
Relations between effort estimates, skill indicators,
and measured programming skill

Magne Jørgensen1,2

Gunnar Rye Bergersen3 and
Knut Liestøl3

1Simula Metropolitan Center for Digital Engineering, 2Oslo Metropolitan University, 3Department of informatics, University of
Oslo

Abstract
There are large skill differences among software developers, and clients and managers will
benefit from being able to identify those with better skill. This study examines the relations
between low effort estimates, and other commonly used skill indicators, and measured
programming skill. One hundred and four professional software developers were recruited. After
skill-related information was collected, they were asked to estimate the effort for four larger and
five smaller programming tasks. Finally, they completed a programming skill test. The lowest
and most over-optimistic effort estimates for the larger tasks were given by those with the lowest
programming skill, which is in accordance with the well-known Dunning-Kruger effect. For the
smaller tasks, however, those with the lowest programming skill had the highest and most over-
pessimistic estimates. The other programming skill indicators, such as length of experience,
company assessed skill and self-assessed skill, were only moderately correlated with measured
skill and not particularly useful in guiding developer skill identification. A practical implication
is that for larger and more complex tasks, the use of low effort estimates and commonly used
skill indicators as selection criteria leads to a substantial risk of selecting among the least skilled
developers.

1. Introduction	

«I am wiser than this man, for neither of us appears to know anything great and good; but he
fancies he knows something, although he knows nothing; whereas I, as I do not know anything, so
I do not fancy I do. In this trifling particular, then, I appear to be wiser than he, because I do not
fancy I know what I do not know.» Socrates in Plato's Apology (399-389 BC)

Ideally, software developers would know their skill level and estimate the required

work effort for carrying out tasks. This implies that clients and managers could safely select
developers and evaluate their skill relative to other developers based on their effort estimates.
This may occasionally be the case: A study of seven offshoring companies, with approximately
equally good performance evaluations from previous clients and with similar experience level,
demonstrated that the developers from the company with the lowest effort estimate spent the
least effort and delivered the best quality [1]. The opposite, however, was observed in a study
of four Norwegian companies, also developing the same software [2], where the developers
from the company with the lowest effort estimate required the most effort and delivered the
lowest quality. The finding that the least skilled developers can often be found among those
with the lowest effort estimates is in accordance with the so-called Dunning–Kruger effect [3],
a cognitive bias in which less skilled people also tend to be unaware of their lack of
competence owing to poorer metacognitive skills, and therefore tend to be more over-
optimistic in their predictions of their own performance. The original finding was on people’s
assessment of their skill relative to others’ skill, but the effect has also been found to include
other types of performance predictions [4].

The explanation of the Dunning–Kruger effect is still under debate. It has been
proposed that it is caused by an anchoring-and-adjustment heuristic or a regression-towards-
the-mean effect [5], and that it is a task-related artefact stemming from the more complex
problem of task understanding by those with lower skill [6]. In spite of a lack of a commonly
accepted explanation and the methodological problems of the original study [4], the Dunning–

Kruger effect itself, i.e. that lower skill is connected with more over-optimistic performance
estimates, appears to persist across studies in academic [7], sport [8] and work-related [9]
settings.

From prior studies, it is known that selecting software developers based on low effort
estimates, or low-price bids derived from low effort estimates, increases the likelihood of
selecting over-optimistic developers, which in turn increases the risk of project problems, as for
example, in the study on ‘the winner’s curse’ described in [10]. To the authors’ knowledge, the
relation between an emphasis on low effort estimates and the increased likelihood of selecting
developers with low programming skill has not previously been investigated. It may be the
case that the observed problems connected with developer or provider selection based on low
effort estimates or prices are not only that the plans become unrealistic and the providers make
financial losses and behave opportunistically [11], but also that a focus on low effort estimates
leads to selecting less skilled software developers.

The above observations motivate the first research question:

RQ1: What are the relations between effort estimates and programming skill in software
development?

Low-skilled software developers will not be selected if the skill assessments by the

companies or the skill self-assessments by the developers, e.g. as described in their CVs, were
reliable indicators of actual programming skills. This motivates the second research question:

RQ2: How well do commonly used skill indicators, including company and self-assessed skill
indicators, correspond with measured programming skill?

The remainder of this paper describes the study design and characteristics of the

collected data (Section 2), the results (Section 3), discusses the results, possible explanations of
the findings and limitations of the work (Section 4) and concludes (Section 5).

2. Study	design	

2.1 Participants
Two software companies were contacted and asked to provide Java developers as

participants in the study. One of the companies, located in Poland, had more than 500 software
developers, had completed software projects for clients around the world for more than ten
years. Their work processes were mainly based on agile development. The other company,
located in Ukraine, was a branch of a larger international software development company with
more than 1000 software developers. This company had mainly clients from US and Europe in
sectors such as government, banking, real estate and tourism. The development processes were
typically agile for product development.

A mixture of junior, intermediate and senior Java developers were requested. Junior,
intermediate and senior were skill categories used by the companies to, amongst others,
determine the hourly payment rates. A senior developer was typically compensated 20% more
than an intermediate, and an intermediate 20% more than a junior. The companies were
compensated for the participation of their developers using their ordinary hourly payment rates.
It was indicated that the estimation and programming work would require four to five hours,
and at least half a year of experience in Java development was a requirement.

Both companies accepted the request and offered, in total, 104 (57 + 47) software
developers as participants. Among them, 27% were categorised by the companies as junior,
43% as intermediate and 30% as senior developers. Seven out of the 104 developers were
female.

The steps of the study were as follows:
1. Collection	of	information	about	the	participants	(described	below)	
2. Provision	of	the	estimates	of	each	of	the	nine	tasks	(see	Section	2.2)	
3. Completion	of	the	five	smaller	tasks	(see	Section	2.3)	

All steps were typically collected in one session. If there was a need for a longer break,
this should be done between Step 2 and Step 3. The full questionnaire of the information
collection and estimates will be sent upon request.

The collection of information about the participants requested information about length
of experience, self-assessed programming and effort estimation skill. The self-assessed skill
measures used a scale from 1 (novice) to 5 (expert). Table 1 describes characteristics of the
developers, including a separation into their payment category (company assessed skill-
category).

Table 1: Education, experience and self-assessed general skill

Characteristic Mean (stddev) Median Minimum Maximum
Experience as software
professional (years)

Total 7.5 (7.4) 6.0 0.7 27.0
Junior 3.0 (2.2) 2.4 0.7 8.6
Intermediate 7.3 (5.2) 6.0 2.1 26.0
Senior 11.9 (5.4) 11.3 2.0 27.0

Experience as Java programmer
(years)

Total 5.7 (4.4) 5.0 0.5 18.3
Junior 2.0 (1.1) 1.6 0.5 5.0
Intermediate 5.3 (2.9) 5.0 0.5 18.0
Senior 9.7 (4.7) 10.0 1.0 18.3

Number of projects completed Total 9.3 (7.8) 8 1 50
Junior 6.9 (8.3) 4.5 1 40
Intermediate 8.2 (4.4) 8.0 2 20
Senior 13.1 (9.9) 10 4 50

Self-assessed general
programming skill (1 … 5)

Total 3.5 (0.8) 4 2 5
Junior 2.9 (0.8) 3 2 5
Intermediate 3.6 (0.6) 4 3 5
Senior 4.0 (0.7) 4 2 5

Self-assessed skill in Java-
programming (1 … 5)

Total 3.7 (0.8) 4 2 5
Junior 3.0 (0.9) 3 2 5
Intermediate 3.9 (0.7) 4 2 5
Senior 4.2 (0.7) 4 3 5

Self-assessed skill in estimation
of software development effort
(1 … 5)

Total 3.0 (0.9) 3 1 5
Junior 2.3 (0.9) 2.5 1 4
Intermediate 3.1 (0.7) 3 2 4
Senior 3.4 (1.0) 4 2 5

Seventy percent of the developers had previously been responsible for estimating

software projects, and 96% had been responsible for the estimation of their own work. As can
be seen from Table 1, an increase in company assessed skill-category, e.g., from junior to
intermediate or from intermediate to senior, corresponded with an increase in the mean and
median length of experience, number of projects completed and self-assessed skill.

2.2 Task estimation
Following the provision of information about themselves, the software professionals

were asked to estimate the effort, in work-hours and minutes, they thought it would most likely
be required to complete nine different tasks using the programming language Java in their
ordinary development environment. Four of the tasks were larger tasks (or smaller projects),
where the participants were asked to develop new software systems using Java. The remaining
five, which were later used in the evaluation of their programming skill, were smaller Java
programming tasks in which, typically, existing Java code should be modified. The sequence
of the estimation work was randomised for each participant, using the randomiser function in
the survey tool Qualtrics (www.qualtrics.com). The same survey tool was used for the data
collection of the estimates as well as the self-reported experience and skill information.

