual effort of the correct 
solutions and proportion of correct 
solutions 

Estimated effort of the 
developers in this study  

E Adding functionality 
to an existing ATM 
application. Source 
code of the 
application was 
displayed. 

The median actual effort was 25 min.  
Median estimates of junior, intermediate 
and senior developers were, respectively, 
24, 25 and 21 minutes. 
Proportion of correct: 66%. 
Proportion correct for junior, intermediate 
and senior developers were, respectively, 
70%, 63% and 67%. 

The median estimated effort 
was 155 min. Median estimates 
of junior, intermediate and 
senior developers were, 
respectively, 180, 120 and 360 
minutes. 

F Adding functionality 
to an existing 
program for a coffee 
vending machine. 
UML diagram and 
source code of the 
application was 
displayed. 

The median actual effort was 8 min.  
Median estimates of junior, intermediate 
and senior developers were, respectively, 
11, 12 and 11 minutes. 
Proportion of correct: 96%. 
Proportion correct for junior, intermediate 
and senior developers were, respectively, 
100%, 93% and 95%. 

The median estimated effort 
was 120 min. Median estimates 
of junior, intermediate and 
senior developers were, 
respectively, 120, 120 and 180 
minutes. 

G Modifying a laser 
controller program. 
Source code of the 
application was 
displayed. 

The median actual effort was 9 min.  
Median estimates of junior, intermediate 
and senior developers were, respectively, 
13, 12 and 9 minutes. 
Proportion of correct: 43%. 
Proportion correct for junior, intermediate 
and senior developers were, respectively, 
22%, 53% and 47%. 

The median estimated effort 
was 60 min. Median estimates 
of junior, intermediate and 
senior developers were, 
respectively, 60, 30 and 60 
minutes. 

H Writing unit tests for 
a program that listed 
the directory content 
of a specified root 
directory. 

The median actual effort was 14 min.  
Median estimates of junior, intermediate 
and senior developers were, respectively, 
21, 14 and 13 minutes. 
Proportion of correct: 74%. 
Proportion correct for junior, intermediate 
and senior developers were, respectively, 
76%, 83% and 70%. 

The median estimated effort 
was 90 min. Median estimates 
of junior, intermediate and 
senior developers were, 
respectively, 123, 60 and 120 
minutes. 

I Fixing a bug and 
extend the 
functionality of a lab-
order system of a 
healthcare related 
software. 

The median actual effort was 39 min. 
Median estimates of junior, intermediate 
and senior developers were, respectively, 
35, 37 and 37 minutes. 
Proportion of correct: 15%. 
Proportion correct for junior, intermediate 
and senior developers were, respectively, 
4%, 19% and 20%. 

The median estimated effort 
was 390 min.  
Median estimates of junior, 
intermediate and senior 
developers were, respectively, 
600, 255 and 435 minutes. 

Note: Task E–I contained 7, 12, 4, 37, and 4 Java files and consisted of 280 (46), 310 (59), 50 (61), 979 (74), and 
104 (27) Lines of code (lines of comments) including unit test cases (Task H, I, ***) respectively. Tasks E–G had 
a “happy path” (https://en.wikipedia.org/wiki/Happy_path) output scenario in the task description. Task F had a 
UML sequence diagram. Tasks E–F had a PDF with the available source code for reference during the estimation 
task.   

 
Following each task estimate, the developers provided the expected estimation accuracy 

using a scale from 1 (very low) to 5 (very high), and assessed their problem-solving knowledge 
using a scale from 1 (no idea of what to do) to 6 (know exactly what to do). Figure 1 shows the 
mean responses from these two assessments, with 95% confidence intervals of the mean 



values. As can be seen, the estimates for the larger tasks (Tasks A–D) had typically lower 
expected accuracy compared with those for the smaller tasks (Tasks E–I); furthermore, the 
developers were less confident about their knowledge of how to solve the task. It can also be 
seen that the last (and most complex) of the smaller tasks (Task I) was estimated with less 
expected accuracy compared with the other smaller tasks; furthermore, the developers 
indicated lower problem-solving knowledge. The correlation between expected estimation 
accuracy and self-assessed knowledge was relatively strong (r = 0.66). 

 
Figure 1. Confidence intervals of expected estimation accuracy and self-assessed 
knowledge per task 

 
 

2.3 Measurement of programming skill 
The tasks E-I were those solved by the developers for the purpose of measurement of 

programming skill. The tasks were solved in the same sequence by all developers starting with 
Task E and finishing with Task I. We used an online tool from Technebies 
(www.technebies.com) to support the skill measurement. The tool had previously been 
validated in terms of measurement and external validity [16]. Its compatibility with 
contemporary cognitive skill and ability theory has been verified as well [17]. 

Using the tool, each developer’s performance is measured using the polytomous Rasch 
model [18], as implemented in the R package eRm (CRAN.R-project.org/package=eRm, see 
[19]). Briefly, the Rasch model estimates skill (ability) and task difficulty on the same, interval 
scale. Zero on this scale is by convention used as the mean difficulty of the available tasks. The 
mean difficulty can be compared with the mean skill of the subjects to detect whether the tasks 
as a whole were easy (skill > 0) or difficult (skill < 0) for the subjects. The unit of the scale is 
the logarithm of odds (logits2) and when skill equals difficulty, the probability of a correct 
answer to a task is 50%. Moreover, the scale can express differences in skill as odds. For 
example, a (relative) difference of, say, three logits in skill between two individuals would 
yield exp(3)3. This corresponds to approximately 20 to 1 in fair odds of the less skilled 
individual doing “better” on a programming task than the more skilled. For tasks H and I, 
which have not previously been reported in the literature, the main validation steps reported in 

                                                
2	logit(p)	=	log(p/1-p),	where	p	is	the	probability	and	p/(1-p)	is	the	odds.	
3	logit1=3*logit2	Þ	log(odds1)	=	3*log(odds2)	Þ	odds1	=	exp(3)+odds2,	which	means	that	the	

difference	in	odds	is	exp(3)=20.09.	



[16] were used for calibration and to ensure that programming skill was measured, as in the 
previously calibrated tasks E–G. 

