
Infeasible Path Generalization in Dynamic Symbolic Execution

Mickaël Delahayea, Bernard Botellaa, Arnaud Gotliebb

aCEA LIST, Software Safety Laboratory, PC 174, 91191 Gif-sur-Yvette Cedex, France
bSIMULA Research Laboratory, Certus Software V&V Center, Lysaker, Norway

Abstract

Context: Automatic code-based test input generation aims at generating a test suite ensuring good code coverage.
Dynamic Symbolic Execution (DSE) recently emerged as a strong code-based testing technique to increase coverage by
solving path conditions with a combination of symbolic constraint solving and concrete executions.

Objective: When selecting paths in DSE for generating test inputs, some paths are actually detected as being
infeasible, meaning that no input can be found to exercize them. But, showing path infeasibility instead of generating
test inputs is costly and most effort could be saved in DSE by reusing path infeasibility information.

Method: In this paper, we propose a method that takes opportunity of the detection of a single infeasible path to
generalize to a possibly infinite family of infeasible paths. The method first extracts an explanation of path condition,
that is, the reason of the path infeasibility. Then, it determines conditions, using data dependency information, that
paths must respect to exhibit the same infeasibility. Finally, it constructs an automaton matching the generalized
infeasible paths.

Results: We implemented our method in a prototype tool called IPEG (Infeasible Path Explanation and Gener-
alization), for DSE of C programs. First experimental results obtained with IPEG show that our approach can save
considerable effort in DSE, when generating test inputs for increasing code coverage.

Conclusion: Infeasible path generalization allows test generation to know of numerous infeasible paths ahead of time,
and consequently to save the time needed to show their infeasibility.

Keywords: Dynamic symbolic execution, explanation, test input generation

1. Introduction

Software testing is an essential part of today’s software
engineering, as the principal and often the only mean to
ensure software reliability. Among the techniques that per-
mit one to improve the quality of a test set, code-based
testing, also known as white-box testing, plays an impor-
tant role. Code-based testing implies the usage of the
source code to select test inputs, to measure code coverage,
to localize faults and eventually to propose automatically
bug repairs. These last years, code-based testing has be-
come more and more appealing with the emergence of new
techniques and powerful tools. However, modern effective
code-based testing has also a main limitation: high code
coverage is often difficult or costly to reach, without com-
promising the efficiency of the technique. This paper is
concerned with this challenge and describes a new cross-
cutting technique that contributes to handle this issue.

Email addresses: mickael.delahaye@cea.fr (Mickaël
Delahaye), bernard.botella@cea.fr (Bernard Botella),
arnaud@simula.fr (Arnaud Gotlieb)

As said above, the field of code-based testing has seen
the emergence of new techniques and powerful tools, most
of them being based on Dynamic Symbolic Execution (e.g.,
PathCrawler (Williams et al., 2005), DART (Godefroid
et al., 2005), CUTE (Sen et al., 2005), SAGE (Godefroid
et al., 2008) or PEX (Tillmann and de Halleux, 2008) just
to name the pioneering tools). Dynamic Symbolic Exe-
cution (DSE) is a software testing and analysis technique
which starts by selecting and executing a (feasible) path,
by picking up a test input at random. Then, it computes a
path condition by symbolically evaluating the instructions
along the activated path. By refuting one decision of that
path and exploiting a constraint solver, DSE determines
a new test input which, by construction, covers another
path in the program under test. Said otherwise, DSE tries
to uncover test inputs which cover distinct paths that the
ones that already covered, in order to increase path cov-
erage. An important observation concerns path selection:
when a path is activated by a test input, it is necessar-
ily feasible but when a path is selected by refuting one
decision over a (feasible) path, then its feasibility is no

Preprint submitted to Information and Software Technology July 21, 2014



/* Let x be the input,
and res the output */

[abs := x; i := 2]a;

[res := 1]b;
if [abs < 0]c then

[abs := −abs]d;
while [i ≤ abs]e do

[res := res×i; i := i+1]f ;

if [x < 1]g then
[res := res + 5]h;

Figure 1: A program with many infeasible paths

more guaranteed. Whenever DSE considers an infeasible
path, then the constraint solver tries to prove the unsatis-
fiability of the path condition. Obviously, this task is not
formally required and corresponds to a waste of time be-
cause the goal of DSE is to find new test inputs, and not
to report path infeasibility. Even if detecting all the in-
feasible paths is impossible1, studies have shown that they
are ubiquitous in computer programs (Yates and Malevris,
1989) and that avoiding them when testing programs is
highly desirable (Ngo and Tan, 2008).

As a simple motivating example, please consider the pro-
gram of Fig. 1. On this program, a typical DSE tool might
stumble onto a lot of infeasible paths, as shown on the run
given on Fig. 2. In step (1), an input is arbitrarily chosen
(e.g., x = 2), the program is executed, and the activated
path is traced (a b cf et f ef gf ), as shown on the figure. In
step (2), the tool chooses a new path to cover (indicated
with dotted arrows) based on the current path using a
depth-first strategy. The tool computes a path condition
for this new path (indicated beside the path), and passes
it on to a solver. The solver answers negatively (indi-
cated by an X). Indeed, the path condition is inconsistent
(2 ≤ x contradicts x < 1). In other words, the genera-
tion has met its first infeasible path a b cf et f ef gt h. In
(3), the tool tries to activate another path with the same
method. This time, the solver gives a solution to the path
condition. This solution (x = 3) is used as input to a con-
crete execution of the program to get a full activated path.
This path iterates the loop one more time. In (4), the tool
tries to activate the statement h, and for the very same
reason as step (2), the attempt fails. And so on and so
forth, going deeper and deeper in the loop. Hopefully, the
tool bounces back either on an arbitrary limitation of the
path length or the maximal value of the data type (only
for finite data type). After covering a first path with no
iteration in the loop, this hypothetical tool indeed finds
an input that activates the statement h. During the test
input generation, a lot of paths are proved infeasible. In-
deed, a manual code review lets us confirm that, if the

1This problem was proved undecidable in general (Weyuker,
1979).

control flow passes through the “then” branch of the first
conditional and through at least one iteration in the loop,
it cannot go into the “then” branch of the second con-
ditional. This family can be represented by an automata
given of Fig. 3. Every path for which a prefix is recognized
by the automata is necessarily infeasible.

Though one can argue another search strategy might
perform better on this particular example, such traps ex-
ist for every strategy. Moreover, real programs do contain
families of similar infeasible paths. Recommended pro-
gramming practices, such as code reuse, modularity, and
assertions, are often source of possibly redundant checks
leading to numerous infeasible paths. As we will see later,
even well known algorithms possess such families of infea-
sible paths.

Motivated by such cases, we propose in this paper a
technique that allows test input generators to detect early
and to skip numerous infeasible paths. This technique
takes opportunity of the detection of an infeasible path by
the test input generator to generalize to a possibly infinite
family of infeasible paths. The method consists first of
extracting the “essence” of the infeasibility from the path
condition. Then, by combining data dependency informa-
tion and finite state automaton operations, our approach
constructs an infeasible path automaton, a representation
of an infeasible path family of the program. Finally, this
automaton can be used to detect paths belonging to the
family for the cost of matching a regular expression.

To evaluate our approach, we developed a modular tool
called IPEG (Infeasible Path Explanation and Generaliza-
tion) for programs in C. It can be parametrized by any
solving procedure. For our experiments, we used three
constraint solvers (i.e., Colibri, Yices and Z3) that are cur-
rently used in dynamic symbolic execution tools. We eval-
uated our approach at two levels. First, the unitary evalu-
ation checks the effectiveness of the generalization method
to prove path infeasibility against an exhaustive symbolic
execution. Second, an integrated evaluation checks how a
naive integration of the method in a test input generator
affects the performances. These experiments show that our
approach can save considerable computation time during
test generation.

Paper organization. Section 2 gives essential notations
and background notions to understand the infeasible path
generalization method. Section 3 presents the method in
depth with a number of examples. Notions such as data de-
pendencies and infeasible path automaton are introduced
in this section. Section 4 discusses the integration of the
proposed method within a dynamic symbolic execution
procedure. Section 5 contains the results of our experi-
mental evaluation of method. Section 6 positions our pro-
posed method into state-of-the-art path infeasibility anal-
yses. Finally, Section 7 concludes the paper and draws a
couple of perspectives to this work.

2



x = 2

(1)

a

b

c

e

f

e

g

.

f

t

f

f

(2)

a

b

c

e

f

e

g

.
f

h

f

t

f

t

x ≥ 0

2 ≤ x

3 > x

x < 1

%

(3)

a

b

c

e

f

e

g

.
h

f

f
t

%
f

e

g

.

f

t

t

x ≥ 0

2 ≤ x

3 ≤ x

! x = 3

f

f

(4)

a

b

c

e

f

e

g

.
h

f

e

g

.
h

f

f
t

f

%

x ≥ 0

2 ≤ x

3 ≤ x

4 > x

x < 1

! x = 3

t

t

t

f

t

%

. . . (n)

a

b

c

e

f

e

g

.
h

f

e

g

.
h

f

e

g

.
h

(. . . )

g

.
h

.

t

f

f
t

t

f

f

f
t

t

f
t

f
t

f

x ≥ 0

2 > x

x < 1

f

f

t

%

%

%

! x = 0

Covered path segment

Symbolically executed path segment

Newly activated path segment

Figure 2: Steps of a typical dynamic symbolic execution test input generation

a b cf et f

etf

ef gt

Figure 3: An infeasible path automaton

2. Background and Notations

This section first defines some notions and notations
about programs, paths and feasibility. Then, it introduces
and reviews the notion of constraint-based explanations.

2.1. Program and Path

For the sake of clarity, we will use a simple impera-
tive language for representing programs. Fig. 1 gives a
concrete example of the syntax used in the paper. It is
important to note that simple statements (assignment or
skip statement) and tests (that is, conditions on loops and
conditional constructs) are labeled.

A program path is a sequence of program statements al-
lowed by the flow relation defined on the studied language.
In the paper, a path is noted by a sequence of augmented
labels on a particular program. An augmented label is a la-
bel possibly followed by a letter, t or f, to explicit the truth
value, respectively true or false, when the label points to
a test. If x is an augmented label, label(x) denotes the
simple label (without any letter).