Table 2 presents the descriptions and estimates of the four larger tasks (Tasks A–D),
including the median estimates per company-assessed skill category (junior, intermediate and
senior). These tasks were only estimated and not completed. The table includes the actual
effort by other developers to complete the tasks, when this information was available (Tasks A

and B). When the actual effort spent by other developers was not available (Tasks C and D),
the median and interquartile ranges of estimates, as provided by developers not participating in
this study, are presented.

The effort needed for the completion of the Task A-D will naturally vary from develop
to developer, depending on, amongst others, tool support and relevance of competence. The
median estimates in this study is, nevertheless, not far off from the actual or estimated effort
values in other studies. This supports the impression that the estimation work was taken
seriously by the developers in this study.

There was no clear connection between the median estimate of a task and the company-
assessed skill category. Notice that those categorized as junior developers, i.e., those assessed
to be least competent by the companies, had the lowest median estimates for Task A, C and D
and the second lowest for Task B. The task specifications will be sent to interested readers
upon request.

Table 2: Characteristics of the larger tasks (projects)

Task Description Actual effort or effort estimates
by other developers

Effort estimates of developers in
this study

A Development of a web
system with an
interface to an xml file
containing information
about scientific articles.

Six different companies spent 29,
84, 187, 242, 474 and 527
(median 215) work hours, see [1].

The median estimated effort was 62
work hours. Median estimates of
junior, intermediate and senior
developers were, respectively, 40, 50
and 80 work-hours.

B Development of a
database with
information about
research studies, with
links to other databases
and user interface.

Four different companies spent
85, 90, 108 and 155 (median 99)
work hours, see [2].

The median estimated effort was 158
work hours. Median estimates of
junior, intermediate and senior
developers were, respectively, 140,
160 and 120 work-hours.

C Development of a web-
based system that
graphically displays on
a world map the
connections between
different countries
(such as number of
outsourced projects).

The median estimated effort, as
estimated by 78 software
professionals, was 40 work hours,
see control group estimates for
Project A in [12].

The median estimated effort was 40
work hours. Median estimates of
junior, intermediate and senior
developers were, respectively, 40, 40
and 60 work-hours.

D Development of a
standalone desktop
system with rule-based
support for selection of
jogging shoes.

The median estimated effort, as
estimated by 126 software
professionals, was 112 work
hours, see control group estimates
for Project B in [12].

The median estimated effort was 56
work hours. Median estimates of
junior, intermediate and senior
developers were, respectively, 49, 68
and 80 work-hours.

The smaller tasks (Tasks E–I) were first estimated and then completed by the

developers. Table 3 presents the descriptions, actual completion efforts, proportion completed
correctly and effort estimates for these tasks. It also includes a separation into the company-
assessed skill-categories junior, intermediate and senior.

As can be seen, there is a tendency towards overly high estimates of the effort required
to complete the smaller tasks amongst those providing a correct solution1. Based on the tasks
with a correct solution, the median overestimation was as much as 80 min. An over-estimation
of relatively small tasks is a frequently observed phenomenon, dating back as early as 1868 in
results reported by Vierordt [13], and summarised for the context of effort estimates in [14].
The overestimation may, to some extent, be because the smaller tasks appeared more complex
than they were in reality. For example, the inclusion of the Java code that should be understood
and updated made the task material more extensive and complex than the task completion
itself, as most of the tasks were fairly simple. It may also be that estimates of the smaller tasks,

1	It	is	not	meaningful	to	calculate	the	estimation	error	for	incomplete	or	incorrect	solutions,	and	these	are	
consequently	excluded	from	the	estimation	error	measurement.	It	should	be	noticed	that	this	leads	to	a	
selection	bias	affecting	the	error	measurement,	i.e.	only	the	best	developers	are	included.	

when estimated after a larger task, are affected by the previous task estimates, i.e., a type of
anchoring or assimilation effect increasing the effort estimates of the larger tasks [15]. More on
possible explanations for the observed estimation over-pessimism of the smaller tasks in
Section 3. As opposed to the larger tasks, there is no clear connection between company
assessed skill-category (junior, intermediate and senior) and median estimates. The junior
developers did worse than the intermediate and the senior on the two most complex tasks
(Tasks G and I, i.e., the tasks with the lowest proportion of correct solution), but had otherwise
similar median actual effort and proportion of correct solution.

Table 3: Characteristics of the smaller tasks

Task Description Median actual effort of the correct
solutions and proportion of correct
solutions

Estimated effort of the
developers in this study

E Adding functionality
to an existing ATM
application. Source
code of the
application was
displayed.

The median actual effort was 25 min.
Median estimates of junior, intermediate
and senior developers were, respectively,
24, 25 and 21 minutes.
Proportion of correct: 66%.
Proportion correct for junior, intermediate
and senior developers were, respectively,
70%, 63% and 67%.

The median estimated effort
was 155 min. Median estimates
of junior, intermediate and
senior developers were,
respectively, 180, 120 and 360
minutes.

F Adding functionality
to an existing
program for a coffee
vending machine.
UML diagram and
source code of the
application was
displayed.

The median actual effort was 8 min.
Median estimates of junior, intermediate
and senior developers were, respectively,
11, 12 and 11 minutes.
Proportion of correct: 96%.
Proportion correct for junior, intermediate
and senior developers were, respectively,
100%, 93% and 95%.

The median estimated effort
was 120 min. Median estimates
of junior, intermediate and
senior developers were,
respectively, 120, 120 and 180
minutes.

G Modifying a laser
controller program.
Source code of the
application was
displayed.

The median actual effort was 9 min.
Median estimates of junior, intermediate
and senior developers were, respectively,
13, 12 and 9 minutes.
Proportion of correct: 43%.
Proportion correct for junior, intermediate
and senior developers were, respectively,
22%, 53% and 47%.

The median estimated effort
was 60 min. Median estimates
of junior, intermediate and
senior developers were,
respectively, 60, 30 and 60
minutes.

H Writing unit tests for
a program that listed
the directory content
of a specified root
directory.

The median actual effort was 14 min.
Median estimates of junior, intermediate
and senior developers were, respectively,
21, 14 and 13 minutes.
Proportion of correct: 74%.
Proportion correct for junior, intermediate
and senior developers were, respectively,
76%, 83% and 70%.

The median estimated effort
was 90 min. Median estimates
of junior, intermediate and
senior developers were,
respectively, 123, 60 and 120
minutes.

I Fixing a bug and
extend the
functionality of a lab-
order system of a
healthcare related
software.

The median actual effort was 39 min.
Median estimates of junior, intermediate
and senior developers were, respectively,
35, 37 and 37 minutes.
Proportion of correct: 15%.
Proportion correct for junior, intermediate
and senior developers were, respectively,
4%, 19% and 20%.

The median estimated effort
was 390 min.
Median estimates of junior,
intermediate and senior
developers were, respectively,
600, 255 and 435 minutes.

Note: Task E–I contained 7, 12, 4, 37, and 4 Java files and consisted of 280 (46), 310 (59), 50 (61), 979 (74), and
104 (27) Lines of code (lines of comments) including unit test cases (Task H, I, ***) respectively. Tasks E–G had
a “happy path” (https://en.wikipedia.org/wiki/Happy_path) output scenario in the task description. Task F had a
UML sequence diagram. Tasks E–F had a PDF with the available source code for reference during the estimation
task.

Following each task estimate, the developers provided the expected estimation accuracy

using a scale from 1 (very low) to 5 (very high), and assessed their problem-solving knowledge
using a scale from 1 (no idea of what to do) to 6 (know exactly what to do). Figure 1 shows the
mean responses from these two assessments, with 95% confidence intervals of the mean

values. As can be seen, the estimates for the larger tasks (Tasks A–D) had typically lower
expected accuracy compared with those for the smaller tasks (Tasks E–I); furthermore, the
developers were less confident about their knowledge of how to solve the task. It can also be
seen that the last (and most complex) of the smaller tasks (Task I) was estimated with less
expected accuracy compared with the other smaller tasks; furthermore, the developers
indicated lower problem-solving knowledge. The correlation between expected estimation
accuracy and self-assessed knowledge was relatively strong (r = 0.66).

Figure 1. Confidence intervals of expected estimation accuracy and self-assessed
knowledge per task

2.3 Measurement of programming skill
The tasks E-I were those solved by the developers for the purpose of measurement of

programming skill. The tasks were solved in the same sequence by all developers starting with
Task E and finishing with Task I. We used an online tool from Technebies
(www.technebies.com) to support the skill measurement. The tool had previously been
validated in terms of measurement and external validity [16]. Its compatibility with
contemporary cognitive skill and ability theory has been verified as well [17].