The tasks were completed using a regular integrated development environment (IntelliJ 
or Eclipse) on a remote Amazon Web Services (AWS) instance using virtualisation that 
allowed the developers to access their development environment through a browser. To prevent 
researcher bias, an engineer at Technebies automatically generated all skill measurements 
without any access to the developers’ personal data, background information or effort 
estimates, and provided these results to the first author before the analysis reported in this 
paper was conducted. 

The median skill score was −0.12, with an interquartile range of 1.50 = 0.62 − (−0.88). 
The quartiles of the skill score (−0.88, −0.12 and 0.62) were used to divide the developers into 
four skill categories (Q1–Q4) for later analysis. Figure 2 shows the distribution of the skill 
scores, excluding two developers whose programming performance was insufficient for proper 
calculation of skill scores. These two developers had no discernible progress on any of the five 
programming tasks and thus were put in the lowest skill category (Q1). 

 
 
Figure 2. Distribution of skill scores 

 
 

2.4 Analysis method 
A linear mixed model [20] was used to analyse the relation between measured 

programming skill and effort estimates (RQ1). The variance estimation is based on restricted 
maximum likelihood, and the tests of fixed effects used the Kenward–Roger degrees of 
freedom approximation. The use of a mixed effect model enables repeated measurement and 
inclusion of the effect of both random and fixed variables. In the present model, Developer is 
considered a random variable; whereas, Task and Skill category are fixed variables. The model 
includes an interaction effect to examine whether there are task differences in how skill 
category affects the estimates. The variables are described in Table 4.  

 
Table 4: Variables included in the analysis related to RQ1 
 

Variable Type Description 
lnEst = ln(Estimated 
effort)  

Response variable The estimated effort of a project. The estimates were strongly 
right-skewed with a few overly high values. Therefore, the 
natural logarithm of the estimate was used to ensure a more 
symmetric and closer to normal distribution of the estimates. 



Developer Random effect Developer identification number (id1–id104). Each 
developer estimated all nine projects. 

Task Fixed effect Task identification (A–E for the smaller, and F–I for the 
larger tasks). 

Skill category Fixed effect The skill score was divided into skill categories Q1 (lowest 
skill) to Q4 (highest skill) using the skill quartiles as category 
limits. A division into four skill categories follows the initial 
and several follow-up analyses of the Dunning–Kruger effect 
[3].  

Task x Skill category Fixed effect 
(interaction variable) 

The interaction between project and skill score category, 
examining whether there are different skill effects for 
different tasks. 

 
 The relation between skill and estimates may be different for the larger tasks A–D, 

where the estimates are based a requirement specification, and there appears to be a tendency 
towards underestimation, and the much smaller tasks E–I, where the estimates are typically 
based a short specification and pieces of Java-code, and there appears to be a tendency towards 
overestimation. In addition, it may be difficult to have a joint analysis of projects that would 
take days to complete (Tasks A–D) and smaller tasks requiring a few minutes (Tasks E–I). 
Accordingly, these two datasets were analysed separately, yielding 416 observations (104 
developers × 4 tasks) for the first dataset (Tasks A–D), and 520 observations (104 developers × 
5 tasks) for the second dataset (Tasks E–I). 

An important concern of the study design is to avoid the regression effect biasing the 
results of the original Dunning–Kruger study [5]. The regression effect, caused by a 
mathematical coupling [21] between the independent and dependent variables, is a problem 
when programming skill is measured on the same tasks as those used to examine the relation 
between skill and task estimates, including degree of estimation bias. For the analysis of the 
data set with the four larger tasks, there is no such problem, as the skill score is derived from 
the developers’ performance on the five smaller tasks combined. For the analysis of each of the 
five smaller tasks, however, this would include a slight mathematical coupling of the 
independent and dependent variables. Therefore, the programming performance score (used to 
measure skill) was excluded from the calculation of a developer’s skill score on small tasks. 
This implies, for example, that the skill score of a software developer estimating Task F (one 
of the smaller tasks) is based on his/her performance on Tasks E, G, H and I (the remaining 
four smaller tasks), but not on Task F. Accordingly, the catR (CRAN.R-
project.org/package=catR) package was used to measure skill based on the task difficulty 
parameters from eRm, whereas the programming performance observation of the task being 
estimated was treated as missing. 

The analysis related to the second research question (RQ2) examines how strongly the 
following company- and self-evaluations of skill are connected with the measured 
programming skills: 
• Skill/payment category (junior, intermediate, senior) of developer as assessed by the 

company. 
• Length of experience as software developer in general. 
• Length of experience as software developer using Java. 
• Self-assessed programming skill in general. 
• Self-assessed programming skill using Java. 
• Self-assessed effort estimation skill. 
• Confidence in accuracy of effort estimates (per task). 
• Confidence in knowledge related to problem solving (per task). 

 
Concordance-based measures were used, i.e. Somers’ D and the ability to predict the more 
skilled developer out of two (‘hit rate’), together with Spearman rho (rank-based correlation 
coefficient) for the analysis of the relation between a skill indicator and measured 
programming skill. 

 



3. Results	

3.1 Relation between skill category and estimates (RQ1) 
Linear mixed models were used, with the estimate (lnEst) as the response variable, 

Developer as random variable, and Task, Skill category and the interaction between skill 
category and task as dummy-coded (0 or 1) fixed variables for the set of larger and for the set 
of smaller tasks. The model parameters and residuals, which were close to being normally 
distributed, are included in Appendix 1. The adjusted R2-values were 78% for the larger and 
74% for the smaller tasks. 

Table 5 shows the results of the fixed effects test and the Tukey pairwise comparison of 
the mean estimate for each skill category. Box plots displaying the effort estimates according 
to skill category, aggregated for the larger and the smaller tasks, are shown in Figures 3 and 4. 
Figures 5 and 6 show the connection between the skill scores and lnEst, per task, using the 
LOWESS (locally weighted smoothing) smoother function with 0.5 degrees of smoothing and 
two iterations (steps). For presentation purposes, two outliers with low (less than −3) 
programming skill are not displayed. 
 
Table 5: Test of fixed effects and Tukey pairwise comparison of skill categories 
 

Item Larger tasks Smaller tasks 
Task F-value 25.3, p-value < 0.001 F-value 68.8, p-value < 0.001 
Skill Category F-value 2.92, p-value = 0.038 F-value 8.33, p-value < 0.001 
Task x Skill Category F-value 1.75, p-value 0.08 F-value 1.94, p-value 0.028 
Tukey pairwise comparisons of 
mean estimates (back-
transformed from lnEst) of the 
four skill categories. 