For instance, on the program of Fig. 1, a bt c ef gt h is a
path that does not enter the loop and goes through the
“then” branches of the two conditionals. Note however
that the sequence a et i does not respect the program’s
control flow and as such is not to be considered a program
path.

2.2. Feasibility and Path Condition

A program path is said to be feasible if there is at least
one particular input that activates it. Conversely, a path
is infeasible if there is no input that activates it.

A path condition of a program path given a symbolic
input vector is a conjunction of constraints on the sym-
bolic input vector (and possibly other logical variables)
that characterizes the path’s execution. Formally, given
C a path condition of a path π, π is feasible (resp. in-
feasible) if and only if C is consistent (resp. inconsis-
tent). Also, if C is consistent, any solution of C gives a
test input vector activating π. Such a path condition can
be computed using symbolic execution. Symbolic execu-
tion (King, 1975) concerns the execution of a program on
symbols, in other words, logical variables, rather that con-
crete inputs. Sec. 3.1.1 describes in details our technique’s
need regarding the symbolic execution.

Given a set S of paths, a path p is a shortest path of S,
if, for all p′ ∈ S there is no non-null s such that p′ · s = p.
We can also see shortest paths are the maximal elements of
the path set partially ordered by the prefix relation (a v b
iff a is a prefix of b).

2.3. Data Dependencies

This section first defines two specialized variants of data
dependencies before recalling the definition of definition-
clear path.

A DU (definition-use) path dependency occurs on pro-
gram path π between the indexes i and j with respect to
the variable v if and only iff:

• i > j (a conventional orientation),

• πi reads v and πj writes v,

• and there is no path index k with i > k > j such that
πk writes v, in other words, the subpath (πk)i>k>j is
a def-clear paths w.r.t. the variable v.

A UU (use-use) path dependency occurs on program
path π between the indexes i and j with respect to the
variable v if and only if:

• i > j (a conventional orientation),

3



• πi reads v and πj reads v,

• and there is no path index k with i > k > j such that
πk writes v, in other words, the subpath (πk)i>k>j is
a def-clear paths w.r.t. the variable v.

It is important to note that these two kinds of depen-
dencies are special because they are considered on a single
path (possibly, an infeasible one). However, these depen-
dencies can only be overapproximated in some cases. In-
deed, the variables read or written at a given statement
cannot be known exactly in presence of indirections (ar-
rays, pointers).

A definition-clear (def-clear) path from label n to label
m with respect to a set of variables V is a path that goes
from n to m without modifying any variable of V .

2.4. Finite-State Automata

A (finite-state) automaton is a tuple 〈Q,Σ,∆, I, F 〉,
where Q is a set of states, I and F are subsets of Q indicat-
ing respectively the initial states and the final states, Σ a
set of symbols, i.e, an alphabet, and ∆ is a set of transitions
P(Q×Σ×Q). A deterministic (finite-state) automaton is
a finite-state automaton that has at most one initial state,
and such that for each state there is at most one outgoing
transition labeled with the same symbol.

Given an alphabet Σ, a word is a sequence of symbols
of Σ. An automaton 〈Q,Σ,∆, I, F 〉 recognizes, or matches,
a word of Σ, w = (`1, `l), if and only if there is a sequence of
states in (q1, . . . , qn+1), such that for all i, qi ∈ Q, q1 ∈ I,
qn+1 ∈ F , and, for i = 1 . . . n, (qi, `i, qi+1) ∈ ∆.

A language is a (possibly infinite) set of words. The
recognized language of an automaton A is the set of words
recognized by the automaton, noted L(A). Two automata
are equivalent if there recognized language are equal.

An union of two automata A and B, noted AtB, is an
automaton C such that w is in L(C) if and only if w is
either in L(B) or in L(C), that is w ∈ L(B) ∪ L(C).

A concatenation of A and B, noted A◦B, is an automa-
ton C such that:

• If w is in L(C), there is u ∈ L(A) and v ∈ L(C) such
that w = u · v, where “·” indicates the concatenation
of words.

• Conversely, if u ∈ L(A) and v ∈ L(C), then u · v is in
L(C).

In the rest of the paper, we suppose that techniques to
compute the union and the concatenation are known.

2.5. Explanation

An important part of the method is to determine the
reason why a constraint system is inconsistent. More pre-
cisely, the method needs to know what part of a constraint
system is fundamentally false, that is, to find an explana-
tion.

An explanation, or unsatisfiable core, is a subsystem of
an inconsistent constraint system that is inconsistent by
itself. An explanation is minimal if no subsystem of the
explanation is also an explanation, that is, if all parts of
the explanation are essential to the inconsistency.

There are at least two ways to find an explanation: first,
the intrusive way, which consists in intrusively tracing
back the solving process to the parts of the constraint sys-
tem that lead to inconsistency; second, the non-intrusive
techniques which consider the constraint system as a con-
junction of individual constraints and tries to identify the
ones that lead to inconsistency by successive external tests.

2.5.1. Intrusive methods

These methods extract an explanation from the con-
straints used by the solver’s reasoning. Constraint pro-
gramming tries to learn from failure since the late 70s by
keeping track of nogoods. A nogood consists of a partial
assignment of variables and a subset of the considered con-
straint system justifying this assignment is inconsistent.
More recently, Jussien et al. (2000), adapted the record-
ing of such nogoods to constraint propagation algorithms.
Constraint propagation finds a constraint system unsatis-
fiable if any variable domain is empty. Therefore, when
recorded, the conjunction of explanations for eliminating
values from domain forms an explanation of the overall
constraint system. For instance, consider the inconsistent
constraint system x 6= y ∧ x + y = 0 ∧ xy = 1 for x, y in
{0, 1}. Its inconsistency can be proved by the solver with
the following reasoning:

x = 1
x 6=y⇒ y = 0

x+y=0⇒ ⊥

x = 0
x 6=y⇒ y = 1

xy=1⇒ ⊥

As the domain of x has been entirely explored, the con-
straints used in this reasoning form an explanation of the
inconsistency of the constraint system. Note however that
explanations obtained this way are not usually minimal
because an automatic reasoning can be terribly convo-
luted. For instance, this particular reasoning uses every
constraint of the system, and consequently the inferred
explanation is equal to the whole constraint system.

Other kind of solvers compute and use such explana-
tions. In fact, under the generic terminology of clause
learning, SAT solvers exploit conflicts to speed up the
unit propagation of the DPLL algorithm (Kroening and
Strichman, 2008). Moreover, Zhang and Malik (2003)
have shown that an explanation can be computed as a
by-product of a proof generation in SAT solvers. As noted
by Cimatti et al. (2007), this technique was adapted to
SMT solvers, for instance, MathSAT. Other SMT solvers
(e.g., Yices) introduce selector variables to identify each
part of the formula, so that, if it is inconsistent, the con-
flict clause points directly to an explanation.

4



2.5.2. Non-intrusive methods

The idea is to iteratively test the consistency of subsys-
tems of the constraint system until a minimal explanation
is found. For instance, an explanation of the above con-
straint system x 6= y ∧ x + y = 0 ∧ xy = 1, for x, y in
{0, 1}, can be found by successively checking the consis-
tency of its subsystems: x 6= y, x 6= y ∧ x + y = 0, etc.
Here x, y ∈ {0, 1}, x 6= y ∧ x+ y = 0 is a minimal explana-
tion. Note that this explanation is not unique as one could
replace x + y = 0 by xy = 1 and obtain another minimal
explanation.

Several non-intrusive algorithms have been proposed
but the recursive dichotomic algorithm of Junker (2004),
QuickXplain, is one of the most efficient as it runs in
O(k log n

k ) in the worst case instead of O(nk) where n is
the size of the constraint system and k the size of the ex-
planation to be found.

Junker’s algorithm is adapted to constraint solver that
may return an inconclusive verdict (undecidable theory,
arbitrary timeout). As such, it computes one of the mini-
mal subsets the constraint solver Γ can state inconsistent,
noted here Γ-minimal explanation. Note that in the ab-
sence of inconclusive verdict, Junker’s algorithm returns
minimal explanations.

At each recursion step, the algorithm considers a back-
ground set of constraints (initially empty) and an active
set of constraints (initially the whole constraint system).
First, it checks if the background is not inconsistent and
if the active set of constraints is not empty. If either con-
dition is met, it returns an empty set. Otherwise, it con-
tinues by checking whether the active set of constraints is
a singleton. If it is the case, this singleton is returned.
Otherwise, the active set of constraints is partitioned into
two parts, and the algorithm is called recursively on each
part: first the second part, with the union of the current
background and the first part as background, then the first
part with the union of the current background and the re-
sult of the first recursive call as background. Finally, it
returns the union of the results of both recursive calls.

Iterative methods are very susceptible to the iteration
order. Partitioning allows Junker’s method to counteract
the phenomenon and to actually be more efficient under
the hypothesis that the considered constraint set has a
small explanation.

There are other approaches to this problem. Indeed,
many methods exist to compute more or less precise un-
satisfiable cores by combining techniques from both ways,
but mostly for Boolean formulae (e.g., Dershowitz et al.,
2006). That is why Cimatti et al. (2007) propose to use an
external Boolean unsatisfiable core extractor to compute
a small explanation of an SMT formula.

For our experiments, we choose to explore two ways
to compute an explanation: the off-the-shelf unsatisfiable
core provided by some SMT solvers, often imprecise but
fast, and Junker’s explanation algorithm, very precise,
generic but demanding in terms of solver calls. We think

these methods are representative of the trade-off existing
between precision and time.

3. Infeasible Path Generalization

This section first describes the method of infeasible path
generalization in three steps. Then, it sums up the method
and applies the method to a full example. Finally, we
proposes an integration to dynamic symbolic execution-
based test generation.

3.1. Explaining the Infeasibility

The infeasible generalization method takes as input an
infeasible path π of an imperative program. The first step
of the method is concerned about finding why the path is
infeasible.

A path can be infeasible for various reasons, but every
infeasibility is captured by the path condition. But, a path
condition can be as cluttered as the program code, that
is, containing redundant constraints, or unrelated groups
of constraints. Hence, it is interesting to extract from the
path condition a more concise explanation using constraint
techniques.

So, first, this section explains how the method computes
a suitable path condition. Then, it discusses about meth-
ods to extract an explanation from the path condition.
Finally, this section questions the relation between the
constraint-level explanation and the program statements.