Using the tool, each developer’s performance is measured using the polytomous Rasch
model [18], as implemented in the R package eRm (CRAN.R-project.org/package=eRm, see
[19]). Briefly, the Rasch model estimates skill (ability) and task difficulty on the same, interval
scale. Zero on this scale is by convention used as the mean difficulty of the available tasks. The
mean difficulty can be compared with the mean skill of the subjects to detect whether the tasks
as a whole were easy (skill > 0) or difficult (skill < 0) for the subjects. The unit of the scale is
the logarithm of odds (logits2) and when skill equals difficulty, the probability of a correct
answer to a task is 50%. Moreover, the scale can express differences in skill as odds. For
example, a (relative) difference of, say, three logits in skill between two individuals would
yield exp(3)3. This corresponds to approximately 20 to 1 in fair odds of the less skilled
individual doing “better” on a programming task than the more skilled. For tasks H and I,
which have not previously been reported in the literature, the main validation steps reported in

2	logit(p)	=	log(p/1-p),	where	p	is	the	probability	and	p/(1-p)	is	the	odds.	
3	logit1=3*logit2	Þ	log(odds1)	=	3*log(odds2)	Þ	odds1	=	exp(3)+odds2,	which	means	that	the	

difference	in	odds	is	exp(3)=20.09.	

[16] were used for calibration and to ensure that programming skill was measured, as in the
previously calibrated tasks E–G.

The tasks were completed using a regular integrated development environment (IntelliJ
or Eclipse) on a remote Amazon Web Services (AWS) instance using virtualisation that
allowed the developers to access their development environment through a browser. To prevent
researcher bias, an engineer at Technebies automatically generated all skill measurements
without any access to the developers’ personal data, background information or effort
estimates, and provided these results to the first author before the analysis reported in this
paper was conducted.

The median skill score was −0.12, with an interquartile range of 1.50 = 0.62 − (−0.88).
The quartiles of the skill score (−0.88, −0.12 and 0.62) were used to divide the developers into
four skill categories (Q1–Q4) for later analysis. Figure 2 shows the distribution of the skill
scores, excluding two developers whose programming performance was insufficient for proper
calculation of skill scores. These two developers had no discernible progress on any of the five
programming tasks and thus were put in the lowest skill category (Q1).

Figure 2. Distribution of skill scores

2.4 Analysis method
A linear mixed model [20] was used to analyse the relation between measured

programming skill and effort estimates (RQ1). The variance estimation is based on restricted
maximum likelihood, and the tests of fixed effects used the Kenward–Roger degrees of
freedom approximation. The use of a mixed effect model enables repeated measurement and
inclusion of the effect of both random and fixed variables. In the present model, Developer is
considered a random variable; whereas, Task and Skill category are fixed variables. The model
includes an interaction effect to examine whether there are task differences in how skill
category affects the estimates. The variables are described in Table 4.

Table 4: Variables included in the analysis related to RQ1

Variable Type Description
lnEst = ln(Estimated
effort)

Response variable The estimated effort of a project. The estimates were strongly
right-skewed with a few overly high values. Therefore, the
natural logarithm of the estimate was used to ensure a more
symmetric and closer to normal distribution of the estimates.

Developer Random effect Developer identification number (id1–id104). Each
developer estimated all nine projects.

Task Fixed effect Task identification (A–E for the smaller, and F–I for the
larger tasks).

Skill category Fixed effect The skill score was divided into skill categories Q1 (lowest
skill) to Q4 (highest skill) using the skill quartiles as category
limits. A division into four skill categories follows the initial
and several follow-up analyses of the Dunning–Kruger effect
[3].

Task x Skill category Fixed effect
(interaction variable)

The interaction between project and skill score category,
examining whether there are different skill effects for
different tasks.

 The relation between skill and estimates may be different for the larger tasks A–D,

where the estimates are based a requirement specification, and there appears to be a tendency
towards underestimation, and the much smaller tasks E–I, where the estimates are typically
based a short specification and pieces of Java-code, and there appears to be a tendency towards
overestimation. In addition, it may be difficult to have a joint analysis of projects that would
take days to complete (Tasks A–D) and smaller tasks requiring a few minutes (Tasks E–I).
Accordingly, these two datasets were analysed separately, yielding 416 observations (104
developers × 4 tasks) for the first dataset (Tasks A–D), and 520 observations (104 developers ×
5 tasks) for the second dataset (Tasks E–I).

An important concern of the study design is to avoid the regression effect biasing the
results of the original Dunning–Kruger study [5]. The regression effect, caused by a
mathematical coupling [21] between the independent and dependent variables, is a problem
when programming skill is measured on the same tasks as those used to examine the relation
between skill and task estimates, including degree of estimation bias. For the analysis of the
data set with the four larger tasks, there is no such problem, as the skill score is derived from
the developers’ performance on the five smaller tasks combined. For the analysis of each of the
five smaller tasks, however, this would include a slight mathematical coupling of the
independent and dependent variables. Therefore, the programming performance score (used to
measure skill) was excluded from the calculation of a developer’s skill score on small tasks.
This implies, for example, that the skill score of a software developer estimating Task F (one
of the smaller tasks) is based on his/her performance on Tasks E, G, H and I (the remaining
four smaller tasks), but not on Task F. Accordingly, the catR (CRAN.R-
project.org/package=catR) package was used to measure skill based on the task difficulty
parameters from eRm, whereas the programming performance observation of the task being
estimated was treated as missing.

The analysis related to the second research question (RQ2) examines how strongly the
following company- and self-evaluations of skill are connected with the measured
programming skills:
• Skill/payment category (junior, intermediate, senior) of developer as assessed by the

company.
• Length of experience as software developer in general.
• Length of experience as software developer using Java.
• Self-assessed programming skill in general.
• Self-assessed programming skill using Java.
• Self-assessed effort estimation skill.
• Confidence in accuracy of effort estimates (per task).
• Confidence in knowledge related to problem solving (per task).

Concordance-based measures were used, i.e. Somers’ D and the ability to predict the more
skilled developer out of two (‘hit rate’), together with Spearman rho (rank-based correlation
coefficient) for the analysis of the relation between a skill indicator and measured
programming skill.

3. Results	

3.1 Relation between skill category and estimates (RQ1)
Linear mixed models were used, with the estimate (lnEst) as the response variable,

Developer as random variable, and Task, Skill category and the interaction between skill
category and task as dummy-coded (0 or 1) fixed variables for the set of larger and for the set
of smaller tasks. The model parameters and residuals, which were close to being normally
distributed, are included in Appendix 1. The adjusted R2-values were 78% for the larger and
74% for the smaller tasks.

Table 5 shows the results of the fixed effects test and the Tukey pairwise comparison of
the mean estimate for each skill category. Box plots displaying the effort estimates according
to skill category, aggregated for the larger and the smaller tasks, are shown in Figures 3 and 4.
Figures 5 and 6 show the connection between the skill scores and lnEst, per task, using the
LOWESS (locally weighted smoothing) smoother function with 0.5 degrees of smoothing and
two iterations (steps). For presentation purposes, two outliers with low (less than −3)
programming skill are not displayed.

Table 5: Test of fixed effects and Tukey pairwise comparison of skill categories

Item Larger tasks Smaller tasks
Task F-value 25.3, p-value < 0.001 F-value 68.8, p-value < 0.001
Skill Category F-value 2.92, p-value = 0.038 F-value 8.33, p-value < 0.001
Task x Skill Category F-value 1.75, p-value 0.08 F-value 1.94, p-value 0.028
Tukey pairwise comparisons of
mean estimates (back-
transformed from lnEst) of the
four skill categories.

Q1: 43 h
Q2: 95 h
Q3: 107 h
Q4: 66 h

Q1: 278 min
Q2: 143 min
Q3: 128 min
Q4: 112 min

Tukey pairwise comparison of
mean estimates (back-
transformed from lnEst) for Task
x Skill Category, together with
the reference effort.

The reference effort for Task A
and B is based on the median
actual effort of other companies
solving the task, whereas that of
Tasks C and D on the median
estimated effort by other
developers.

The reference efforts for Tasks
E–I (Actual) are the median
actual efforts of those completing
the tasks with a correct solution.
The proportion of correct
solutions per task and skill
category is shown in round
brackets. As before (relevant for
the smaller tasks only), the skill
score excludes the score on the
task being estimated.