Q1: 43 h 
Q2: 95 h 
Q3: 107 h 
Q4: 66 h 

Q1: 278 min 
Q2: 143 min 
Q3: 128 min 
Q4: 112 min 

Tukey pairwise comparison of 
mean estimates (back-
transformed from lnEst) for Task 
x Skill Category, together with 
the reference effort.  
 
The reference effort for Task A 
and B is based on the median 
actual effort of other companies 
solving the task, whereas that of 
Tasks C and D on the median 
estimated effort by other 
developers.  
 
The reference efforts for Tasks 
E–I (Actual) are the median 
actual efforts of those completing 
the tasks with a correct solution. 
The proportion of correct 
solutions per task and skill 
category is shown in round 
brackets. As before (relevant for 
the smaller tasks only), the skill 
score excludes the score on the 
task being estimated. 

Task A Q1: 40 wh 
Q2: 64 wh 
Q3: 98 wh 
Q4: 58 wh 
Reference effort: 
215 wh 

Task E  Q1: 380 min 
Actual: 23 min (42%) 
Q2: 213 min 
Actual: 22 min (50%) 
Q3: 161 min 
Actual: 27 min (73%) 
Q4: 118 min 
Actual: 19 min (83%) 

Task B Q1: 61 wh 
Q2: 225 wh 
Q3: 177 wh 
Q4: 129 wh 
Reference effort: 
155 wh 

Task F Q1: 293 min 
Actual: 16 min (83%) 
Q2: 105 min 
Actual: 11 min (100%) 
Q3: 151 min 
Actual: 11 min (96%) 
Q4: 98 min 
Actual: 10 min (100%) 
 

Task C Q1: 45 wh 
Q2: 72 wh 
Q3: 84 wh 
Q4: 46 wh 
Reference effort: 40 
wh 

Task G Q1: 152 min 
Actual: 14 min (11%) 
Q2: 55 min 
Actual: 12 min (42%) 
Q3: 45 min 
Actual: 10 min (54%) 
Q4: 60 min 
Actual: 9 min (59%) 

Task D Q1: 32 wh 
Q2: 78 wh 
Q3: 92 wh 
Q4: 55 wh 
Reference effort: 
112 wh 

Task H Q1: 191 min 
Actual: 15 min (43%) 
Q2: 93 min 
Actual: 10 min (93%) 
Q3: 87 min 
Actual: 10 min (81%) 
Q4: 66 min 
Actual: 9 min (95%) 

 Task I Q1: 511 min 
Actual: 36 min (7%) 



Q2: 455 min 
Actual: 39 min (16%) 
Q3: 361 min 
Actual: 39 min (14%) 
Q4: 392 min 
Actual: 32 min (24%) 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Boxplot of estimates per skill category for the larger tasks 
 
 

  
 
 
Figure 4. Boxplot of estimates per skill category for the smaller tasks 
 



 
 
 
 
 
 
 
Figure 5. LnEst vs. skill score for the larger tasks 
 

 
 
 
Figure 6. LnEst vs. skill score for the smaller tasks 
 



 
 
 
For the four larger tasks (Tasks A−D, second column of Table 5 and Figures 3 and 5), 

the developers with the lowest skill scores frequently had the lowest estimates. In fact, those in 
the lowest skill category (Q1) had, on average, estimates lower than those in the highest skill 
category (Q4). Comparing the median estimates of the least skilled developers with the 
reference efforts, i.e. the effort used by other developers, suggests that the estimates of the least 
skilled tended to be strongly over-optimistic. This finding is in accordance with what is 
typically reported in studies examining the Dunning−Kruger effect, i.e. that lower skill is 
connected with stronger over-optimism regarding one’s own abilities. 

The results for the smaller tasks (Tasks E−I, third column in Table 5 and Figures 4 and 
6) differ from those for the larger ones. For the smaller tasks, the developers with the lowest 
skill scores (Q1) had, on average, significantly higher effort estimates than those with better 
programming skill scores (Q2−Q4). This finding is perhaps best illustrated in Figure 6, which 
shows a decrease in lnEst as skill score increases for all five tasks. Comparing the effort 
estimates for the smaller tasks with the actual effort required to complete them, as presented in 
Table 5, it is inferred that all four skill categories have a tendency towards strong over-
estimation, and that this over-pessimism is stronger for those with low programming skill.  

The analysis of the relation between the degree of overestimation and skill score is, as 
previously noted, complicated by the fact that the developers with the lowest skill score had a 
lower proportion of correct solutions, and that the effort that would be required to correctly 
complete the tasks by those without a correct solution is unknown. Considering, for example, 
Task H, it is seen that 43% of those in skill category Q1 and 95% of those in skill category Q4 
handed in a correct solution. This implies that the overestimation of the best performing 43% 
developers in the lowest skill score category is compared with that of the best performing 95% 
developers in the highest skill category. For the more complex smaller tasks, i.e. those with 
low proportion of correct solutions, a conclusion regarding the relation between skill score and 
over-pessimistic effort estimates should be carefully drawn. For the smaller tasks with higher 
completion rate, in particular Task F, the interpretation is more robust, suggesting that those in 
the lowest skill category indeed made more over-pessimistic effort estimates.  

Figure 7 shows the relation between estimates and actual effort (in minutes) per skill 
category for Task F, which had a correctness rate of 96%, i.e., nearly all developers handed in 
a correct solution for this task. This task requested the development of added functionality of a 
coffee vending machine, and displayed 310 lines of code and a UML sequence diagram, i.e., 
there was much text and other information available to process when estimating the effort. This 
led nearly all developers to, as displayed in Figure 7, to over-estimate the effort. The degree of 



over-estimation was, however, much larger in the lowest skill category. The median 
overestimation was 464 min for those in Q1, 104 min for those in Q3, 108 min for those in Q3 
and 48 min for those in Q4. 
 
Figure 7: Overestimation of effort per skill category (Task F) 
 

 
 
A mechanism possibly explaining the much stronger over-pessimism within the lowest 

skill category for task F is that the lower programming skill also led to lower skill in 
identifying the level of difficulty of the relatively simple programming task. Those in the 
lowest skill category may have assessed the task to be medium complex or complex and failed 
to understand that the task was actually quite simple. This mechanism will be further discussed 
in Section 4. 