3.1.1. Symbolic Execution without Substitution

Explaining the infeasibility requires a precise path con-
dition that contains as much details as possible about
the execution. This method assumes a symbolic execu-
tion without substitution (constant/expression propaga-
tion) such, in the path condition Cπ of a path π:

• Each statement or test met at πi corresponds to at
least one constraint of the path condition Cπ tagged
with the index i in order to know to what statement
correspond a particular constraint

• Every variable use or definition corresponds to the
use of a logical variable that specifically indicates the
accessed instance of the variable (so as to know based
on a constraint of the path condition which program
variables was read or written and at which statement
occurrence)

Sec. 4.1 further discusses this requirement and a way to
alleviate it by trading off precision.

If we consider the example of Fig. 1 and the first in-
feasible path met during the test generation, that is,
a b cf et f ef gt, a suitable path condition is given on Ta-
ble 1. Each constraint is labeled with the index on the
path. For instance, [abs1 ≥ 0]3 is computed at the third
element of the path which corresponds to an occurrence of
the test c with the truth value f. Also, the path condition

5



Table 1: Path Condition of a b cf et f ef gt

i πi Test/Statement Path Condition

1 a [abs := x; i := 2]a [abs1 = x0]1, [i1 = 2]1
2 b [res := 1]b [res1 = 1]2
3 cf [abs < 0]c [abs1 ≥ 0]3
4 et [i ≤ abs]e [i1 ≤ abs1]4
5 f [res := res× i;

i := i+ 1]f
[res2 = res1 × i1]5,

[i2 = i1 + 1]5
6 ef [i ≤ abs]e [i2 > abs1]6
7 gt [x < 1]g [x0 < 1]7

uses a fresh logical variable at each program variable def-
inition noted by the name of the original variable and an
index starting to 1, zero being reserved for input variables
(like x0).

3.1.2. Extracting the Explanation

A path condition explains the infeasibility, but, as noted
earlier, a more precise explanation is desirable. In fact, the
constraints of the path condition are like common traits
that the generalized paths must share: the less they are,
the more likely they are to be shared. Consequently, even if
any explanation extraction method may be used, a precise
result is preferred.

Again on the example of Fig. 1, the inconsistency of
the path condition of a b cf et f ef gt, shown in Table 1, can
be explained by four constraints [abs1 = x0]1, [i1 = 2]1
[i1 ≤ abs1]4, and [x0 < 1]7. This constitutes a minimal
explanation of the path condition and as such an ideal
base to generalize infeasible paths.

3.1.3. From Constraints to Statements

Once the constraints causing the inconsistency have
been identified, it is quite natural to trace them back to
actual program statements. That is why each constraint
is labeled with the path index from which it originates.
Yet, this is not enough to characterize infeasible paths.
Indeed, there may exist feasible paths that pass through
all the statements corresponding to some explanation.

As shown previously, the infeasibility of π =
a b cf et f ef gt can be explained by [abs1 = x0]1, [i1 = 2]1,
[i1 ≤ abs1]4, and [x0 < 1]7. These constraints correspond
to path elements π1, π4, and π7, that is, to the label a, et,
and gt. However, although the path π′ = a b ct d et f ef gt

shares these exact labels, this path is feasible (for x = −2).
Indeed, statements interpreted in different contexts give
different constraints. Here, the test et at index 5 on π′ is
interpreted as [i1 ≤ abs2]5 and not [i1 ≤ abs1]4.

3.2. Tracking Data Dependencies

After finding the culprit constraints of the path condi-
tion in the previous section, this section explains the data
dependencies related to the statements corresponding to

these constraints. The objective is to find data dependen-
cies such that every path respecting them is necessarily
infeasible.

On the path a b cf et f ef gt of the example program of
Fig. 1, there are multiple path dependencies as defined in
the Sec. 2.3. For instance, there is a UU path dependency
between the indexes 7 and 1 with respect to the variable x,
because π1 = a and π7 = gt reads the same x. Also, there
is a DU path dependency between 4 and 1 with respect
to abs, because π4 = et reads the value of abs defined at
π1 = a.

For the purpose of infeasible path generalization, these
two kinds of dependency must be treated without dis-
tinction. In fact, both dependencies are indicated with
a unique notation: on a path π, i →V j indicates a path
dependency (UU and/or DU) between the indexes i and j
w.r.t. a set of variables V .

Infeasible Chain

Path dependencies concerning a path’s infeasibility can
be stored in a specific structure, named infeasiblechain.
Given a path π and an explanation K of its infeasibility,
an infeasible chain of (π,K) is a pair 〈I,D〉 where I are
the indexes corresponding to K and D the set of path
dependencies between I.

The interesting thing about infeasible chains is that ev-
ery path that “respects” an infeasible chain is also infea-
sible. Formally, a path π′ is said to respect an infeasible
chain 〈I,D〉 of (π,K), if there is a set I ′ of indexes on
π′ and a strictly increasing bijective mapping f : I → I ′,
such that:

• For all i in I, πi is the same augmented label as πf(i).

• For all i →V j ∈ D, there is no definition of any
variable of V between f(i) and f(j) on π′ (both ex-
cluded).

It is important to note that the infeasible chain of (π,K)
discriminates a family of infeasible paths called the (π,K)-
general infeasible paths.

On the example of Fig. 1, from the infeasible
path π = a b cf et f ef gt, the explanation K =
{[abs1 = x0]1, [i1 = 2]1, [i1 ≤ abs1]4, [x0 < 1]7}, it is possi-
ble to get the infeasible chain 〈I,D〉 of (π,K), where I is
the set {1, 4, 7} and D the path dependencies observed on
π for the indexes I. This infeasible chain is represented on
Fig. 4. On this figure, UU and DU path dependencies are
represented differently only for the sake of precision and
clarity.

Note that this infeasible chain can directly be extracted
from the path condition. Path dependencies are present
directly in the constraints of K. Indeed, two indexes i and
j are dependent with respect to v if and only if there are
some constraints [c]i and [c′]j of K and k a variable index
such that c and c′ both uses the logical variable vk.

6



1

2

3

4

5

6

7

[abs := x; i := 2]a

[res := 1]b

[abs < 0]c

[i ≤ abs]e

[res := res× i; i := i+ 1]f

[i ≤ abs]e

[x < 1]g

DU
UU

absi

x

Figure 4: Infeasible Chain of (π,K)

Input: π an infeasible path, and D an infeasibility chain of π
Output: an infeasible path automaton

function buildAutomaton(π, 〈I,D〉)
/* Initialize A with an automaton matching only (π1) */

A := 〈{0, 1},Labels, {0 π1−→ 1}, {0}, {1}〉;
R := I \ {1};
i := 1;
while R 6= ∅ do

j := minR;
/* Computes the variables to protect between i and j */
V :=

⋃
{U |∃i′, j′ ∈ I, i′ ≤ i ∧ j′ ≥ j ∧ (i′ →U j

′) ∈ D};
/* Computes the def-clear paths from the successor of πi

(included) to πj (excluded) w.r.t. the variables V */
B := defClearPaths(label(πi+1), label(πj), V );
/* Concatenate A, the def-clear paths B, and a

mandatory passage by πj */

A := A ◦B ◦ 〈{0, 1}, {0
πj−→ 1}, {0}, {1}〉;

R := R \ {j};
i := j;

return A;

Figure 5: buildAutomaton algorithm

3.3. Building an Infeasible Path Automaton

Now that we have a method to find an infeasible chain,
it remains to actually find an automaton capturing (π,K)-
general infeasible paths.The main idea is to fill in the gaps
of the infeasible chain by every possibility offered by the
program that respects the dependencies.

Fig. 5 gives an algorithm that takes an infeasible chain
for a program path π and constructs an automaton that
only recognizes paths respecting the chain. To anchor the
generated automaton to the start of the program, this al-
gorithm starts with an automaton matching A only the
first path element π1, that is, the program start, even if
this path element is not present in the infeasible chain. It
sets i to 1.

Then, the algorithm considers each path index j in the
infeasible chain (except 1) in increasing order:

• First, it computes the def-clear paths between i and
j of the infeasible chain with respect to the variables

Table 2: Building Steps of an Infeasible Path Automaton

Step i j V A

0 1 - -
a

1 1 4 {x, abs}

A
◦

b

cf
B

◦

et

2 4 7 {x}

A
◦

fet

ef
B

◦

gt

V as an automaton B. The variables V consists in
all the variables for which there is a dependency from
a path index less or equal to i and to a path index
greater or equal to j.

• Second, it updates A by concatenating B and i takes
the value of j.

Table 2 details the steps to build an infeasible path au-
tomaton from the infeasible chain given on Fig. 4. At each
step, this table indicates the value of i, j, V just before the
call to defClearPaths and the value A after the concatena-
tions. Initially, the automaton contains only one transition
labeled a. Step 1 puts in A the concatenation of A, the
only def-clear path from πi = π1 = a to πj = π4 = et (both
excluded) with respect to the variable V = {x, abs}, and a
single-transition automaton corresponding to et. Finally,
step 2 appends the def-clear paths from π4 = et to π7 = gt

with respect to the variable x and the single transition gt

to the automaton A. The method gives us an infeasible
path automaton equivalent to the minimized automaton
of Fig. 3.

Finding Definition-Clear Paths

Given a set of potentially written variables at each pro-
gram statement, there is a simple way to compute an au-
tomaton matching every def-clear path with respect to par-
ticular set of variables, if we know the variables potentially
modified by each statement on all paths. Such informa-
tion can be computed beforehand by static analysis. Fig. 6
gives the pseudocode of this algorithm.

If src, dst , and V are respectively the source, the desti-
nation, and the set of variables, this algorithm starts from

7



Input: s and d two program labels and V a set of
variables

Output: an automaton accepting only def-clear paths
from s to d w.r.t. the variables V

function defClearPaths(s, d, V )
/* Given the program labels considered as a set of states

Q and the program transitions δ, 〈Q, δ, s, d〉 is an
automaton accepting all program paths from s to d */

Q := labels(Prog); δ := {a ad−→ b|(a d−→ b) ∈ flow(Prog)};
/* Removes statements writing any variable of V */
foreach n ∈ Q do

if maywrite(n) ∩ V 6= ∅ then

δ := δ \ {a d−→ b ∈ δ|a = n ∨ b = n};
Q := Q \ {n};

/* Keeps only reachable states */
return trim(〈Q,Labels, δ, s, d〉)

Figure 6: defClearPaths algorithm

an automaton representing our program. Then, it removes
transitions that may modify a variable of V . Finally, it re-
moves states that are not reachable from the source or
not co-reachable from the destination. Because the con-
trol flow is deterministic in this programming language,
the obtained automaton is necessarily deterministic.