Task A Q1: 40 wh
Q2: 64 wh
Q3: 98 wh
Q4: 58 wh
Reference effort:
215 wh

Task E Q1: 380 min
Actual: 23 min (42%)
Q2: 213 min
Actual: 22 min (50%)
Q3: 161 min
Actual: 27 min (73%)
Q4: 118 min
Actual: 19 min (83%)

Task B Q1: 61 wh
Q2: 225 wh
Q3: 177 wh
Q4: 129 wh
Reference effort:
155 wh

Task F Q1: 293 min
Actual: 16 min (83%)
Q2: 105 min
Actual: 11 min (100%)
Q3: 151 min
Actual: 11 min (96%)
Q4: 98 min
Actual: 10 min (100%)

Task C Q1: 45 wh
Q2: 72 wh
Q3: 84 wh
Q4: 46 wh
Reference effort: 40
wh

Task G Q1: 152 min
Actual: 14 min (11%)
Q2: 55 min
Actual: 12 min (42%)
Q3: 45 min
Actual: 10 min (54%)
Q4: 60 min
Actual: 9 min (59%)

Task D Q1: 32 wh
Q2: 78 wh
Q3: 92 wh
Q4: 55 wh
Reference effort:
112 wh

Task H Q1: 191 min
Actual: 15 min (43%)
Q2: 93 min
Actual: 10 min (93%)
Q3: 87 min
Actual: 10 min (81%)
Q4: 66 min
Actual: 9 min (95%)

 Task I Q1: 511 min
Actual: 36 min (7%)

Q2: 455 min
Actual: 39 min (16%)
Q3: 361 min
Actual: 39 min (14%)
Q4: 392 min
Actual: 32 min (24%)

Figure 3. Boxplot of estimates per skill category for the larger tasks

Figure 4. Boxplot of estimates per skill category for the smaller tasks

Figure 5. LnEst vs. skill score for the larger tasks

Figure 6. LnEst vs. skill score for the smaller tasks

For the four larger tasks (Tasks A−D, second column of Table 5 and Figures 3 and 5),

the developers with the lowest skill scores frequently had the lowest estimates. In fact, those in
the lowest skill category (Q1) had, on average, estimates lower than those in the highest skill
category (Q4). Comparing the median estimates of the least skilled developers with the
reference efforts, i.e. the effort used by other developers, suggests that the estimates of the least
skilled tended to be strongly over-optimistic. This finding is in accordance with what is
typically reported in studies examining the Dunning−Kruger effect, i.e. that lower skill is
connected with stronger over-optimism regarding one’s own abilities.

The results for the smaller tasks (Tasks E−I, third column in Table 5 and Figures 4 and
6) differ from those for the larger ones. For the smaller tasks, the developers with the lowest
skill scores (Q1) had, on average, significantly higher effort estimates than those with better
programming skill scores (Q2−Q4). This finding is perhaps best illustrated in Figure 6, which
shows a decrease in lnEst as skill score increases for all five tasks. Comparing the effort
estimates for the smaller tasks with the actual effort required to complete them, as presented in
Table 5, it is inferred that all four skill categories have a tendency towards strong over-
estimation, and that this over-pessimism is stronger for those with low programming skill.

The analysis of the relation between the degree of overestimation and skill score is, as
previously noted, complicated by the fact that the developers with the lowest skill score had a
lower proportion of correct solutions, and that the effort that would be required to correctly
complete the tasks by those without a correct solution is unknown. Considering, for example,
Task H, it is seen that 43% of those in skill category Q1 and 95% of those in skill category Q4
handed in a correct solution. This implies that the overestimation of the best performing 43%
developers in the lowest skill score category is compared with that of the best performing 95%
developers in the highest skill category. For the more complex smaller tasks, i.e. those with
low proportion of correct solutions, a conclusion regarding the relation between skill score and
over-pessimistic effort estimates should be carefully drawn. For the smaller tasks with higher
completion rate, in particular Task F, the interpretation is more robust, suggesting that those in
the lowest skill category indeed made more over-pessimistic effort estimates.

Figure 7 shows the relation between estimates and actual effort (in minutes) per skill
category for Task F, which had a correctness rate of 96%, i.e., nearly all developers handed in
a correct solution for this task. This task requested the development of added functionality of a
coffee vending machine, and displayed 310 lines of code and a UML sequence diagram, i.e.,
there was much text and other information available to process when estimating the effort. This
led nearly all developers to, as displayed in Figure 7, to over-estimate the effort. The degree of

over-estimation was, however, much larger in the lowest skill category. The median
overestimation was 464 min for those in Q1, 104 min for those in Q3, 108 min for those in Q3
and 48 min for those in Q4.

Figure 7: Overestimation of effort per skill category (Task F)

A mechanism possibly explaining the much stronger over-pessimism within the lowest

skill category for task F is that the lower programming skill also led to lower skill in
identifying the level of difficulty of the relatively simple programming task. Those in the
lowest skill category may have assessed the task to be medium complex or complex and failed
to understand that the task was actually quite simple. This mechanism will be further discussed
in Section 4.

3.2 Relation between self-reported skill indicators and measured
programming skill (RQ2)

Table 6 shows results on how well company and self-reported programming skill

indicators corresponded with the measured skill of the developers, i.e., their measured skill
score based on completing the five programming tasks (Tasks E–I). The columns with skill
categories show the proportion of developers in a category, or the median/mean values of the
skill indicator for each of the programming skill quartiles (Q1–Q4). The median values are
shown if there are a few high observations leading to a strongly right-skewed distribution, i.e.
for the indicators in rows b) and c); otherwise, the mean value is used.

The asymmetric Somers’ D [22] is calculated for all possible pairs of developers, i.e. n
* (n − 1) / 2 pairs, where n is the number of developers. Pairs with the same value of the skill
indicator (predictor) variable are removed. The remaining are divided into pairs for which the
developer with higher value of the predictor variable also has a higher value of the dependent
variable (termed concordant pairs (C)), pairs for which the developer with higher value of the
predictor variable has lower value of the dependent variable (termed discordant pairs (D)), and
pairs for which the developers have the same value of the dependent variables (tied pairs
(Td)4). Somers’ D is then defined as (C − D) / (C + D + Td), i.e., as the difference between the
proportion of concordant and discordant pairs. To facilitate its interpretation in terms of how

4	Nine	percent	of	the	developer	pairs	where	such	ties,	i.e.	had	different	skill	indicator	value,	but	the	same	
value	for	the	measured	programming	skill.	

well a skill indicator predicts the measured programming skill, a measure of the proportion of
correct predictions was added to the sum of correct and incorrect predictions, defined as C / (C
+ D). This measure, which we termed hit rate, is similar to the Goodman and Kruskal gamma
statistics (G) [23] in that it exclude all ties, i.e., it implicitly assumes that ties on the dependent
variable (Td) are neither indicating correct (hit) nor incorrect predictions (non-hit) of the
dependent variable. To be useful as an indicator variable, it should enable a hit rate
substantially different from 50%, which is what a random choice would result in. The p-values
are tests of concordance, i.e. the probability of making the same observation even if there were
no difference between the proportion of concordant and discordant pairs.

The two right-most columns show the Spearman rho (rank-based correlation
coefficient), which in the present case may be a better measure of correlation than the Pearson
correlation coefficient, as ordinal scales are used for the skill indicators. The columns show the
correlation coefficient for all data and the correlations within each of the two companies (C1
and C2) employing the participating developers. If skill is assessed (either by the company or
by the developer himself/herself) relative to other developers within the same company, one
would expect stronger within-company correlations compared with the correlations found
when developers from both companies are included.