3.2 Relation between self-reported skill indicators and measured 
programming skill (RQ2) 

 
Table 6 shows results on how well company and self-reported programming skill 

indicators corresponded with the measured skill of the developers, i.e., their measured skill 
score based on completing the five programming tasks (Tasks E–I). The columns with skill 
categories show the proportion of developers in a category, or the median/mean values of the 
skill indicator for each of the programming skill quartiles (Q1–Q4). The median values are 
shown if there are a few high observations leading to a strongly right-skewed distribution, i.e. 
for the indicators in rows b) and c); otherwise, the mean value is used.  

The asymmetric Somers’ D [22] is calculated for all possible pairs of developers, i.e. n 
* (n − 1) / 2 pairs, where n is the number of developers. Pairs with the same value of the skill 
indicator (predictor) variable are removed. The remaining are divided into pairs for which the 
developer with higher value of the predictor variable also has a higher value of the dependent 
variable (termed concordant pairs (C)), pairs for which the developer with higher value of the 
predictor variable has lower value of the dependent variable (termed discordant pairs (D)), and 
pairs for which the developers have the same value of the dependent variables (tied pairs 
(Td)4). Somers’ D is then defined as (C − D) / (C + D + Td), i.e., as the difference between the 
proportion of concordant and discordant pairs. To facilitate its interpretation in terms of how 

                                                
4	Nine	percent	of	the	developer	pairs	where	such	ties,	i.e.	had	different	skill	indicator	value,	but	the	same	
value	for	the	measured	programming	skill.	



well a skill indicator predicts the measured programming skill, a measure of the proportion of 
correct predictions was added to the sum of correct and incorrect predictions, defined as C / (C 
+ D). This measure, which we termed hit rate, is similar to the Goodman and Kruskal gamma 
statistics (G) [23] in that it exclude all ties, i.e., it implicitly assumes that ties on the dependent 
variable (Td) are neither indicating correct (hit) nor incorrect predictions (non-hit) of the 
dependent variable. To be useful as an indicator variable, it should enable a hit rate 
substantially different from 50%, which is what a random choice would result in. The p-values 
are tests of concordance, i.e. the probability of making the same observation even if there were 
no difference between the proportion of concordant and discordant pairs.  

The two right-most columns show the Spearman rho (rank-based correlation 
coefficient), which in the present case may be a better measure of correlation than the Pearson 
correlation coefficient, as ordinal scales are used for the skill indicators. The columns show the 
correlation coefficient for all data and the correlations within each of the two companies (C1 
and C2) employing the participating developers. If skill is assessed (either by the company or 
by the developer himself/herself) relative to other developers within the same company, one 
would expect stronger within-company correlations compared with the correlations found 
when developers from both companies are included. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 6: Evaluation of programming skill indicators 
 

Skill indicator Skill 
category 
Q1 

Skill 
category 
Q2 

Skill 
category 
Q3 

Skill 
category 
Q4 

Somers' 
D and hit 
rate 

Correlation 
all data 

Correlation  
within 
company 

a) Company-
assessed 
skill 
categoryi 

Junior 
Intermed. 
Senior 

29% 
13% 
26% 

29% 
27% 
6% 

36% 
31% 
39% 

7% 
29% 
29% 

D = 0.13 
hit = 57% 
(p = 0.08) 

r = 0.14  
(p = 0.16) 

C1: r = 0.19 
(p = 0.16) 
C2: r =0.12 
(p = 0.43) 

b) Length of experience 
as software developer 
(median number of years) 

4 years 4 years 8 years 7 years D = 0.18 
hit = 60% 
(p = 
0.004) 

r = 0.28  
(p = 0.005) 

C1: r = 0.22 
(p = 0.11) 
C2: r = 0.44 
(p = 0.003) 

c) Length of experience 
with programming in 
Java (median number of 
years) 

3 years 2.5 years 5 years 6 years D = 0.21 
hit = 62% 
(p < 
0.001) 

r = 0.31  
(p = 0.002) 

C1: r = 0.27 
(p = 0.05) 
C2: r = 0.43 
(p = 0.004) 

d) Self-assessed general 
programming skill (mean 
values, scale: 1 (low) ... 5 
(high)) 

3.3 3.3 3.5 4.0 D = 0.27 
hit = 65% 
(p = 
0.002) 

r = 0.29  
(p = 0.003) 

C1: r = 0.30 
(p = 0.02) 
C2: r = 0.37 
(p = 0.013) 

e) Self-assessed 
programming skill in 
Java (mean values, scale: 
1 (low) ... 5 (high)) 

3.4 3.4 3.8 4.2 D = 0.26 
hit = 64% 
(p = 
0.003) 

r = 0.27  
(p = 0.006) 

C1: r = 0.34 
(p = 0.01) 
C2: r = 0.30 
(p = 0.05) 



f) Self-assessed skill in 
effort estimation (mean 
values, scale: 1 (low) ... 5 
(high)) 

3.1 2.8 2.9 3.3 D = 0.10 
hit = 56% 
(p = 0.13) 

r = 0.13  
(p = 0.21) 

C1: r = 0.34 
(p = 0.01) 
C2: r = 0.03 
(p = 0.83) 

g) Confidence in 
accuracy of one’s own 
effort estimates (mean of 
all nine tasks, scale 1 
(low) ... 5 (high)) 

2.9 3.2 3.1 3.3 D = 0.21 
hit = 61% 
(p = 
0.002) 

r = 0.29  
(p = 0.004) 

C1: r = 0.27 
(p = 0.04) 
C2: r = 
−0.06 (p = 
0.70) 

h) Confidence in 
problem-solving 
knowledge (mean of all 
nine tasks, scale 1 (no 
idea of what to do) ... 6 
(know exactly what to 
do)) 

3.8 4.2 4.2 4.7 D = 0.26 
hit = 64% 
(p < 
0.001) 

r = 0.37  
(p < 0.001) 

C1: r = 0.45 
(p < 0.001) 
C2: r = 0.36 
(p = 0.019) 

i) For	Somers’	D,	hit	rate	and	correlational	analysis,	the	company-assessed	skill	categories	were	assumed	to	be	ordinal,	
i.e.	junior	<	intermediate	<	senior.	