3.4. Method Rundown

To summarize, given a program P and an infeasible path
π found in P , our proposed infeasible path generalization
method consists in the three simple following steps:

1. Computing the so-called path condition of π, and au-
tomatically extracts from it, an explanation K (i.e., a
smallest subset of inconsistent constraints) ;

2. Computing the infeasible chain 〈I,D〉 from this ex-
planation K ;

3. Building an infeasible path automaton, by calling
buildAutomaton(π, 〈I,D〉), which generalizes π by
finding other infeasible paths sharing the similar ex-
planation K than π.

As said previously, this method finds applications in differ-
ent areas including test case generation through symbolic
execution and dynamic symbolic execution. Indeed, it can
be used each time a single infeasible path is found with
a proved constraint unsatisfiability, so that further analy-
ses can avoid looking for infeasible paths sharing the same
explanation of infeasibility.

3.5. Correctness and Completeness

This generalization method is correct, that is, (1) the
method output contains only infeasible paths and (2) the
algorithm does terminate under the hypothesis the solving
procedure does terminate.

First, the generalization soundly detects infeasible
paths. Indeed, it ensures that all paths recognized by

the automaton share a common infeasibility explanation.
Consider the following proof sketch. Based on an input
infeasible path, the generalization first extracts an expla-
nation from the inconsistent path condition of the input
path and computes an infeasible chain. First, the algo-
rithm ensures by construction that the automaton recog-
nizes only paths that respect the infeasible chain. Then,
given a correct symbolic execution without substitution,
for each of the recognized paths, the path condition con-
tains constraints similar to the identified explanation, be-
cause the statement responsible for the infeasibility are
also executed (possibly with some variable changes). The
respect of the dependencies implies that there is a substi-
tution of variables such that the explanation with substi-
tuted variables is an exact subset of the path condition.
That is why, the path condition is inconsistent. Finally,
recognized paths are indeed infeasible.

Second, concerning termination, any preliminary static
analysis (like abstract interpretation) ensures termination
by design. Also, if the solver does terminate (possibly
via a timeout mechanism), the explanation extraction ter-
minates. Finally, because the other steps of the method
consider a finite number of statements or constraints, the
whole method terminates.

However, this method is not complete, in the sense that
the generalization may miss some path whose path condi-
tion includes the same explanation K modulo a variable
substitution.

First, the generalization is limited because the method
takes its roots in the program syntax. For instance:

• Other statements or statement orders may result in
constraints equivalent to K. For instance, a program
can contain multiple copies of a statement leading to
the same explanation K in distinct branches.

• Syntax-based dependencies are overprotective in pres-
ence of pointers or arrays.

Note however that rooting the method in the program syn-
tax is also an advantage, because it allows us to test the
infeasibility on simple objects at syntax level rather that
on complex objects, such as constraint systems.

Second, another limit of the generalization comes from
its dependency to the explanation. Actually, any addi-
tional constraint in the explanation may eliminate infea-
sible paths from the resulting automaton because they do
not contain the program statement corresponding to this
additional constraint.

Finally, one targeting the completeness of the general-
ization of an infeasible path might also want to address
the multiplicity of the reasons causing this infeasible path.
Indeed, in terms of constraint system, there may be mul-
tiple minimal explanations in a path condition. Here,
this method chooses one explanation to generalize infeasi-
ble paths. By choosing another explanation, this method
might find different infeasible paths. In fact, the outputs
of the method for different input explanations might be

8



distinct as well as overlapping. Note that this particular
limitation can be lifted by applying our method on every
minimal explanation of the path condition.

3.6. Complexity Analysis

The computational cost of our approach is expressed in
terms of the actual size n of the infeasible path (i.e., num-
ber of statements) used to feed the generalization process.
This process is divided in the three following steps:

1. Assuming that a dichotomic extraction method is
used, and that a constraint is associated to each state-
ment of the path, the worst-case explanation process
costs n2 calls to the constraint solver. Depending
on the cost of a satisfiability check by the constraint
solver (usually a non-polynomial process in the worst
case), we can end up with a very high computational
costs. Hopefully, constraint solver calls are temper-
ated with time-out mechanisms which compromise the
result quality to preserve efficiency. So, let’s assume
that any call to the constraint call is bounded by a
constant, we can safely consider that the explanation
process takes O(n2) initial steps ;

2. Second, assuming that each constraint in the expla-
nation is associated to no more than a small subset of
program statements and that each data dependency
is bounded by the finite number of variables of the
program, constructing the infeasible chain is a linear
process w.r.t. n. In fact, as every variable read-write
operation is bounded in time, the infeasible chain can
be computed in O(n) operations.

3. Finally, building the automaton involves the com-
putation of def-clear paths, i.e., an O(m)-procedure
where m stands for the total number of statements
in the program. As the def-clear path automaton
contains at most m states and assuming nondeter-
ministic automata, the concatenation operation takes
O(1) (only one accepting state). Overall the automa-
ton construction takes O(n.m) operations in the worst
case.

So, to summarize, the complexity analysis of the overall
process says that the infinite path generalization process
takes O(n(n + m)) steps where n is the number of state-
ments over the path (with possible repeated occurrences)
and m is the number of statements of the program.

Note that there is two different ways of obtaining a de-
terministic infeasible path automaton: either to use de-
terministic operations at each step; or to determinize the
result at the end. Both methods theoretically result in an
exponential time and state complexity. However, in prac-
tice, the worst case does not happen: although the state
space does increase considerably, the automaton construc-
tion takes a reasonable time, which is considerably less
that the time required to extract an explanation. We ex-
plain this phenomenon by the nature of control-flow graph
that are rather sparse and mostly linear and because the

/* Let u,v be the inputs,
and v the output */

while [u > 0]a do
if [v > u]b then

[t := u]c;

[u := v]d;
[v := t]e;

[u := u− v]f ;

Figure 7: GCD: Program Code

Table 3: GCD: Path condition of π = 1t 2t 3 4 5 7 1f

i πi Test/Statement Constraint

1 at [u > 0]a [u0 > 0]1
2 bt [v > u]b [v0 > u0]2
3 c [t := u]c [t1 = u0]3
4 d [u := v]d [u1 = v0]4
5 e [v := t]e [v1 = t1]5
6 f [u := u− v]f [u2 = u1 − v1]6
7 af [u > 0]a [u2 ≤ 0]7

algorithm ensures that the concatenated automaton (def-
clear paths) are deterministic.

3.7. A Complete Example

Even well designed pieces of program like mathematical
algorithms contain infeasible paths. This section concerns
the applicability of our method to the Euclidean algorithm
to compute the greater common divisor (GCD) of two in-
tegers. An implementation of this algorithm is given in
Fig. 7. Given two input integers, in u and v, this imple-
mentation computes their greater common divisor as the
output value of v, by a subtraction-based variant of the
Euclidean algorithm.

This program contains a lot of infeasible paths, all very
similar. Please consider applying the infeasible path gen-
eralization to the program path π = at bt c d e f af . Path
π takes one iteration of the loop and passes through the
“then” branch of the conditional statement.

First, the method computes a suitable path condi-
tion and extracts an explanation. Table 3 gives a
path condition of π computed for infeasible path gen-
eralization. On this particular path condition, the
unique minimal explanation is obtained by removing
only one constraint. The minimal explanation of the
path condition of π is indeed the following set of con-
straints K = {[v0 > u0]2, [t0 = u0]3, [u1 = v0]4, [v1 = t0]5,
[u2 = v1 − v2]6, [u2 ≤ 0]7}.

Second, the method computes the infeasible chain 〈I,D〉
of (π,K). Fig. 8 gives a graphical representation of the in-
feasible chain. Explanation K corresponds to the set of
path indexes I = {2, . . . , 7}, indicated in the left part of
the figure. The right part of the figure recalls the cor-
responding statements and tests. Path dependencies D

9



2

3

4

5

6

7

[v > u]b

[t := u]c

[u := v]d

[v := t]e

[u := u− v]f

[u > 0]a

DU

UU
u

v

t

v
u

u

Figure 8: GCD: Infeasible Chain of (K,π)

i = 1 i = 2 i = 3 i = 4

at at

bt

c

d e f

bf
at

at

bt

c

d e f

bf
at

at

bt

c

d e f

bf
at

i = 5 i = 6 i = 7

at

bt

c

d

e f

bf

f

at

at

bt

c

d e f

bf

f at
at

at

bt

c

d e f

bf

f at
at

af

Figure 9: GCD: Construction steps of the Infeasible Path Automaton

are represented as arrows between the path indexes. Out
of concern for precision, this figure distinguishes the two
kinds of path dependency with different styles of stroke.
This example particularly shows how tight the statements
involved in the explanation can be bound together.

Finally, the method completes the infeasible chain in
order to build an infeasible path automaton. Fig. 9 de-
tails the steps to build a deterministic automaton match-
ing paths from the infeasible chain of (π,K) presented on
Fig. 8. At i = 1, it starts with a single transition at.
Then, for i = 2, it adds every path up to bt, such paths
can go through the loop an arbitrary number of times. It
continues by adding 3 and 4, no alternative is available.
Afterward it adds 5 and 7 for which there is also only
one possible path. But these additions result in significant
changes on the automaton in order to keep it deterministic.
To finish, it adds af .

By using only one known infeasible path, this method
is able to compute an infeasible path automaton that
matches each and every infeasible path of this implemen-
tation of GCD.

Path selector

Symbolic interp.

Sat?

Concrete interp.

partial path

path condition

yestest input

a
ct
iv
a
te
d
pa

th IPEG

filter

no

infeasible path

Figure 10: Dynamic Symbolic Execution with Infeasible Path Gen-
eralization

4. Integration to Dynamic Symbolic Execution

As noted in the introduction, infeasible paths is a hassle
for Dynamic Symbolic Execution (DSE). In this section,
we propose a basic yet realistic integration of the infeasible
path generalization into a generic DSE implementation.
By generic, we mean that this integration is independant
of any specific DSE-based path selection strategy.