Table 6: Evaluation of programming skill indicators

Skill indicator Skill
category
Q1

Skill
category
Q2

Skill
category
Q3

Skill
category
Q4

Somers'
D and hit
rate

Correlation
all data

Correlation
within
company

a) Company-
assessed
skill
categoryi

Junior
Intermed.
Senior

29%
13%
26%

29%
27%
6%

36%
31%
39%

7%
29%
29%

D = 0.13
hit = 57%
(p = 0.08)

r = 0.14
(p = 0.16)

C1: r = 0.19
(p = 0.16)
C2: r =0.12
(p = 0.43)

b) Length of experience
as software developer
(median number of years)

4 years 4 years 8 years 7 years D = 0.18
hit = 60%
(p =
0.004)

r = 0.28
(p = 0.005)

C1: r = 0.22
(p = 0.11)
C2: r = 0.44
(p = 0.003)

c) Length of experience
with programming in
Java (median number of
years)

3 years 2.5 years 5 years 6 years D = 0.21
hit = 62%
(p <
0.001)

r = 0.31
(p = 0.002)

C1: r = 0.27
(p = 0.05)
C2: r = 0.43
(p = 0.004)

d) Self-assessed general
programming skill (mean
values, scale: 1 (low) ... 5
(high))

3.3 3.3 3.5 4.0 D = 0.27
hit = 65%
(p =
0.002)

r = 0.29
(p = 0.003)

C1: r = 0.30
(p = 0.02)
C2: r = 0.37
(p = 0.013)

e) Self-assessed
programming skill in
Java (mean values, scale:
1 (low) ... 5 (high))

3.4 3.4 3.8 4.2 D = 0.26
hit = 64%
(p =
0.003)

r = 0.27
(p = 0.006)

C1: r = 0.34
(p = 0.01)
C2: r = 0.30
(p = 0.05)

f) Self-assessed skill in
effort estimation (mean
values, scale: 1 (low) ... 5
(high))

3.1 2.8 2.9 3.3 D = 0.10
hit = 56%
(p = 0.13)

r = 0.13
(p = 0.21)

C1: r = 0.34
(p = 0.01)
C2: r = 0.03
(p = 0.83)

g) Confidence in
accuracy of one’s own
effort estimates (mean of
all nine tasks, scale 1
(low) ... 5 (high))

2.9 3.2 3.1 3.3 D = 0.21
hit = 61%
(p =
0.002)

r = 0.29
(p = 0.004)

C1: r = 0.27
(p = 0.04)
C2: r =
−0.06 (p =
0.70)

h) Confidence in
problem-solving
knowledge (mean of all
nine tasks, scale 1 (no
idea of what to do) ... 6
(know exactly what to
do))

3.8 4.2 4.2 4.7 D = 0.26
hit = 64%
(p <
0.001)

r = 0.37
(p < 0.001)

C1: r = 0.45
(p < 0.001)
C2: r = 0.36
(p = 0.019)

i) For	Somers’	D,	hit	rate	and	correlational	analysis,	the	company-assessed	skill	categories	were	assumed	to	be	ordinal,	
i.e.	junior	<	intermediate	<	senior.	

The company-assessed programming skill level (Table 6, row a), as reflected in the

junior, intermediate and senior programmer skill categories, was a weak indicator of measured
programming skill, with a hit rate of 57% and correlation coefficient of 0.14. The relatively
high proportion (26%) of senior developers in the lowest programming skill category (Q1)
contributes to this. The correlation improved slightly in the within-company analysis for the
company C1 (r = 0.19), but not for C2 (r = 0.12). A comparison of the employee skill levels of
the two companies demonstrated that the median skill scores of junior, intermediate and senior
programmers from C1 were −0.02, 0.62 and 0.62, respectively, whereas the corresponding
scores for C2 were −0.88, −0.30 and 0.12. That is, an average junior developer in C1 had
higher programming skill than an intermediate and close to that of a senior developer in C2.
This suggests that if the average employee skill level for a company is known, the company-
assessed competence level is even less useful as an indicator of the actual programming skill.
One may argue that by the classification into junior, intermediate and senior programmers, the
companies did not intend to indicate programming skill, but rather to represent experience
level (seniority) or ability to work without support from more senior staff. Even if this should
be the case from the company viewpoint, it is conceivable that several clients may interpret the
junior–intermediate–senior categorisation as indicating skill, i.e., as resulting in better
productivity and/or quality, as they pay more for intermediate and senior than for junior
developers.

The length of programming experience in general (Table 6, row b), the length of
programming experience with Java (Table 6, row c), the self-assessed programming skill in
general (Table 6, row d) and the self-assessed programming skill in Java (Table 6, row e) had
hit rates between 60% and 65% and correlation coefficients between 0.27 and 0.31, i.e. they
were better than company-assessed skill levels, but not particularly strong indicators of
programming skill, either. For one of the companies (C2), the length of programming
experience in general as well as in Java were moderately good skill indicators, with correlation
coefficients of 0.44 and 0.43, respectively. This suggest that there may be within-company
contexts in which the correlation between length of experience and skill justifies using the
former as a skill indicator. The challenge is, of course, to know when this is the case and when
not.

The self-assessed skill in effort estimation (see Table 6, row f) was a weak indicator of
programming skill, with a hit rate of 56% and correlation coefficient of 0.13. Interestingly,
those in the lowest (Q1) programming skill category assessed themselves, on average, to have
better estimation skills than those in the second lowest and second highest (Q2 and Q3) skill
categories. In Section 3.1, it was pointed out that those with the lowest programming skill (Q1)
were likely to have the least accurate effort estimates both for large and small tasks. This
suggests that there is a Dunning–Kruger effect related to effort estimation skill, i.e. those with
the lowest skill in effort estimation tend to over-estimate their estimation skill the most.

The mean confidence in the accuracy of the estimates was not particularly high for any
of the skill categories (see Table 6, row f). Using confidence in the accuracy of the estimates as
a skill indicator yielded a hit rate of 61% and a correlation coefficient of 0.29. Limiting the
analysis to the estimation accuracy confidence for the smaller tasks, i.e. to the tasks used to
measure programming skill, the relation between estimation accuracy confidence and
programming skill weakened further, with a hit rate of 54% and correlation of only 0.10. The
within-company correlations were lower than those across the total population. One of the
companies (C2) even had a slightly negative correlation (−0.06) between confidence in the
accuracy of the effort estimate and the measured programming skill.

The mean confidence in problem-solving knowledge (Table 8, row h) had the highest
correlation with the measured programming skill (0.37) and the highest hit rate (64%) among
the skill indicators, when the full data set was included. The relation was slightly stronger
when the mean confidence in problem-solving knowledge was examined for the smaller tasks
only, with a hit rate of 66% and a correlation of 0.39. The within-company correlation
coefficients were approximately the same (0.36 for C2) or improved (0.45 for C1).

As previously observed, the lowest effort estimates typically belonged to those with the
lowest skill for larger tasks and to those with the highest skill for smaller tasks. This suggests
that the use of effort estimates as a programming skill indicator is not generally reliable, i.e. the
relation may be negative in certain context, and positive in others. Nevertheless, there may be
individual tasks in which the relation between effort estimate and programming skill is strong.
The analysis of Somers’ D, the hit rate and the Spearman rho rank-based correlation coefficient
(Table 7) examines this.5

Table 7. Use of the estimate as indicator of programming skill per task

Task Somers' D
and hit rate

Correlation
between estimate
and skill

Task A D = −0.05
hit = 47%
(p = 0.22)

r = 0.08
(p = 0.42)

Task B D = −0.11
hit = 44%
(p = 0.06)

r = 0.15
(p = 0.13)

Task C D = 0.01
hit = 50%
(p = 0.53)

r = −0.01
(p = 0.94)

Task D D = −0.09
hit = 45%
(p = 0.08)

r = 0.13
(p = 0.19)

Task E D = 0.34
hit = 68%
(p < 0.01)

r = −0.41
(p < 0.01)

Task F D = 0.26
hit = 64%
(p < 0.01)

r = −0.35
(p<0.01)

Task G D = 0.24
hit = 63%

r = −0.29
(p < 0.01)

5	As	before,	to	avoid	regression	effects,	we	base	the	skill	measurement	on	the	performance	of	all	tasks	
except	the	one	being	estimated	for	all	the	analyses.	

(p < 0.01)
Task H D = 0.37

hit = 70%
(p < 0.01)

r = −0.50
(p < 0.01)

Task I D = 0.22
hit = 62%
(p < 0.01)

r = −0.29
(p < 0.01)

The results in Table 7 confirm the previous observation that developers with lower skill

underestimated the larger tasks and overestimated the smaller tasks, compared with those with
higher skill. More interestingly, the use of higher estimates as an indicator of lower
programming skill yielded relatively high hit rates (62%–70%) for the smaller tasks. The
highest hit rate and correlation was achieved for Task H, with a hit rate of 70% and correlation
of −0.50. Comparing the proportion of correct solutions for the smaller tasks, Tasks H was
neither among the most complex nor among the simplest. Task H appeared, however, to be
sufficiently complex to separate developers with higher skill, who better understood that the
task would require relatively low effort to complete, and developers with lower skill, who were
unable to realise that.

A possible practical implication of this observation is that it may be possible to use
effort estimates for tasks similar to Task H (i.e. tasks for which the skilled, but not the
unskilled understand that no significant effort is required) as a fairly good skill indicator. That
is, the effort estimates for seemingly complex tasks, in which higher skills are necessary for
understanding their simplicity, may be the best indicator of programming skill, rather than the
effort estimates for truly complex or obviously simple tasks. This is a simpler and less costly
method than requesting software developers to complete programming tasks to assess their
skills. There may, however, be threats to the use of estimates as skill indicators, e.g., if the
developers strategically change their estimates to get a better skill score. How to design skill
tests based on estimates may nevertheless, be an interesting topic for further research.