 
The company-assessed programming skill level (Table 6, row a), as reflected in the 

junior, intermediate and senior programmer skill categories, was a weak indicator of measured 
programming skill, with a hit rate of 57% and correlation coefficient of 0.14. The relatively 
high proportion (26%) of senior developers in the lowest programming skill category (Q1) 
contributes to this. The correlation improved slightly in the within-company analysis for the 
company C1 (r = 0.19), but not for C2 (r = 0.12). A comparison of the employee skill levels of 
the two companies demonstrated that the median skill scores of junior, intermediate and senior 
programmers from C1 were −0.02, 0.62 and 0.62, respectively, whereas the corresponding 
scores for C2 were −0.88, −0.30 and 0.12. That is, an average junior developer in C1 had 
higher programming skill than an intermediate and close to that of a senior developer in C2. 
This suggests that if the average employee skill level for a company is known, the company-
assessed competence level is even less useful as an indicator of the actual programming skill. 
One may argue that by the classification into junior, intermediate and senior programmers, the 
companies did not intend to indicate programming skill, but rather to represent experience 
level (seniority) or ability to work without support from more senior staff. Even if this should 
be the case from the company viewpoint, it is conceivable that several clients may interpret the 
junior–intermediate–senior categorisation as indicating skill, i.e., as resulting in better 
productivity and/or quality, as they pay more for intermediate and senior than for junior 
developers. 

The length of programming experience in general (Table 6, row b), the length of 
programming experience with Java (Table 6, row c), the self-assessed programming skill in 
general (Table 6, row d) and the self-assessed programming skill in Java (Table 6, row e) had 
hit rates between 60% and 65% and correlation coefficients between 0.27 and 0.31, i.e. they 
were better than company-assessed skill levels, but not particularly strong indicators of 
programming skill, either. For one of the companies (C2), the length of programming 
experience in general as well as in Java were moderately good skill indicators, with correlation 
coefficients of 0.44 and 0.43, respectively. This suggest that there may be within-company 
contexts in which the correlation between length of experience and skill justifies using the 
former as a skill indicator. The challenge is, of course, to know when this is the case and when 
not. 

The self-assessed skill in effort estimation (see Table 6, row f) was a weak indicator of 
programming skill, with a hit rate of 56% and correlation coefficient of 0.13. Interestingly, 
those in the lowest (Q1) programming skill category assessed themselves, on average, to have 
better estimation skills than those in the second lowest and second highest (Q2 and Q3) skill 
categories. In Section 3.1, it was pointed out that those with the lowest programming skill (Q1) 
were likely to have the least accurate effort estimates both for large and small tasks. This 
suggests that there is a Dunning–Kruger effect related to effort estimation skill, i.e. those with 
the lowest skill in effort estimation tend to over-estimate their estimation skill the most. 



The mean confidence in the accuracy of the estimates was not particularly high for any 
of the skill categories (see Table 6, row f). Using confidence in the accuracy of the estimates as 
a skill indicator yielded a hit rate of 61% and a correlation coefficient of 0.29. Limiting the 
analysis to the estimation accuracy confidence for the smaller tasks, i.e. to the tasks used to 
measure programming skill, the relation between estimation accuracy confidence and 
programming skill weakened further, with a hit rate of 54% and correlation of only 0.10. The 
within-company correlations were lower than those across the total population. One of the 
companies (C2) even had a slightly negative correlation (−0.06) between confidence in the 
accuracy of the effort estimate and the measured programming skill. 

The mean confidence in problem-solving knowledge (Table 8, row h) had the highest 
correlation with the measured programming skill (0.37) and the highest hit rate (64%) among 
the skill indicators, when the full data set was included. The relation was slightly stronger 
when the mean confidence in problem-solving knowledge was examined for the smaller tasks 
only, with a hit rate of 66% and a correlation of 0.39. The within-company correlation 
coefficients were approximately the same (0.36 for C2) or improved (0.45 for C1). 

As previously observed, the lowest effort estimates typically belonged to those with the 
lowest skill for larger tasks and to those with the highest skill for smaller tasks. This suggests 
that the use of effort estimates as a programming skill indicator is not generally reliable, i.e. the 
relation may be negative in certain context, and positive in others. Nevertheless, there may be 
individual tasks in which the relation between effort estimate and programming skill is strong. 
The analysis of Somers’ D, the hit rate and the Spearman rho rank-based correlation coefficient 
(Table 7) examines this.5  
 
 
 
 
 
 
 
 
Table 7. Use of the estimate as indicator of programming skill per task 
 
 

Task Somers' D 
and hit rate 

Correlation 
between estimate 
and skill 

Task A D = −0.05 
hit = 47% 
(p = 0.22) 

r = 0.08 
(p = 0.42) 

Task B D = −0.11 
hit = 44% 
(p = 0.06) 

r = 0.15 
(p = 0.13) 

Task C D = 0.01 
hit = 50% 
(p = 0.53) 

r = −0.01 
(p = 0.94) 

Task D D = −0.09 
hit = 45% 
(p = 0.08) 

r = 0.13 
(p = 0.19) 

Task E D = 0.34 
hit = 68% 
(p < 0.01) 

r = −0.41 
(p < 0.01) 

Task F D = 0.26 
hit = 64% 
(p < 0.01) 

r = −0.35 
(p<0.01) 

Task G D = 0.24 
hit = 63% 

r = −0.29 
(p < 0.01) 

                                                
5	As	before,	to	avoid	regression	effects,	we	base	the	skill	measurement	on	the	performance	of	all	tasks	
except	the	one	being	estimated	for	all	the	analyses.	



(p < 0.01) 
Task H D = 0.37 

hit = 70% 
(p < 0.01) 

r = −0.50 
(p < 0.01) 

Task I D = 0.22 
hit = 62% 
(p < 0.01) 

r = −0.29 
(p < 0.01) 

 
The results in Table 7 confirm the previous observation that developers with lower skill 

underestimated the larger tasks and overestimated the smaller tasks, compared with those with 
higher skill. More interestingly, the use of higher estimates as an indicator of lower 
programming skill yielded relatively high hit rates (62%–70%) for the smaller tasks. The 
highest hit rate and correlation was achieved for Task H, with a hit rate of 70% and correlation 
of −0.50. Comparing the proportion of correct solutions for the smaller tasks, Tasks H was 
neither among the most complex nor among the simplest. Task H appeared, however, to be 
sufficiently complex to separate developers with higher skill, who better understood that the 
task would require relatively low effort to complete, and developers with lower skill, who were 
unable to realise that. 