Generally speaking, any DSE-based process consists of
four modules: 1) the path selector, 2) the symbolic inter-
preter, 3) the constraint solver, and 4) the concrete in-
terpreter. Fig. 10 shows a typical DSE-tool architecture.
It contains an additional module, called IPEG (Infeasible
Path Explanation and Generalization), which corresponds
to an implementation of the method presented in this pa-
per.

1. The path selector module automatically selects a par-
tial path (prefix) of the program, based on some in-
puts such as existing covered paths, on user data in-
puts or on various path selection strategies. Note
that, typically, a path selector in DSE selects par-
tial paths that are known to be feasible except for the
last branch condition. This considerably reduces the
number and length of the considered infeasible paths;

2. The symbolic interpreter computes the so-called path
conditions for this partial path, meaning that it ex-
tracts a logical formulae from the program;

3. The constraints solver is called to evaluate the sat-
isfiability of the formulae, and to produce a solution
of the path condition. If the formulae is unsatisfiable
(SAT? = no), then usually the process go back to the
initial path selection process. On the contrary, if the
formulae is satisfiable (SAT? = yes) and a solution
is exhibited by the solver, then the process moves on
the concrete interpretation;

4. The concrete interpreter converts the solution into a
new test input that is submitted to the program. Ex-
ecuting the program with this new input produces a
so-called activated path, which contains as a prefix the
partial path selected by the first module.

Our proposed Infeasible Path Explanation and General-
ization (IPEG) module is inserted in between item 3 and
item 1 on the loop-back action. In Fig. 10, the IPEG

10



module is applied each time an unsatisfiable path condi-
tion is found (SAT? = no). The corresponding infeasible
path represented by the unsatisfiable formulae, is anal-
ysed to extract a minimal explanation K. This minimal
explanation is used to produce an infeasible path automa-
ton, which is then combined with an internally maintained
automaton. This combination is performed in the IPEG
module by using the classical automata union operation.
By enriching the current automaton with new infeasible
path automata, the process increases its ability to discover
infeasible paths. When a new partial path is selected by
the path selector module, and just before being submit-
ted to the symbolic executor, its feasibility is evaluated
against the maintained infeasible path automaton. If the
partial path is recognized by the automaton, then it is sim-
ply discarded and the path selector selects another partial
path. By using the IPEG module, the process saves the
testing of many unsatisfiable formula and avoids launch-
ing the constraint resolution to detect these unsatisfiable
formula.

Optimization. Automata union is a classic operation
which can be used to combine altogether infeasible path
automata. However, it is noteworthy that a path is de-
tected as infeasible as soon as one of its prefix is accepted
by the automaton. As a consequence, one can simplify the
maintained infeasible path automaton by pruning it from
all outgoing transitions from final states. Any state which
becomes unreacheable after this initial pruning can also
be safely removed. As a safe optimization, the automaton
only maintains shortest infeasible paths, so that its size
(in terms of number of states and transitions) can be kept
as low as possible.

4.1. Problems with Symbolic Expression Simplifications

As noted earlier, the symbolic execution must be se-
lected with care. Sec. 3.1.1 prescribes that each instruction
is to be translated into a constraint without any simplifica-
tion (substitution, constant/expression propagation, unifi-
cation, etc.). This is a limitation of the approach, because
the size of the constraint system increases with the num-
ber of statements in the symbolically executed path. This
section discusses this limitation and shows that infeasible
path generalization is still possible with simplifications en-
abled, but that it reduces the power of generalization.

Let us explain the reason behind this recommendation.
In this method, the explanation is able to point out the
operations involved in the infeasibility because every oper-
ation is present in the path condition. However, it might
not be the case if a simplification is done. For instance,
on a path a . . . bt, a statement a sets the variable i to the
constant 10 and the test b read this value of i afterward,
one can use directly the value 10 when translating b into
constraints. If the test b is i = 0, the path element bt

translates to the inconsistent constraint 10 = 0. This con-
straint forms a minimal explanation. This explanation cor-
responds only to the test b, which is not enough to obtain

a sound generalization. In fact, one must also consider the
statement a and the dependency between this statement
a and the test b with respect the variable i as it occurred
on the input path.

Note that it is possible to keep track of such a depen-
dency. For instance, one can simply memorize for each
variable both its value and the statements that the value
depends on. Because the actual value propagated might
not have been needed for the explanation, this technique
leads to further losses of precision and consequently to a
weaker generalization.

While the method and the symbolic execution is eas-
ily adapted to allow simplifications by taking into account
such hidden dependencies, this adaptation is out of the
scope of this paper. To summarize, infeasible path gen-
eralization works best with a symbolic execution without
simplifications, but simplifications can be applied provided
that hidden dependencies are tracked. Because simplifica-
tions may lead to a weaker generalization, it may be best
to keep simplifications to a minimum.

4.2. Problems with Concrete Data

Another issue that may arise when integrating infeasi-
ble path generalization in DSE-based test generation, is
related to the usage of concrete data. Dynamic symbolic
execution does indeed allow to use data from previous con-
crete execution inside symbolic execution. Concrete values
are mainly used to simplify expressions submitted to the
constraint solver. In principle, using concrete data execu-
tion can compromise the soundness and completeness of
the overall process as constraints can be over-simplified.
In fact, constraint solving inconsistency may not only cor-
respond to infeasible paths and may abusively recognize
feasible paths (false positive). However, according to early
observations, these cases are seldom in practice.

5. Experimental evaluation

This section presents the experimental results obtained
to evaluate the infeasible path generalization process de-
scribed above. The first subsection describes the prototype
tool developed and our implementation choices. The sec-
ond subsection presents the programs of our benchmark,
while the third and fourth subsections give the experimen-
tal results. The fifth subsection introduces an additional
experiment we made to evaluate the scalability of the ap-
proach. Finally, we conclude with a subsection dealing
with the threats of validity of this experimental evalua-
tion.

5.1. Prototype

The method presented in the paper has been imple-
mented in a prototype tool called IPEG. The tool is
parameterized by a constraint solver and an explanation
method. In our experimental evaluation, we studied the
impact of changing of constraint solver and explanation
methods on the results.

11



Solvers

IPEG can use any constraint solver/decision procedure,
provided that a proper interface is available. In our exper-
iment we evaluated the three following solvers:

• Colibri, a propagation-based constraint solver devel-
oped at the CEA LIST, already used in the DSE-
based test generation tools PathCrawler (Williams
et al., 2005) for C, Osmose (Bardin and Herrmann,
2008) for binary code and GATeL (Marre and
Arnould, 2000) for Lustre synchronous programs.

• Yices, an SMT solver developed at Stanford Research
Institute (Dutertre and de Moura, 2006), notably used
in the test input generator CREST (Burnim and Sen,
2008).

• Z3, an SMT solver developed at Microsoft Re-
search (De Moura and Bjørner, 2008), used in testing
tools, including Pex (Tillmann and de Halleux, 2008),
a DSE-based test generation tool for .NET.

Methods for extracting an explanation

Similarly, IPEG allows the user to change of explana-
tion extraction method. As described in Sec. 2.5, non-
intrusive methods do exist to compute a minimal explana-
tion, that is, a subset where each constraint contributes to
the infeasibility. However, an acceptable trade-off between
time and precision has to be found when extracting an ex-
planation. Time issues can be managed by resorting to
built-in intrusive explanation methods. This option leads
to fast, but often non-minimal explanation. For propaga-
tion-based constraint solvers, it is possible to limit the ex-
planation extraction to the propagation phase, that is, to
prevent the costly labeling phase. Without labeling, such
solvers cannot in general report solutions and may discern
only few inconsistencies. Then, this approach is useful to
find some, but not all, explanations. In the experiments,
we evaluated three extraction methods:

• Dichotomic method (QuickXplain): a non-intrusive
method, which extracts a minimal explanation by call-
ing several times the solver (see Sec. 2.5) ;

• Propagation-only dichotomic method: the same
method, but using a propagation-based constraint
solver (Colibri) where the labeling is disabled ;

• Built-in intrusive methods of Yices and Z3.

Note also that the test generation process gives us the op-
portunity to know at least one constraint of the explana-
tion (i.e., the last one). So, IPEG considers only the subset
of constraints connected to this particular constraint, be-
fore extracting an explanation.

The considered subset of C

IPEG processes source code expressed in a meaning-
ful subset of the C language. In fact, the main unsup-
ported features are floating point numbers, unions, func-
tion pointers, and bitwise operations (including physical
typecasting). Indeed, although infeasible path generaliza-
tion can be adapted to these features, it requires that such
complex features are accurately modeled into the form of
constraints, which is a difficult task, that we considered
being outside of the scope of this prototype.

Under some conditions, subroutine calls can be handled
by inlining them. Note however that the def-clear path al-
gorithm presented in Sec. 3.3 may not terminate. To pre-
vent this issue, our implementation simply enforces every
generalized path to strictly follow the same interprocedu-
ral control flow than the infeasible path used to feed the
generalization process.

Dynamic Symbolic Execution module

The prototype IPEG also includes a dynamic symbolic
execution module. It supports the same solvers than the
infeasible path generalization module. Dynamic symbolic
execution, as implemented in IPEG and most other tools,
skips infeasible paths for which some prefix have been
found infeasible. Indeed, IPEG embeds a depth-first pre-
fix path selector for DSE. Initially, the path selector (see
Sec. 4) selects the empty path. Then, given the last ac-
tivated path, the path selector computes the next partial
path by “flipping” the last branch of the path. If the
selected partial path happens to be infeasible, the path se-
lector simply “flips” the penultimate branch, and so and
so forth. Except for a configurable limit on the selected
path’s length, this module do not provide optimizations
for any specific coverage criterion.

Automata operations

The automata construction may use use deterministic
automata operations, as well as non deterministic ones. A
deterministic concatenation has a time complexity largely
higher than a non deterministic concatenation. Indeed,
a deterministic concatenation of two automata as an ex-
ponential state complexity, whereas the non deterministic
concatenation is linear. However, as the worst case sce-
nario seems unlikely in our case and deterministic finite
state automaton are unequaled to match a string, the pro-
totype IPEG uses deterministic automata operations.