4. Discussion	and	limitations	

4.1 Similarities and differences with findings in related studies
There are numerous prior studies comparing self-assessed skill with more objective

skill criteria, such as actual performance on relevant tasks, e.g. [24]. To the authors’
knowledge, none of these studies has examined the relation between self-assessed skill in the
format of work effort estimates and measured work completion skill, or how well self-assessed
programming skill is connected with measured programming skill.

Starting with the obvious, studies tend to find that people differ in actual skill. In
software development, they usually differ substantially. The study reported in [25], where the
bug fixing productivity of more than 200 programmers with a large software provider over 12
years is analysed, found that the 27% most productive programmers did 78% of the work, and
the single most productive programmer, in spite of receiving the most complex bugs to fix,
completed as much as 8.3% of the bug fixes. In the study reported in [1], a difference of 1:18
in actual effort spent for the development of the same software was found among seven
providers. The level of variance in actual performance on the programming tasks in the present
study is consequently not surprising. Similarly, the large variance in the effort estimates for the
same tasks is consistent with the findings of prior studies [1, 12].

The finding that people generally tend to overestimate their skill has been reported in
several studies. For instance in [26], it was demonstrated that in various domains, people tend
to overestimate their skills, underestimate their shortcomings and do not let negative feedback
affect their self-evaluation. The same tendency is also documented for effort estimation of
software development projects [14, 27, 28], although not necessarily for smaller programming
tasks, as pointed out in [14]. The findings related to the larger tasks, which indicate that people
tend to underestimate effort and implicitly overestimate problem-solving ability, are consistent
with the majority of prior software development and other studies. Kruger and Dunning [3]
extended the above findings by observing a stronger level of over-optimism regarding own

skill among those with lower skill. They argue that ‘incompetence … not only causes poor
performance but also the inability to recognize that one’s performance is poor’ (p. 1130). They
also document that an increase in competence reduces the over-optimism of the poorest
performers.

A contribution of the present study is to add software development effort estimation to
the domains where the Dunning–Kruger effect of more over-optimism among those with lower
skill has been documented. However, we observed the Dunning–Kruger effect only for the
estimation of the larger tasks. For the smaller tasks, those with the lowest programming skill
appear to have been more over-pessimistic about their own problem-solving ability. It is
argued that the results may be seen as an extension of the finding of Kruger and Dunning, i.e.,
that there are situations where low skill leads to more over-pessimism rather than over-
optimism. Possible reasons for the estimation difference between the larger and the smaller
tasks are discussed in Section 4.3. It should be noted that both results support the basic claim
by Kruger and Dunning, i.e., that lower skill is connected with lower ability to assess one’s
own skill level. The extension is mainly related to that lower ability to assess one’s own skill
level in relation to a task sometimes leads to over-pessimism in how much effort one would
need to solve a task.

The robustness of the finding that low measured skill is connected with higher
perceived self-assessed skill, i.e., the main claim by Kruger and Dunning, is illustrated in
Figure 8. Figure 8 shows the relation between measured programming skill and self-assessed
Java programming skill using a LOWESS smoother function (with a degree of smoothing set
to 0.5 and two steps). As can be seen, the self-assessed Java programming skill increased with
lower measured programming skill for those in the bottom half of skill scores (less than −1),
but increased with higher measured programming skill for those in top half (more than −1).

Figure 8. Measured programming skill vs. self-assessed skill

The companies’ skill categorisation of programmers as junior, intermediate or senior

was found to be a poor indicator of measured programming skill (r = 0.14), even poorer than
total length of experience as programmer (r = 0.28). The correlations for the same indicators
reported in [16] were similarly poor, but here developer category had a stronger correlation to
skill (r = 0.32) than total length of programmer experience (r = 0.15). A difference in how well
programming skill can be predicted from the company-assessed skill category between
contexts may not be surprising, given that different companies have different strategies for
moving programmers from one skill and payment category to another. A difference in the
correlation of the total length of experience with actual programming skill from one context to
another is not surprising either. We observed, for example, that one of the companies (C2) had
a significantly higher correlation between total length of experience and skill than the other
another (r = 0.44 vs. r = 0.22). Both studies demonstrate that neither company-assessed skill
category nor length of experience are strong indicators of measured programming skill. For
instance, the correlation of 0.28 between total length of programming experience and

programming skill corresponds to a hit rate of only 60%, i.e. in four out of ten cases, between
two programmers, the one with the longest experience is the least skilled.

The remaining skill indicators, i.e. self-assessed programming and estimation skill,
confidence in the accuracy of the estimates and confidence in problem-solving knowledge, had
hit rates in the range of 56%–64% and correlations in the range of 0.13–0.37. This is in accord
with results reported for other domains. For example, in the meta-synthesis in [29],
summarising the results from 22 meta-analyses covering more than 2000 studies on the
correlation between self-evaluation and objective measures of actual performance, a mean
correlation of 0.29 is reported. Consequently, correlations similar to those in the present study
are quite expected in terms of the relations between self-assessed skill and measured
performance. Unfortunately, this makes such skill indicators, which are widely used in
software industry, not particularly useful in the identification and selection of the more skilled
software developers.

4.2 Explanations
Dunning and Kruger [3] explained their observations by a relation between lower task

completion skill and lower awareness of one’s own problem-solving ability, i.e., lower skill is
connected with lower skill-related meta-knowledge. As reported in Section 4.1, our data
supports that the less skilled over-estimated their own skill level. The results on the larger
programming tasks also support that lower skill may be connected with more over-optimistic
effort estimates and more optimistic assessment of one’s own estimation skills. However, it
was observed that lower skill could also lead to more over-pessimistic performance estimates,
i.e., the effort estimates of the smaller tasks seem to have been more over-pessimistic for those
with lower skill. This calls for explanations extending those provided for the Dunning–Kruger
effect. It is argued in the present study that lower skill, and the related lower meta-knowledge
regarding one’s own skill, do not necessarily lead to more over-optimism, but primarily to
higher estimation uncertainty.

For truly complex tasks, a developer with low task completion skill may not identify
and understand a task’s complexity. However, for seemingly complex tasks, the same low task
completion skill may lead to failure to identify and understand a task’s simplicity. For example,
several of the smaller programming tasks in the present study may have given an impression of
being quite complex owing to the size and complexity of the code presented (up to 37 files and
979 lines of code), but were in reality fairly simple. Less-skilled developers were less likely to
discover that the tasks did not require significant code changes, and therefore they strongly
over-estimated the required effort. Identifying the actual simplicity level of the smaller tasks is
indeed challenging, as even those with higher skill tended to overestimate effort, albeit to a
lesser extent than those with lower skill.

Furthermore, previous studies suggest that when estimating task effort, software
developers, consciously or unconsciously, recall actual effort on previous tasks, with an
emphasis on tasks perceived to be similar to the task to be estimated [30, 31]. If a developer
with low skill fails to identify the simplicity of a task, then most probably the experience from
larger or more complex tasks is used as input and lead to an over-pessimistic estimate. As the
task uncertainty increases, developers tend to make estimates closer to the average of the class
of perceived relevant objects [32-34], a tendency termed “the central tendency of judgement”.
This may add to the over-pessimism of those with less skill in high-uncertainty situations,
where the wrong class of relevant experience is chosen as reference for the effort estimates and
the task looks more complex than it really is.

4.3 Implications for practice and further research

Previous studies document that emphasising low effort estimates, or the low pricing

derived from such estimates in the selection of developers or providers increases the risk of
selecting those with over-optimistic effort estimates [10, 35], thus increasing the risk of
problematic software development [11, 36-38]. This study adds to those findings by
documenting that selecting among developers with low effort estimates also increases the risk

of selecting less skilled developers, at least for larger tasks, which may be the majority in most
relevant real-world contexts. If, for example, a client selected a developer among those with
the 25% lowest effort estimates to complete Tasks A–D, the risk of making a selection in the
lowest skill score quartile (Q1) would be as high as 32%, 39%, 45% and 55% for Tasks A–D,
respectively, whereas the likelihood of selecting one in the highest skill score category would,
be only 32%, 17%, 21% and 18%, for the same tasks. That is, a focus on low effort estimates
in the selection process would be more likely to result in lower-skill (Q1) than higher-skill
(Q4) software developers. Furthermore, skill indicators typically used in industry, e.g. selection
of senior developers or those with long experienced as programmers using the relevant
programming language, will not significantly improve the likelihood of selecting the most
skilled, either. This suggests that typical provider and developer selection strategies in software
development, e.g. emphasising low estimates/price and using background information typically
provided in CVs, involve a high risk of selecting low-skill developers. Accordingly, other
methods should be used in the selection process. More reliable means of selecting skilled
developers or providers may include the use of trialsourcing, i.e. larger-scale skill evaluation
based on relevant project tasks, as part of the selection process [1] or to use skill tests similar to
those proposed in [16].