A possible practical implication of this observation is that it may be possible to use 
effort estimates for tasks similar to Task H (i.e. tasks for which the skilled, but not the 
unskilled understand that no significant effort is required) as a fairly good skill indicator. That 
is, the effort estimates for seemingly complex tasks, in which higher skills are necessary for 
understanding their simplicity, may be the best indicator of programming skill, rather than the 
effort estimates for truly complex or obviously simple tasks. This is a simpler and less costly 
method than requesting software developers to complete programming tasks to assess their 
skills. There may, however, be threats to the use of estimates as skill indicators, e.g., if the 
developers strategically change their estimates to get a better skill score. How to design skill 
tests based on estimates may nevertheless, be an interesting topic for further research. 
 

4. Discussion	and	limitations	
 

4.1 Similarities and differences with findings in related studies 
There are numerous prior studies comparing self-assessed skill with more objective 

skill criteria, such as actual performance on relevant tasks, e.g. [24]. To the authors’ 
knowledge, none of these studies has examined the relation between self-assessed skill in the 
format of work effort estimates and measured work completion skill, or how well self-assessed 
programming skill is connected with measured programming skill. 

Starting with the obvious, studies tend to find that people differ in actual skill. In 
software development, they usually differ substantially. The study reported in [25], where the 
bug fixing productivity of more than 200 programmers with a large software provider over 12 
years is analysed, found that the 27% most productive programmers did 78% of the work, and 
the single most productive programmer, in spite of receiving the most complex bugs to fix, 
completed as much as 8.3% of the bug fixes. In the study reported in [1], a difference of 1:18 
in actual effort spent for the development of the same software was found among seven 
providers. The level of variance in actual performance on the programming tasks in the present 
study is consequently not surprising. Similarly, the large variance in the effort estimates for the 
same tasks is consistent with the findings of prior studies [1, 12]. 

The finding that people generally tend to overestimate their skill has been reported in 
several studies. For instance in [26], it was demonstrated that in various domains, people tend 
to overestimate their skills, underestimate their shortcomings and do not let negative feedback 
affect their self-evaluation. The same tendency is also documented for effort estimation of 
software development projects [14, 27, 28], although not necessarily for smaller programming 
tasks, as pointed out in [14]. The findings related to the larger tasks, which indicate that people 
tend to underestimate effort and implicitly overestimate problem-solving ability, are consistent 
with the majority of prior software development and other studies. Kruger and Dunning [3] 
extended the above findings by observing a stronger level of over-optimism regarding own 



skill among those with lower skill. They argue that ‘incompetence … not only causes poor 
performance but also the inability to recognize that one’s performance is poor’ (p. 1130). They 
also document that an increase in competence reduces the over-optimism of the poorest 
performers.  

A contribution of the present study is to add software development effort estimation to 
the domains where the Dunning–Kruger effect of more over-optimism among those with lower 
skill has been documented. However, we observed the Dunning–Kruger effect only for the 
estimation of the larger tasks. For the smaller tasks, those with the lowest programming skill 
appear to have been more over-pessimistic about their own problem-solving ability. It is 
argued that the results may be seen as an extension of the finding of Kruger and Dunning, i.e., 
that there are situations where low skill leads to more over-pessimism rather than over-
optimism. Possible reasons for the estimation difference between the larger and the smaller 
tasks are discussed in Section 4.3. It should be noted that both results support the basic claim 
by Kruger and Dunning, i.e., that lower skill is connected with lower ability to assess one’s 
own skill level. The extension is mainly related to that lower ability to assess one’s own skill 
level in relation to a task sometimes leads to over-pessimism in how much effort one would 
need to solve a task. 

The robustness of the finding that low measured skill is connected with higher 
perceived self-assessed skill, i.e., the main claim by Kruger and Dunning, is illustrated in 
Figure 8. Figure 8 shows the relation between measured programming skill and self-assessed 
Java programming skill using a LOWESS smoother function (with a degree of smoothing set 
to 0.5 and two steps). As can be seen, the self-assessed Java programming skill increased with 
lower measured programming skill for those in the bottom half of skill scores (less than −1), 
but increased with higher measured programming skill for those in top half (more than −1).  
 
Figure 8. Measured programming skill vs. self-assessed skill 

  
 
The companies’ skill categorisation of programmers as junior, intermediate or senior 

was found to be a poor indicator of measured programming skill (r = 0.14), even poorer than 
total length of experience as programmer (r = 0.28). The correlations for the same indicators 
reported in [16] were similarly poor, but here developer category had a stronger correlation to 
skill (r = 0.32) than total length of programmer experience (r = 0.15). A difference in how well 
programming skill can be predicted from the company-assessed skill category between 
contexts may not be surprising, given that different companies have different strategies for 
moving programmers from one skill and payment category to another. A difference in the 
correlation of the total length of experience with actual programming skill from one context to 
another is not surprising either. We observed, for example, that one of the companies (C2) had 
a significantly higher correlation between total length of experience and skill than the other 
another (r = 0.44 vs. r = 0.22). Both studies demonstrate that neither company-assessed skill 
category nor length of experience are strong indicators of measured programming skill. For 
instance, the correlation of 0.28 between total length of programming experience and 



programming skill corresponds to a hit rate of only 60%, i.e. in four out of ten cases, between 
two programmers, the one with the longest experience is the least skilled. 

The remaining skill indicators, i.e. self-assessed programming and estimation skill, 
confidence in the accuracy of the estimates and confidence in problem-solving knowledge, had 
hit rates in the range of 56%–64% and correlations in the range of 0.13–0.37. This is in accord 
with results reported for other domains. For example, in the meta-synthesis in [29], 
summarising the results from 22 meta-analyses covering more than 2000 studies on the 
correlation between self-evaluation and objective measures of actual performance, a mean 
correlation of 0.29 is reported. Consequently, correlations similar to those in the present study 
are quite expected in terms of the relations between self-assessed skill and measured 
performance. Unfortunately, this makes such skill indicators, which are widely used in 
software industry, not particularly useful in the identification and selection of the more skilled 
software developers. 