Maywrite information

IPEG computes in advance maywrite information based
on automated value analysis provided by Frama-C (Canet
et al., 2009), a framework dedicated to the analysis of
C source code.

5.2. Benchmark programs

• gcd computes the greater common divisor of two in-
tegers using Euclide’s algorithm.

12



• merge merges two sorted arrays of 10 integers into a
third of size 20.

• bsearch uses the bisection algorithm to pick a value
in an ordered array of 20 integer elements.

• selection sort applies the classical sort algorithm
to an array of 10 integers.

• tritype gives the type of a triangle given the length
of each side.

• erfill takes an array of 10 integers and two integers
as inputs. First, it removes all occurrences of the
first integer in the array by shifting to the left the
remaining elements. Second, the free space is filled
with the second integer.

• tcas consists of a small set of C functions that can be
found in the Software-Artifact Infrastructure Reposi-
tory (Do et al., 2005).

• checkutf8 is a function that checks if a given array
of bytes is a valid UTF-8 encoded character string,
UTF-8 is an encoding for the Unicode character set.

• git config is a program that parses configuration
files in a particular format from the open-source dis-
tributed revision control system Git.

Except for array sizes, no precondition was imposed. In
particular, input arrays of merge and bsearch could be
non ordered.

For this evaluation, all the computations were performed
on a Linux machine equipped with an Intel Core 2 Duo
P9600 processor at 2.53GHz and 2GB RAM. Also, we
used the latest release of Colibri (as of July 1st, 2010),
Yices 1.0.28, and Z3 2.8. The benchmark programs’ source
code and detailed results are available online2.

5.3. Unitary evaluation

First, we want to check the interest of our generalization
method alone. This evaluation considers for each program
a set of infeasible paths. For each of these paths, it applies
the generalization. Then, it compares the time needed
to generalize a path, to the time needed to prove by an
exhaustive method based on symbolic execution that every
generalized path is indeed infeasible.

5.3.1. Protocol

For each solver, program, and explanation method, we
have computed the following data:

Input infeasible paths. We consider as input infeasible
paths the shortest infeasible paths found by a breadth
first search with at most 20 tests (branching condition).
For each method, we allocate five seconds to the solver for
proving infeasibility. The number of input infeasible paths
is noted #IP.

2http://micdel.fr/ipeg.en.html

Generalization. Each input infeasible path is generalized
to an infeasible path automaton using IPEG. From the
automaton, we extract the generalized infeasible paths, a
set of infeasible paths containing at most 20 tests.

For each input infeasible path, we measure the gener-
alization time, the number of generalized infeasible paths,
and the explanation ratio, that is, the ratio between the
number of constraints in the explanation and the number
of constraints in the path condition. We average these
measures over the input infeasible paths to obtain the
mean generalization time (arithmetic), the mean number
of generalized infeasible paths (arithmetic), the mean ex-
planation ratio (harmonic).

Exhaustive method. Every generalized infeasible path has
been proved infeasible using IPEG’s symbolic execution.
For each input infeasible path, the exhaustive proof time
is the time needed to prove that every infeasible path gen-
eralized from this particular path (except the input infea-
sible path itself) is indeed infeasible. The mean exhaustive
proof time is the arithmetic mean of the exhaustive proof
time over all the input infeasible paths.

Speedup. Finally, we compute a speedup S for each infea-
sible path, defined as follows:

S =
TI + TE
TI + TG

where TI is the time needed to prove the input infeasible
path infeasible, TG the time needed for the generalization
and TE the time needed to prove that every path gen-
eralized are infeasible. We cannot compare TG and TE
directly, because TE can be null if the generalization does
not infer any other path that the input infeasible path.
Any value greater than one represent a gain in terms of
performances. For instance, if for a path π, S is 2, the
proof of the infeasibility of π and its generalization is two
times faster than the exhaustive proof. The mean speedup
is the geometric mean of these individual speedups.

5.3.2. Results

Table 4 shows these data measured on each program
and each solver. The first two columns give the program
and the solver (C for Colibri, Y for Yices, Z for Z3). The
third column (E) indicates the explanation methods: a D
for the dichotomic method, a P for the propagation-only
variant of the dichotomic method and an I for the intrusive
method built in the solver. The fourth column (#IP) con-
tains the number of input infeasible paths considered for
this configuration. Then, the four following columns give
the mean explanation ration (ME%), the mean number of
generalized infeasible paths (M#GP), the mean general-
ization time (MGT), and the mean exhaustive proof time
(MET), both times expressed in milliseconds. Finally, the
ninth column indicates the mean speedup (MS). Precise
timing information was obtained through numerous repe-
titions.

13

http://micdel.fr/ipeg.en.html


Table 4: Unitary Evaluation Results

Prog. S E #IP ME% M#GP MGT MET MS

tritype C D 21 22.43 0.0 3.5 0.0 0.25
P 21 22.43 0.0 3.2 0.0 0.26

Y D 21 22.43 0.0 4.5 0.0 0.31
I 21 20.59 0.0 2.9 0.0 0.40

Z D 21 22.43 0.0 3.9 0.0 0.32
I 21 20.87 0.0 2.7 0.0 0.39

gcd C D 511 14.79 510.0 221.2 2021.1 10.67
P 511 14.79 510.0 138.1 2021.1 16.21

Y D 511 14.79 510.0 17.0 2948.3 131.41
I 511 14.79 510.0 7.2 2948.3 231.78

Z D 511 14.79 510.0 24.8 2542.5 86.84
I 511 14.79 510.0 6.6 2542.5 223.43

bsearch C D 425 10.40 45.6 2710.6 24605.5 9.55
P 425 11.56 35.1 3228.1 15145.7 5.90

Y D 425 10.39 45.6 355.8 1249.3 2.64
I 425 11.53 37.4 27.9 869.5 5.06

Z D 425 10.39 45.6 116.7 1064.9 4.54
I 425 11.96 35.1 24.8 668.0 5.63

merge C D 254 8.59 25.9 87.0 2521.8 12.31
P 254 8.59 25.9 62.0 2521.8 14.49

Y D 254 8.59 25.9 42.6 348.4 5.69
I 254 6.79 16.6 16.2 210.4 2.84

Z D 254 8.59 25.9 46.4 283.1 4.54
I 254 5.68 29.3 13.4 312.3 12.04

selection C D 1024 22.59 340.3 145.6 103706.9 164.92
P 1024 22.59 340.3 97.4 103706.9 188.00

Y D 1024 22.59 340.3 61.1 3830.7 38.19
I 1024 22.59 340.3 14.2 3830.7 109.31

Z D 1024 22.59 340.3 79.8 3382.8 27.29
I 1024 22.59 340.3 13.2 3382.8 105.94

tcas C D 288 5.37 11.5 10.5 37.8 2.63
P 288 5.37 11.5 9.0 37.8 2.84

Y D 320 5.53 11.0 9.5 77.5 4.44
I 320 5.73 11.1 9.2 77.7 4.46

Z D 320 5.53 11.0 9.6 62.4 4.02
I 320 5.57 10.7 8.2 60.6 4.01

erfill C D 118 19.80 0.0 280.5 0.0 0.65
P 118 19.80 0.0 244.8 0.0 0.71

Y D 118 19.80 0.0 80.2 0.0 0.22
I 118 27.05 0.8 27.9 34.5 0.77

Z D 118 19.80 0.0 84.6 0.0 0.16
I 118 19.80 0.0 19.3 0.0 0.47

checkutf8 C D 227 7.34 3.7 16.7 23.0 1.02
P 227 7.34 3.7 13.6 23.0 1.10

Y D 227 7.34 3.7 12.2 20.3 1.16
I 227 8.22 4.9 8.8 27.4 1.63

Z D 227 7.34 3.7 12.8 18.1 1.08
I 227 7.97 10.4 7.9 52.8 2.56

git config C D 211 4.78 4.2 7.2 15.6 1.28
P 211 4.78 4.2 6.7 15.6 1.30

Y D 211 4.78 4.2 7.7 22.4 1.56
I 211 4.74 4.3 6.9 22.8 1.65

Z D 211 4.78 4.2 7.4 18.8 1.53
I 211 4.74 4.2 6.4 18.9 1.52

Data shows that the infeasible path generalization is well
compensated by the exhaustive proof, except for erfill

and tritype. Indeed, with the different solvers and expla-
nation methods, we observe good speedups (> 1) for most
of the benchmark. For instance, the infeasible path gen-
eralization on the program gcd is on average from 10.67
up to 223.43 times faster than the exhaustive proof. This
range can be explained by the strong differences separat-
ing the propagation-based solver Colibri to SMT solvers.
Another result of this preliminary study is that searching
a minimal explanation may be useless in general. Out-of-
the-box intrusive methods sometimes find explanations of
smaller cardinality (for instance, on merge).

Infeasible path generalization does not work well with
two programs. First, tritype contains some infeasible
paths, but they are very distinct, and any attempt of gen-
eralization ends up with a net loss. In contrast, some
infeasible paths in erfill are infeasible for similar rea-
sons but not identical reasons. Notably, a lot of these
paths are infeasible because a loop counter has not in-
creased to some value, giving rise to different explanations
(1 > 10, 2 > 10, etc.). Although such infeasible paths
are present in programs, our technique does not general-
ize such paths efficiently. Also, erfill heavily uses arrays
for which data dependencies greatly affect the generaliza-
tion. In fact, with our prototype, the generalization was
not able to generalize any new path (M#GP = 0), except
with Yices/I. Indeed, another extraction method may find
an unrelated explanation for the same infeasible path, and
consequently it may lead to a better –or worse– generaliza-
tion for some input paths. Although it may be interesting
to find heuristics to obtain better explanation, one cannot
ensure to find the best explanation to generalize except
by investigating all minimal explanations, a task that will
considerably hinder the performances of the generaliza-
tion.

Limits of the unitary evaluation. The unitary experiment
shows that the infeasible path generalization of a random
infeasible path is in general more efficient that the ex-
haustive proof of the generalized paths. Still, a real use
of this method might not consider any random infeasible
path. In particular, for test generation, it appears natu-
ral to skip infeasible paths as soon as possible. But, this
unitary experimentation does not take this into account.
Indeed, input infeasible paths of this unitary study can –
and sometimes do– belong to the same family of infeasible
paths. That is, for a real use of the generalization, only
one infeasible path will be necessary to generalize the fam-
ily, while the computed speedup takes into account all the
infeasible paths equally.