The observation that the effort estimates of some of the smaller tasks were better
correlated with programming skill (up to 0.5) and had higher hit rates (up to 70%) implies that
it may be possible to design estimation tasks suitable for identifying the best programmers. For
instance, tasks requiring programming skill to identify that they are in fact simple are well
suited for this purpose. More research should be conducted in this direction.

4.4 Threats to validity
Construct validity: True vs measured programming skill
The aim has been to measure the programming skill of the participants in the study and

we have used a validated measurement tool for that purpose. All relevant aspects of
programming skill of a developer, however, can clearly not be measured by the performance
on five smaller programming tasks. What was achieved may therefore be described as a
comparison of self-assessed programming skill, in the form of estimated effort required to
complete a task, with more objective programming skill measures. Even though not all types of
tasks and contexts are represented, the prior validation of the skill measurement tool suggests
that the skill tests represent typical software development well. The consistency of the results,
in particular the similarity relations between the skill scores and the estimates across all four
larger tasks and across all five smaller tasks, also support the validity of the skill measures.

Internal validity: Causality vs correlation
The explanation of the findings is motivated by a belief in a causal, perhaps cyclic,

relation between low skill in completing and a low skill in estimating the required effort for a
software development task. Strictly speaking, analyses based on data from observational
studies (as in the present case) will, however, only enable causal claims if all relevant variables
are included, the type of model is appropriate and all model assumptions are met. This is not
likely to be the case in the present study. An important reasons for believing that what we have
reported is a causal, and not only correlational, relationship between lower programming and
lower estimation skill is that the main results correspond to results in previous studies, or are
natural consequences of that low competence in understanding a task can lead to failure to
understand its simplicity (or complexity). This, of course, does not imply that there are no
other variables (not included in the present analysis) that may explain parts of the results and
moderate the proposed causal relations.

External validity: Generalising results to other software development contexts
The four larger software development tasks were selected to represent typical smaller

software projects, and the five smaller tasks to represent core programming activities.
Estimating and completing both types of software development tasks is likely to be common
for the developers participating in this study. Even though the underlying mechanisms may be

present in other software development contexts, the effect size, e.g. the degree to which skill
level will affect estimation over-optimism, is expected to be strongly context-dependent. For
example, contexts with tasks whose complexity is even more hidden for those with lower, but
not for those with higher skill, may increase the stronger over-optimism of the less skilled even
more compared to what we observed.

This study did not request company-level, or group-based, effort estimates, but only
estimates from individual developers. One may argue that companies hardly ever let those with
low programming skill estimate software projects, and therefore less company-level estimation
problems occurs. An examination of the data demonstrated that this was not the case.
Developers responsible for the entirety of project estimates (n = 69) were as likely to belong to
the lowest skill score category (23% with skill scores in Q1) as to the highest skill score
category (23% with skill scores in Q4). It is nevertheless possible that the effect size will be
lower in various settings, e.g. when several software professionals contribute to the estimation
using appropriate group-based practices. Examining the same effects as those in this study in
the context of group-based effort estimation is an interesting topic for further research.

5. Conclusion	
The relations between effort estimates and programming skill (RQ1) and between skill

indicators and measured programming skill (RQ2) were examined, with the following
contributions:
• Documenting the relevance of the well-established Dunning–Kruger effect on the larger

software development tasks, i.e. lower programming skill was connected with more over-
optimistic estimates of one’s own performance. Not only were the effort estimates more
over-optimistic, but they were on average lower than those of the developers with the
highest programming skill.

• Extending the Dunning–Kruger effect by observing that there are contexts in which lower
skill is connected with more over-pessimistic effort estimates. We conjecture that the
general effect of low skill is higher estimation uncertainty, and occasionally, this is
connected with lack of skill in identifying the simplicity of a task, leading to over-
pessimistic effort estimates.

• Replicating and extending previously not examined skill indicators results documenting
that the connections between measured programming skill and programming skill
indicators typically used in industry when selecting among developers or providers are
weak.

• Documenting a Dunning-Kruger effect related to estimation skills. Those	with	the	lowest	
skill	in	effort	estimation	over-estimated	their	estimation	skill	the	most.

Practical consequences of our results may include:

• Software clients and managers who emphasise low effort estimates, or the derived lower
price, when selecting software developers to complete larger tasks do not only run a risk of
selecting over-optimistic developers (the winner’s curse). They also run higher risk of
selecting the least skilled developers. Assuming that the results generalise to larger-scale
software development project contexts, this cautions against selecting the lowest bidder,
particularly when objective skill tests of the provider and/or its software developers are not
conducted.

• Skill indicators typically used in industry, such as those included in the developers’ CV, the
company assessed skill categories, the developers’ confidence in the accuracy of their
estimates and assessed problem-solving ability, are not reliable. To identify programming
skill, other means are required, such as work sample testing and trialsourcing.

We observed that the best indicator of programming skill was the developers’ effort

estimates on relatively simple programming tasks, in which those with higher skill seemed to
have been more able to identify the tasks’ simplicity compared with those with lower skill. The

use of estimates on carefully designed programming tasks as indicators of skill, we argue, is an
interesting topic for further research.

Note: The first and second author have financial interests in the company (Technebies) that
owns the skill testing tool used in this study.

References
[1]	 Jørgensen,	M.,	Better	selection	of	software	providers	through	trialsourcing.	Ieee	Software,	2016.	

33(5):	p.	48-53.	
[2]	 Anda,	B.C.D.,	D.I.K.	Sjøberg,	and	A.	Mockus,	Variability	and	reproducibility	in	software	engineering:	A	

study	of	four	companies	that	developed	the	same	system.	IEEE	Transactions	of	Software	Engineering,	
2009.	35(3):	p.	409-429.	

[3]	 Kruger,	J.	and	D.	Dunning,	Unskilled	and	unaware	of	it:	How	difficulties	in	recognizing	one's	own	
incompetence	lead	to	inflated	self-assessments.	Journal	of	Personality	and	Social	Psychology,	1999.	
77(6):	p.	1121-1134.	

[4]	 Simons,	D.J.,	Unskilled	and	optimistic:	Overconfident	predictions	despite	calibrated	knowledge	of	
relative	skill.	Psychonomic	Bulletin	&	Review,	2013.	20(3):	p.	601-607.	

[5]	 Meeran,	S.,	P.	Goodwin,	and	B.	Yalabik,	A	parsimonious	explanation	of	observed	biases	when	
forecasting	one’s	own	performance.	International	Journal	of	Forecasting,	2016.	32(1):	p.	112-120.	

[6]	 Krajc,	M.	and	A.	Ortmann,	Are	the	unskilled	really	that	unaware?	An	alternative	explanation.	Journal	
of	Economic	Psychology,	2008.	29(5):	p.	724-738.	

[7]	 Pavel,	S.R.,	M.F.	Robertson,	and	B.T.	Harrison,	The	Dunning-Kruger	effect	and	SIUC	University’s	
aviation	students.	Journal	of	Aviation	Technology	and	Engineering,	2012.	2(1):	p.	125-129.	

[8]	 Fogarty,	G.J.	and	D.	Else,	Performance	calibration	in	sport:	Implications	for	self‐confidence	and	
metacognitive	biases.	International	Journal	of	Sport	and	Exercise	Psychology,	2005.	3(1):	p.	41-57.	

[9]	 Dunning,	D.,	C.	Heath,	and	J.M.	Suls,	Flawed	self-assessment:	Implications	for	health,	education,	and	
the	workplace.	Psychological	science	in	the	public	interest,	2004.	5(3):	p.	69-106.	

[10]	 Jørgensen,	M.,	The	influence	of	selection	bias	on	effort	overruns	in	software	development	projects.	
Information	and	Software	Technology,	2013.	55(9):	p.	1640-1650.	

[11]	 Jørgensen,	M.	Software	development	contracts:	the	impact	of	the	provider's	risk	of	financial	loss	on	
project	success.	In	10th	Int.	Conference	on	Cooperative	and	Human	Aspects	of	Software	Engineering.	
Buenos	Aires.	IEEE	Press.	p.	30-35.	

[12]	 Løhre,	E.	and	M.	Jørgensen,	Numerical	anchors	and	their	strong	effects	on	software	development	
effort	estimates.	Journal	of	Systems	and	Software,	2016.	116:	p.	49-56.	