 
4.2 Explanations 
Dunning and Kruger [3] explained their observations by a relation between lower task 

completion skill and lower awareness of one’s own problem-solving ability, i.e., lower skill is 
connected with lower skill-related meta-knowledge. As reported in Section 4.1, our data 
supports that the less skilled over-estimated their own skill level. The results on the larger 
programming tasks also support that lower skill may be connected with more over-optimistic 
effort estimates and more optimistic assessment of one’s own estimation skills. However, it 
was observed that lower skill could also lead to more over-pessimistic performance estimates, 
i.e., the effort estimates of the smaller tasks seem to have been more over-pessimistic for those 
with lower skill. This calls for explanations extending those provided for the Dunning–Kruger 
effect. It is argued in the present study that lower skill, and the related lower meta-knowledge 
regarding one’s own skill, do not necessarily lead to more over-optimism, but primarily to 
higher estimation uncertainty. 

For truly complex tasks, a developer with low task completion skill may not identify 
and understand a task’s complexity. However, for seemingly complex tasks, the same low task 
completion skill may lead to failure to identify and understand a task’s simplicity. For example, 
several of the smaller programming tasks in the present study may have given an impression of 
being quite complex owing to the size and complexity of the code presented (up to 37 files and 
979 lines of code), but were in reality fairly simple. Less-skilled developers were less likely to 
discover that the tasks did not require significant code changes, and therefore they strongly 
over-estimated the required effort. Identifying the actual simplicity level of the smaller tasks is 
indeed challenging, as even those with higher skill tended to overestimate effort, albeit to a 
lesser extent than those with lower skill.  

Furthermore, previous studies suggest that when estimating task effort, software 
developers, consciously or unconsciously, recall actual effort on previous tasks, with an 
emphasis on tasks perceived to be similar to the task to be estimated [30, 31]. If a developer 
with low skill fails to identify the simplicity of a task, then most probably the experience from 
larger or more complex tasks is used as input and lead to an over-pessimistic estimate. As the 
task uncertainty increases, developers tend to make estimates closer to the average of the class 
of perceived relevant objects [32-34], a tendency termed “the central tendency of judgement”. 
This may add to the over-pessimism of those with less skill in high-uncertainty situations, 
where the wrong class of relevant experience is chosen as reference for the effort estimates and 
the task looks more complex than it really is.  

 
4.3 Implications for practice and further research 
 
Previous studies document that emphasising low effort estimates, or the low pricing 

derived from such estimates in the selection of developers or providers increases the risk of 
selecting those with over-optimistic effort estimates [10, 35], thus increasing the risk of 
problematic software development [11, 36-38]. This study adds to those findings by 
documenting that selecting among developers with low effort estimates also increases the risk 



of selecting less skilled developers, at least for larger tasks, which may be the majority in most 
relevant real-world contexts. If, for example, a client selected a developer among those with 
the 25% lowest effort estimates to complete Tasks A–D, the risk of making a selection in the 
lowest skill score quartile (Q1) would be as high as 32%, 39%, 45% and 55% for Tasks A–D, 
respectively, whereas the likelihood of selecting one in the highest skill score category would, 
be only 32%, 17%, 21% and 18%, for the same tasks. That is, a focus on low effort estimates 
in the selection process would be more likely to result in lower-skill (Q1) than higher-skill 
(Q4) software developers. Furthermore, skill indicators typically used in industry, e.g. selection 
of senior developers or those with long experienced as programmers using the relevant 
programming language, will not significantly improve the likelihood of selecting the most 
skilled, either. This suggests that typical provider and developer selection strategies in software 
development, e.g. emphasising low estimates/price and using background information typically 
provided in CVs, involve a high risk of selecting low-skill developers. Accordingly, other 
methods should be used in the selection process. More reliable means of selecting skilled 
developers or providers may include the use of trialsourcing, i.e. larger-scale skill evaluation 
based on relevant project tasks, as part of the selection process [1] or to use skill tests similar to 
those proposed in [16]. 

The observation that the effort estimates of some of the smaller tasks were better 
correlated with programming skill (up to 0.5) and had higher hit rates (up to 70%) implies that 
it may be possible to design estimation tasks suitable for identifying the best programmers. For 
instance, tasks requiring programming skill to identify that they are in fact simple are well 
suited for this purpose. More research should be conducted in this direction. 

 
4.4 Threats to validity 
Construct validity: True vs measured programming skill 
The aim has been to measure the programming skill of the participants in the study and 

we have used a validated measurement tool for that purpose. All relevant aspects of 
programming skill of a developer, however, can clearly not be measured by the performance 
on five smaller programming tasks. What was achieved may therefore be described as a 
comparison of self-assessed programming skill, in the form of estimated effort required to 
complete a task, with more objective programming skill measures. Even though not all types of 
tasks and contexts are represented, the prior validation of the skill measurement tool suggests 
that the skill tests represent typical software development well. The consistency of the results, 
in particular the similarity relations between the skill scores and the estimates across all four 
larger tasks and across all five smaller tasks, also support the validity of the skill measures. 

 
Internal validity: Causality vs correlation 
The explanation of the findings is motivated by a belief in a causal, perhaps cyclic, 

relation between low skill in completing and a low skill in estimating the required effort for a 
software development task. Strictly speaking, analyses based on data from observational 
studies (as in the present case) will, however, only enable causal claims if all relevant variables 
are included, the type of model is appropriate and all model assumptions are met. This is not 
likely to be the case in the present study. An important reasons for believing that what we have 
reported is a causal, and not only correlational, relationship between lower programming and 
lower estimation skill is that the main results correspond to results in previous studies, or are 
natural consequences of that low competence in understanding a task can lead to failure to 
understand its simplicity (or complexity). This, of course, does not imply that there are no 
other variables (not included in the present analysis) that may explain parts of the results and 
moderate the proposed causal relations.  

 
External validity: Generalising results to other software development contexts 
The four larger software development tasks were selected to represent typical smaller 

software projects, and the five smaller tasks to represent core programming activities. 
Estimating and completing both types of software development tasks is likely to be common 
for the developers participating in this study. Even though the underlying mechanisms may be 



present in other software development contexts, the effect size, e.g. the degree to which skill 
level will affect estimation over-optimism, is expected to be strongly context-dependent. For 
example, contexts with tasks whose complexity is even more hidden for those with lower, but 
not for those with higher skill, may increase the stronger over-optimism of the less skilled even 
more compared to what we observed. 