Fig. 11 illustrates by histograms the distribution of the
speedup for each input infeasible path on four programs
(merge, tcas, bsearch, and git config) with Z3 and
the dichotomic explanation extraction. These histograms
show how the gain can vary in function of the input in-
feasible paths. For instance, the speedups on merge are

14



bsearch

0.1 1 10 100 1000
0

20

40

60

80

100

120

140

git config

0.1 1 10 100 1000
0

20

40

60

80

100

120

140

merge

0.1 1 10 100 1000
0

20

40

60

80

100

120

140

tcas

0.1 1 10 100 1000
0

20

40

60

80

100

120

140

F
re

q
u

en
cy

(n
u

m
b

er
o
f

in
p

u
t

p
a
th

s)

Speedup

Figure 11: Histograms of speedup (Z3/D on four programs)

mostly greater than one and close together. In contrast,
the speedup distribution on bsearch is scattered and re-
veals that the generalization does work well for an impor-
tant group of infeasible paths (with speedup between 100
and 200) but does not work well with the other paths.
In fact, bsearch contains a few big families of infeasible
paths (> 20) and numerous small families (< 5). From
a big family, the generalization computes infeasible path
automata, which may differ slightly due to overapproxima-
tions, but gives in general very good speedups. As a result,
big families weight on the average speedup. This shows a
limit of the unitary experimentation and this motivates
the need for another form of evaluation.

5.4. Evaluating the integration

This section is about verifying that the infeasible path
generalization can be integrated in a dynamic symbolic ex-
ecution test input generator. This evaluation is done with
a dynamic symbolic execution module built in the proto-
type IPEG. This module, described in Sec. 5.1, provides a
simple but realistic DSE. In particular, it skips any infeasi-
ble path for which some prefix have been found infeasible.
Other DSE tools also embed heuristics to obtain a state-
ment coverage while exploring less of the execution tree.
In (Xie et al., 2009), Xie et al. draw up a list of state-of-
the-art heuristics. IPEG does not propose such heuristics.
Its goal is to demonstrate –in the worst case (the coverage
of the execution tree)– the usefulness of infeasible path
generalization in DSE, even though some infeasible paths
are already skipped.

Fig. 12 sums up the results of our evaluation. It graph-
ically gives the speedup for each program and variant
(solver and explanation extraction method). The speedup
is simply T1

T2
where T1 is the time needed to generate tests

without infeasible path generalization for every path of size
below a certain limit and T2 the time needed to generate
the same tests with generalization enabled. The method
is advantageous if the speedup is greater than one. Here,
we pushed further the path size limit to explore a maxi-
mum of paths (full coverage reached on tcas and tritype)
and stay with a test generation under four minutes (except
with Colibri).

As predicted in the unitary evaluation, the infeasible
path generalization does not benefit the test generation
on tritype and erfill. But, it also confirms its good
behavior on most of the programs. Results show for in-
stance that the test generation of gcd and git config

with infeasible path generalization takes at least 30% less
time than the test generation without it. Moreover, for
merge, selection (except for Yices/I), and tcas the test
generation is more than two times faster. However, this
evaluation confirms our doubt about bsearch: infeasible
path generalization indeed slows down the test generation
(except for the intrusive variants). Still, as shown by the
speedup histogram of bsearch on Fig. 11, our generaliza-
tion is very beneficial for some paths. It seems interesting
to find heuristics to apply our method with greater success.

15



tritype

C

Y Z

gcd

C Y Z

bsearch

C

Y

Z

merge

C Y Z

selection

C Y Z

erfill

C
Y Z

tcas

C

Y
Z

checkutf8

C

Y Z

git config

C Y Z

S
p

ee
d

u
p

Program

1.1
1

2

3

Explanation extraction

Dichotomic

Only propagation

Intrusive

Solver

C Colibri

Y Yices

Z Z3

Figure 12: Test generation speedups

Table 5: Scaling up experiment results on git config2

Optim. #P #S ET GT UT TT S

DSE - - - - - 236.4 1

+ General. 1695 11836 25.5 39.0 252.5 371.5 0.63
+ Intru. 1168 12363 11.1 20.6 200.2 295.4 0.80

+ Minim. 1168 12363 11.2 20.9 71.9 261.8 0.90
+ Heuris. 466 8638 4.6 8.2 17.2 155.2 1.52

Concerning explanations, if intrusive extractions bring
worse results in few cases (e.g., on merge with Yices), its
speed overcomes its possible imprecision in general. Also,
for propagation-based constraint solver, the propagation-
only variant of the dichotomic extraction seems precise
enough for our purpose.

5.5. Scaling up the integration

In this section, we discuss experiments to apply our ap-
proach in more complex programs. Among our benchmark
program, git config is one of the more challenging be-
cause its consists of a relatively large number of functions,
and nested loops which leads to longer paths. Here we are
interested in applying our prototype in a second version
of the program which parses a longer string of characters
(10 instead of 5), as well as longer paths (from 20 to 40
branching conditions). We describe below multiple exper-
iments and adjustment of the method in order to unlock
real speedup from the test generation with infeasible path
generalization.

Table 5 describes the results of our experiments. For
each experiment, it provides detailed numbers: #P for the
number of infeasible paths which were processed by infea-
sible path generalization, #S for the number of skipped
infeasible paths, ET for the explanation time, GT for the
generalization time (explanation excluded), UT for the
time necessary to unify infeasible path automata, TT for
the total generation time, as well as S for the speedup
w.r.t. to the test generation without infeasible path gen-
eralization. Times are expressed in seconds.

The initial experiment consists in running a test gen-
eration with and without infeasible path generalization

on git config2. IPEG is used with a non-intrusive di-
chotomic explanation extraction, the solver Yices, and no
other optimizations. We observe that infeasible path gen-
eralization slows down the test generation in this case. In
particular, we observe that the union of automaton is very
costly with longer paths.

In a second experiment, we choose to address the is-
sue of the explanation time, which represents the biggest
part of the generalization time. The previous experiments
has shown that intrusive extraction does perform well with
generalization. In addition to a lower explanation extrac-
tion time, we observe a better generalization. Indeed, the
intrusive explanation explanation might lead to a differ-
ent explanation that the first found by the dichotomic ap-
proach.

Our third experiment is aimed at reducing the time nec-
essary to compute the union of infeasible generalization
automata. A particular problem with deterministic au-
tomata is the explosion of their number of states which
leads to always slower union. Longer paths in git config2

also contributes to this state exploration. To limit this
phenomenon, IPEG was modified to minimize the au-
tomaton obtained at each individual path generalization
and to minimize the union automaton every 20 generaliza-
tions. Brzozowski’s algorithm was used to minimize the
automata. We observe a sharp decrease in the computa-
tion time of the union. Another optimization which might
largely decrease the number of states is to represent only
branches in the infeasible path automaton rather that all
statements. Heuristics may also be used to limit the union
time such as reseting the global automaton regularly. Such
optimizations and heuristics would have involved some ma-
jor re-development in IPEG, but they seem very pertinent
when considering bigger programs and longer paths.

Our fourth and final experiment is a response to the high
number of generalizations. Indeed the number of general-
ization is too great with respect to the number of skipped
paths. In fact, a lot of generalizations do not succeed in
finding new infeasible paths or too few to cover the com-
putation time. A simple but efficient heuristics is adopted.
It consists to generalize only paths that ends with a “hot
branch”. A branch is considered hot if on only if n infeasi-

16



ble paths that ends with the branch have been considered
by the test generation. In our experiments, the parameter
n was 10.

To conclude, infeasible path generalization may be used
with longer paths effectively. However, some points must
be taken into consideration. First, as noted in Sec. 4,
DSE test generator are often optimized and tuned for spe-
cific coverage criteria. One should take case to ensure the
soundness of the generalization. Second, as pointed out by
our experiments, although the automata union offers an
elegant way to collect the knowledge of infeasible paths,
it also collects knowledge about infeasible paths already
considered and consequently not pertinent. In addition,
it presents a real risk of state explosion. Those problems
may be mitigated either through optimizations (such as
minimization) or heuristics (such as resets). Second, all
infeasible paths are not equal. Heuristics (such as the hot
branch heuristics) are paramount to the approach in some
cases.

5.6. Threats-to-validity

The three evaluation rounds we performed are comple-
mentary to show peculiar aspects of the infeasible path
generalization process. However, they share common
threats-to-validity.

As in any experimental study, there exists two major
threats to internal validity: namely, the consequences of
instrumenting the observed phenomenon and the mea-
surement’s precision. Here, the instrumentation is rather
lightweight, as it consists only of adding incrementing
counters and using interruptions to measure time. Even
modest, the instrumentation overheads do exist. However,
when comparing the approach proposed in the paper to the
current existing approach, the instrumentation overheads
penalize the proposed approach. In fact, the proposed ap-
proach requires to count paths and the number of general-
ization opportunities, as well as the multiple independent
timers, while the existing approach requires only to count
paths and contains only a single timer. Consequently, we
consider that the instrumentation overheads can be dis-
regarded. Regarding the precision of measurements, we
observed significative differences between execution time
of the same experiment. So, in order to mitigate the risk
of reporting too-approximated results, we repeated all the
experiments 20 times and reported only the average mea-
surement. Additionaly, time variability was also greatly
reduced by setting up a fixed CPU frequency, because
modern CPU can adapt their own frequency depending
on purpose.

The foremost threat of external validity is related to the
choice of benchmark programs. Detailed in Sec. 5.2, our
benchmark programs selection is composed h of programs
of various origins and various (but moderated) sizes. Some
of them are well-known benchmark from the software test-
ing community (e.g., trityp, tcas), while some others come
from the open-source community (e.g., git congif). Notic-
ing the moderated size of these programs, we believe that

the results are currently generalizable to unit testing only.
Even if some of the benchmark programs contains func-
tion calls, the number of such calls is too little to claim
any result at the integration level or even system testing
level. However, the methodology presented in the paper
generalizes to functions with function calls, even if further
experiments are needed to demonstrate the scalabilty of
the approach to the case of integration testing. Note also
that our implemented DSE-prototype is limited to simple
search heuristics while exisiting powerful implementations
provide optimized search and complex heuristics. It would
be interesting to evaluate the infeasible path generalization
process in these tools to reveal the true scalability of the
approach. But, here again, this is part of further work.