[13]	 Vierordt,	K.,	Der	zeitsinn	nach	versuchen.	1868:	H.	Laupp.	
[14]	 Halkjelsvik,	T.	and	M.	Jørgensen,	From	Origami	to	Software	Development:	A	Review	of	Studies	on	

Judgment-Based	Predictions	of	Performance	Time.	Psychological	Bulletin,	2012.	138(2):	p.	238-271.	
[15]	 Damisch,	L.,	T.	Mussweiler,	and	H.	Plessner,	Olympic	medals	as	fruits	of	comparison?	Assimilation	

and	contrast	in	sequential	performance	judgments.	Journal	of	Experimental	Psychology:	Applied,	
2006.	12(3):	p.	166.	

[16]	 Bergersen,	G.R.,	D.I.K.	Sjøberg,	and	T.	Dybå,	Construction	and	validation	of	an	instrument	for	
measuring	programming	skill.	IEEE	Transactions	on	Software	Engineering,	2014.	40(12):	p.	1163-
1184.	

[17]	 Bergersen,	G.R.	and	J.-E.	Gustafsson,	Programming	skill,	knowledge,	and	working	memory	among	
professional	software	developers	from	an	investment	theory	perspective.	Journal	of	Individual	
Differences,	2011.	32(4):	p.	201-209.	

[18]	 Andrich,	D.,	A	rating	formulation	for	ordered	response	categories.	Psychometrika,	1978.	43(4):	p.	
561-573.	

[19]	 Mair,	P.	and	R.	Hatzinger,	CML	based	estimation	of	extended	Rasch	models	with	the	eRm	package	in	
R.	Psychology	Science,	49(1),	26-43.,	2007.	49(1):	p.	26-43.	

[20]	 Galwey,	N.W.,	Introduction	to	mixed	modelling:	beyond	regression	and	analysis	of	variance.	2014:	
John	Wiley	&	Sons.	

[21]	 Tu,	Y.-K.,	I.H.	Maddick,	G.S.	Griffiths,	and	M.S.	Gilthorpe,	Mathematical	coupling	can	undermine	the	
statistical	assessment	of	clinical	research:	illustrations	from	the	treatment	of	guided	tissue	
regeneration.	Journal	of	Dentistry,	2004.	32(2):	p.	133-142.	

[22]	 Somers,	R.H.,	A	new	asymmetric	measure	of	association	for	ordinal	variables.	American	sociological	
review,	1962:	p.	799-811.	

[23]	 Goodman,	L.A.	and	W.H.	Kruskal,	Measures	of	association	for	cross	classifications.	Journal	of	the	
American	statistical	association,	1954.	49(268):	p.	732-764.	

[24]	 Siegmund,	J.,	C.	Kästner,	J.	Liebig,	S.	Apel,	and	S.	Hanenberg,	Measuring	and	modeling	programming	
experience.	Empirical	Software	Engineering,	2014.	19(5):	p.	1299-1334.	

[25]	 Bryan,	G.E.	Not	all	programmers	are	created	equal.	In	Aerospace	Applications	Conference.	1994.	
IEEE.	p.	55-62.	

[26]	 Alicke,	M.D.	and	C.	Sedikides,	Handbook	of	self-enhancement	and	self-protection.	2011:	Guilford	
Press.	

[27]	 Moløkken,	K.	and	M.	Jørgensen.	A	review	of	surveys	on	software	effort	estimation.	In	International	
Symposium	on	Empirical	Software	Engineering.	2003.	Rome,	Italy.	IEEE.	p.	223-230.	

[28]	 Budzier,	A.	and	B.	Flyvbjerg,	Overspend?	Late?	Failure?	What	the	data	say	about	IT	project	risk	in	the	
public	sector.	arXiv	preprint	arXiv:1304.4525,	2013.	

[29]	 Zell,	E.	and	Z.	Krizan,	Do	people	have	insight	into	their	abilities?	A	metasynthesis.	Perspectives	on	
Psychological	Science,	2014.	9(2):	p.	111-125.	

[30]	 Jørgensen,	M.,	Selection	of	strategies	in	judgment-based	effort	estimation.	Journal	of	Systems	and	
Software,	2010.	83(6):	p.	1039-1050.	

[31]	 Rush,	C.	and	R.	Roy,	Expert	judgement	in	cost	estimating:	modelling	the	reasoning	process.	
Concurrent	Engineering:	Research	and	Applications,	2001.	9(4):	p.	271	-	284.	

[32]	 Jazayeri,	M.	and	M.N.	Shadlen,	Temporal	context	calibrates	interval	timing.	Nature	neuroscience,	
2010.	13(8):	p.	1020.	

[33]	 Hollingworth,	H.L.,	The	central	tendency	of	judgment.	The	Journal	of	Philosophy,	Psychology	and	
Scientific	Methods,	1910.	7(17):	p.	461-469.	

[34]	 Tamrakar,	R.	and	M.	Jørgensen.	Does	the	use	of	Fibonacci	numbers	in	Planning	Poker	affect	effort	
estimates.	In	16th	International	Conference	on	Evaluation	and	Assessment	in	Software	Engineering.	
2012.	IET.	p.	228-232.	

[35]	 Kern,	T.,	L.P.	Willcocks,	and	E.	Van	Heck,	The	winner's	curse	in	IT	outsourcing:	Strategies	for	
avoiding	relational	trauma.	California	Management	Review,	2002.	44(2):	p.	47-69.	

[36]	 Jørgensen,	M.,	A	survey	on	the	characteristics	of	projects	with	success	in	delivering	client	benefits.	
Information	and	Software	Technology,	2016.	78:	p.	83-94.	

[37]	 Jørgensen,	M.,	How	to	avoid	selecting	bids	based	on	overoptimistic	cost	estimates.	IEEE	Software,	
2009.	26(3).	

[38]	 Jørgensen,	M.,	P.	Mohagheghi,	and	S.	Grimstad,	Direct	and	indirect	connections	between	type	of	
contract	and	software	project	outcome.	International	Journal	of	Project	Management,	2017.	35(8):	
p.	1573-1586.	

Appendix

Table A1: Mixed model analysis results of the larger tasks

Fixed
effects

Variable Categories Coefficient 95% CI
Intercept 8.39 [8.15; 8.63]
Task
(D is the reference task)

A -0.18 [-0.31; -0.04]
B 0.59 [0.46; 0.73]
C -0.21 [-0.34; -0.07]

Skill category (Q4 is the
reference category)

Q1 -0.53 [-0.92; -0.14]
Q2 0.26 [-0.12; 0.64]
Q3 0.38 [-0.13; 0.90]

Task x Skill category
(D and Q4 are the references)

A x Q1 0.09 [-0.13; 0.31]
A x Q2 -0.21 [-0.43; 0.00]
A x Q3 0.08 [-0.20; 0.37]
B x Q1 -0.25 [-0.47; -0.03]
B x Q2 0.26 [0.05; 0.48]
B x Q3 -0.09 [-0.38; 0.19]
C x Q1 0.26 [0.04; 0.48]
C x Q2 -0.07 [-0.29; 0.14]
C x Q3 -0.09 [-0.33; 0.24]

Random
effect

Variable Variance Percent of total variance
Developer 1.13 68%
Residual 0.53 32%

Table A2: Mixed model analysis results of the smaller tasks

Fixed
effects

Variable Values Coefficient 95% CI
Intercept 5.03 [4.85; 5.22]
Task
(I is the reference task)

E 0.25 [0.09; 0.42]
F -0.05 [-0.19; 0.09]
G -0,80 [-0.94; -0.66]
H -0.43 [-0.57; -0.28]

Skill category (Q4 is the
reference categories)

Q1 0.59 [0.36; 0.83]
Q2 -0.10 [-0.29; 0.09]
Q3 -0.18 [-0.35; -0.02]

Task x Skill category
(I and Q4 are the references)

E x Q1 0.06 [-0.21; 0.33]
E x Q2 0.17 [-0.22; 0.56]
E x Q3 -0.02 [-0.26; 0.22]
F x Q1 0.10 [-0.16; 0.37]
F x Q2 -0.23 [-0.48; 0.02]
F x Q3 0.22 [-0.03; 0.46]
G x Q1 0.20 [-0.07; 0.46]
G x Q2 -0.13 [-0.38; 0.01]
G x Q3 -0.24 [-0.49; 0.01]
H x Q1 0.05 [-0.20; 0.30]
H x Q2 0.02 [-0.28; 0.32]
H x Q3 0.03 [-0.19; 0.26]

Random
effect

Variable Variance Percent of total variance
Developer 0.70 54%
Residual 0.60 46%

Figure A1: Residuals for the mixed model of the larger tasks

Figure A2: Residuals for the mixed model of the smaller tasks