This study did not request company-level, or group-based, effort estimates, but only 
estimates from individual developers. One may argue that companies hardly ever let those with 
low programming skill estimate software projects, and therefore less company-level estimation 
problems occurs. An examination of the data demonstrated that this was not the case. 
Developers responsible for the entirety of project estimates (n = 69) were as likely to belong to 
the lowest skill score category (23% with skill scores in Q1) as to the highest skill score 
category (23% with skill scores in Q4). It is nevertheless possible that the effect size will be 
lower in various settings, e.g. when several software professionals contribute to the estimation 
using appropriate group-based practices. Examining the same effects as those in this study in 
the context of group-based effort estimation is an interesting topic for further research. 

 
5. Conclusion	
The relations between effort estimates and programming skill (RQ1) and between skill 

indicators and measured programming skill (RQ2) were examined, with the following 
contributions: 
• Documenting the relevance of the well-established Dunning–Kruger effect on the larger 

software development tasks, i.e. lower programming skill was connected with more over-
optimistic estimates of one’s own performance. Not only were the effort estimates more 
over-optimistic, but they were on average lower than those of the developers with the 
highest programming skill. 

• Extending the Dunning–Kruger effect by observing that there are contexts in which lower 
skill is connected with more over-pessimistic effort estimates. We conjecture that the 
general effect of low skill is higher estimation uncertainty, and occasionally, this is 
connected with lack of skill in identifying the simplicity of a task, leading to over-
pessimistic effort estimates. 

• Replicating and extending previously not examined skill indicators results documenting 
that the connections between measured programming skill and programming skill 
indicators typically used in industry when selecting among developers or providers are 
weak. 

• Documenting a Dunning-Kruger effect related to estimation skills. Those	with	the	lowest	
skill	in	effort	estimation	over-estimated	their	estimation	skill	the	most.  

 
Practical consequences of our results may include: 

• Software clients and managers who emphasise low effort estimates, or the derived lower 
price, when selecting software developers to complete larger tasks do not only run a risk of 
selecting over-optimistic developers (the winner’s curse). They also run higher risk of 
selecting the least skilled developers. Assuming that the results generalise to larger-scale 
software development project contexts, this cautions against selecting the lowest bidder, 
particularly when objective skill tests of the provider and/or its software developers are not 
conducted. 

• Skill indicators typically used in industry, such as those included in the developers’ CV, the 
company assessed skill categories, the developers’ confidence in the accuracy of their 
estimates and assessed problem-solving ability, are not reliable. To identify programming 
skill, other means are required, such as work sample testing and trialsourcing. 

 
We observed that the best indicator of programming skill was the developers’ effort 

estimates on relatively simple programming tasks, in which those with higher skill seemed to 
have been more able to identify the tasks’ simplicity compared with those with lower skill. The 



use of estimates on carefully designed programming tasks as indicators of skill, we argue, is an 
interesting topic for further research. 
 
 
Note: The first and second author have financial interests in the company (Technebies) that 
owns the skill testing tool used in this study. 
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Appendix 
 
Table A1: Mixed model analysis results of the larger tasks 
 

Fixed 
effects 

Variable Categories Coefficient 95% CI 
Intercept  8.39 [8.15; 8.63] 
Task  
(D is the reference task) 

A -0.18 [-0.31; -0.04] 
B 0.59 [0.46; 0.73] 
C -0.21 [-0.34; -0.07] 

Skill category (Q4 is the 
reference category) 

Q1 -0.53 [-0.92; -0.14] 
Q2 0.26 [-0.12; 0.64] 
Q3 0.38 [-0.13; 0.90] 

Task x Skill category 
(D and Q4 are the references) 

A x Q1 0.09 [-0.13; 0.31] 
A x Q2 -0.21 [-0.43; 0.00] 
A x Q3 0.08 [-0.20; 0.37] 
B x Q1 -0.25 [-0.47; -0.03] 
B x Q2 0.26 [0.05; 0.48] 
B x Q3 -0.09 [-0.38; 0.19] 
C x Q1 0.26 [0.04; 0.48] 
C x Q2 -0.07 [-0.29; 0.14] 
C x Q3 -0.09 [-0.33; 0.24] 

Random 
effect 

Variable Variance Percent of total variance 
Developer 1.13 68% 
Residual 0.53 32% 

 
 

Table A2: Mixed model analysis results of the smaller tasks 
 

Fixed 
effects 

Variable Values Coefficient 95% CI 
Intercept  5.03 [4.85; 5.22] 
Task  
(I is the reference task) 

E 0.25 [0.09; 0.42] 
F -0.05 [-0.19; 0.09] 
G -0,80 [-0.94; -0.66] 
H -0.43 [-0.57; -0.28] 

Skill category (Q4 is the 
reference categories) 

Q1 0.59 [0.36; 0.83] 
Q2 -0.10 [-0.29; 0.09] 
Q3 -0.18 [-0.35; -0.02] 

Task x Skill category 
(I and Q4 are the references) 

E x Q1 0.06 [-0.21; 0.33] 
E x Q2 0.17 [-0.22; 0.56] 
E x Q3 -0.02 [-0.26; 0.22] 
F x Q1 0.10 [-0.16; 0.37] 
F x Q2 -0.23 [-0.48; 0.02] 
F x Q3 0.22 [-0.03; 0.46] 
G x Q1 0.20 [-0.07; 0.46] 
G x Q2 -0.13 [-0.38; 0.01] 
G x Q3 -0.24 [-0.49; 0.01] 
H x Q1 0.05 [-0.20; 0.30] 
H x Q2 0.02 [-0.28; 0.32] 
H x Q3 0.03 [-0.19; 0.26] 

Random 
effect 

Variable Variance Percent of total variance 
Developer 0.70 54% 
Residual 0.60 46% 

 
 
 
 
 
 
 
 



 
 
 
Figure A1: Residuals for the mixed model of the larger tasks 
 

 
 
 
Figure A2: Residuals for the mixed model of the smaller tasks 
 

 
 
 
 
 