6. Related Work

This paper presents an original method to generalize
infeasible paths based on a single infeasible path. With
respect to our earlier work (Delahaye et al., 2010), this
method contains numerous improvements. First, the new
method is completely formalized in terms of automata al-
gebra, while the previous approach was based on graph
manipulation. Second, the method allows for better gen-
eralization by allowing variable substitution in the expla-
nation. Third, the prototype IPEG is also updated and
automatically computes required static information on the
program. Finally, IPEG is now capable to generate test
inputs by dynamic symbolic execution, which allows us to
evaluate our approach on test input generation.

To the best of our knowledge, there is no other use of
explanations to generalize infeasible paths in the context
of software testing. However, from a higher point of view,
there are numerous approaches that combine static and
dynamic knowledge of the code to improve performances
of software verification.

For instance, in software model checking, given a pro-
gram path to a particular target location, path slic-
ing (Jhala and Majumdar, 2005) is an approach to find
parts of the path that are relevant to reach a target loca-
tion. This concept that works on a fixed program path but
on free inputs is halfway between dynamic slicing (fixed
path and test input) and static slicing (all paths and all
inputs). Regarding infeasible paths, a path slice of an
infeasible path is a subsequence of the path such that
every path containing the subsequence is also infeasible.
Although our method presents some common traits with
path slicing, it is different because their goal is different.
For instance, while path slicing starts from a unique tar-
get location, infeasible path generalization extracts a set
of locations corresponding to an explanation. As a result,
our method only uses data dependency between these loca-
tions, whereas path slicing considers all data dependencies
that may affect the target. Another obvious difference is
that a subsequence of the path (path slice) cannot capture
as much infeasible paths as an infeasible path automaton.

17



That said, we think it is interesting to investigate the rela-
tionship between program slicing and path generalization.
In the same manner that dynamic slicing was proved more
close to static slicing than believed (Binkley et al., 2006), it
might be possible to describe and define their relationship.

Dependencies have been used more directly in symbolic
execution. Santelices and Harrold (2010) propose to con-
sider the symbolic execution of path families instead of
paths. In their work, a path family captures a set of
paths that is determined to have the same behavior with
respect to some output variable using control and data
dependencies. Closely related to static slicing, the tech-
nique is based on static dependencies, and particularly
over-approximated in the presence of loops. With change
analysis in mind, rather than test generation, they pro-
pose to abstract loops and to overapproximate the path
condition by trading precision for scalability. As noted
earlier, infeasible path generalization is based on path de-
pendencies rather than static dependencies. However, it
might be interesting to extend our generalization to con-
sider infeasible path families and under-constrained path
conditions.

Also inspired by static analysis, RWSet (Boonstoppel
et al., 2008) is a caching technique to reduce the number
of explored paths in constraint-based test generation by
discarding some paths with the same side-effects as some
previously explored path. Even if it can discard some in-
feasible paths in the process, this technique is complemen-
tary to infeasible path generalization. In terms of per-
formances, if the cost of maintaining such cache seems
reasonable, identifying similar states involves constraint
comparisons and is more costly than matching a path in a
deterministic infeasible path automaton.

Caching may also be done at the constraint level.
In (Visser et al., 2012), Visser et al. propose to exploit
a constraint solution caching mechanisms to improve the
performances of program analysis, and in particular sym-
bolic execution. In the proposed system, the cost of the
cache look-up is reduced using constraint canonization and
slicing. This is for the most part complementary to infea-
sible path generalization. Concerning infeasible paths, the
used path condition slicing offers very limited generaliza-
tion because it only separates totally independent vari-
ables.

Infeasible paths have been pointed out as one of the
major obstacles of test generation, notably in (Yates and
Malevris, 1989). Yates and Malevris (1989) also show
strong correlation between the number of branching con-
ditions on a path and its potential infeasibility. They pro-
pose to generate tests for banch coverage based on the
selection of the shortest paths of the program. In Pa-
padakis and Malevris (2010), this path selection strategy
has been extended to work on partial paths that reachs
some branch to cover. In (Papadakis and Malevris, 2012),
this technique is used to generate test cases that kills mu-
tant efficiently by taking advantage of the equivalence be-

tween equivalent mutants (in weak mutation) and infeasi-
ble paths shown in (Offutt and Pan, 1996).

Offutt and Pan (1996) propose to detect equivalent mu-
tants by detecting infeasible paths. The infeasible path
detection is based on symbolic execution and by detecting
a contradiction on the generated constraint systems. This
technique syntactically detects contradiction given some
known patterns of contradiction, designed with mutation
operators in mind. It does not address the problem of
loops in the program which was not handled correctly by
their prototype.

Another related work that exploits constraint reason-
ing to speedup bug-oriented DSE-based test generation is
(Jaffar et al., 2013). They propose to use Craig-interpolant
to infer the feasibility of some path from the feasibility of
a previously considered path. Interpolation is a concept
closely related to explanation. By annotating the sym-
bolic execution tree with interpolants, Jaffar et al. (2013)
proposes to detect early a subtree that contains the same
or more infeasible than a previously successfully explored
subtree. This method allows the test generator to skip the
whole subtree because the previous subtree did not meet
any feasible bug. The two major differences between our
two approaches are as follows. First, here no hypothesis on
the objectives of test generation are made whereas (Jaffar
et al., 2013) only targets finding bug. For instance, DSE
generation with infeasible path generalization may be use
to approximate worst-case execution time. Second, one
important limitation of (Jaffar et al., 2013) is the subsump-
tion check. It allows checking that the subtree does indeed
entails the interpolant, whoever this checks assumes that
variables are the same. It limits considerably the power of
the technique in particular. In constrast, infeasible path
generalization allows variable substitution.

Another work in software testing that tries to generalize
infeasible paths is the work of Ngo and Tan (2007). They
propose to detect the infeasibility of a path by statically
recognizing four known code patterns leading to infeasible
paths. For instance, their method detects infeasible paths
where two conditional statements have the same condi-
tion (e.g., if x > y then . . . ; if x > y then . . . ). As
the pattern recognition is sound, every detected path is
indeed infeasible. We checked that our method does find
all infeasible paths passing through the occurrence of one
of those patterns, given an input path where the pattern
occurrence is the only cause of infeasibility. In (Ngo and
Tan, 2008), Ngo and Tan extend their approach to empir-
ical properties instead of patterns to automatically detect
non-feasible paths. Their approach relies on pairs of em-
pirically correlated conditional statements, that is, condi-
tional statements that reasons about the same variables
and are not control dependent. Such statements are first
shown to lead to many infeasible paths in programs. Then,
the authors propose an integration into search-based test
input generation, that ignores path when a branch vio-
lation occurs and the path contains a pair of empirically

18



correlated conditional statements. Our approach distin-
guishes from these approaches on two main points. First,
our method dynamically finds patterns using known infea-
sible paths by computing explanations, whereas Ngo and
Tan’s methods try to recognize a few static patterns or a
correlation between two statements. Both of their meth-
ods does not detect theoretically as much infeasibility as
our method does, and the latter may lead to possible false
positives. Second, unlike their approach, our method ac-
tually builds a representation of the infeasible paths by
using automata operations and approximate data flow in-
formation.

7. Conclusion

This paper describes a new method to generalize infeasi-
ble paths from the detection of a single infeasible path and
a way to exploit this infeasible path generalization tech-
nique in DSE-based automated test input generation. The
method rests on three steps: First, it extracts one expla-
nation of the infeasibility ; Second, it computes data de-
pendencies associated to the proposed explanation; Third,
it constructs an automaton which generalizes the feeded
infeasible path and allows user to detect in advance other
infeasible paths sharing the same explanation. The pro-
posed method has been implemented and integrated into
a generic DSE-based test input generation process. We
selected a generic process in order to evaluate our method
independently of any selection of constraint solver, or any
explanantion method. The experimental results we got
with this implementation show that, whatever the solver
(i.e., Z3, Yices and Colibri), our infeasible path general-
ization method compares favourably with respect to an
exhaustive infeasible path detection, and that it can speed
up DSE when used for test input generation.

A notable possible improvement of the infeasible path
generalisation method concerns the usage of semantics in-
formation about the program to obtain a larger generaliza-
tion. By semantics information, we mean for example re-
fining our data flow analysis with computated values. Ad-
ditionaly, efficiently handling simplifications during DSE
should also be investigated to limit the precision loss dur-
ing the infeasible path generalization.

Regarding the perspectives of the proposed method, we
believe that its usage could be beneficial to other appli-
cations than automatic test inputs generation. In par-
ticular, safe informations about infeasible paths usually
release static analyzers from undesirable too large over-
approximations obtained when computing some program
properties. Our infeasible path generalisation method
could efficiently capture and aggregate informations about
infeasible paths. A challenge though would be to under-
stand how our method can be used in practice, where most
static analysis engines do not work incrementally. Addi-
tionaly, we also believe that security testing, when based
on DSE, could benefit from incremental detection and gen-
eralisation of infeasible paths.

References

Bardin, S., Herrmann, P., 2008. Structural testing of executables,
in: ICST’08, pp. 22–31.

Binkley, D., Danicic, S., Gyimóthy, T., Harman, M., Kiss, Á., Korel,
B., 2006. Theoretical foundations of dynamic program slicing.
Theoretical Computer Science 360, 23–41.

Boonstoppel, P., Cadar, C., Engler, D., 2008. RWset: Attacking
path explosion in constraint-based test generation, in: TACAS
’08: 14th international conference on Tools and Algorithms for
the Construction and Analysis of Systems, Springer. pp. 351–366.

Burnim, J., Sen, K., 2008. Heuristics for scalable dynamic test gener-
ation, in: ASE’08: 23rd IEEE/ACM International Conference on
Automated Software Engineering, IEEE Computer Society, Wash-
ington, DC, USA. pp. 443–446.

Canet, G., Cuoq, P., Monate, B., 2009. A value analysis for C pro-
grams, in: SCAM’09: Ninth IEEE International Working Confer-
ence on Source Code Analysis and Manipulation, IEEE Computer
Science, Los Alamitos, California, USA. pp. 123–124.

Cimatti, A., Griggio, A., Sebastiani, R., 2007. A simple and flexible
way of computing small unsatisfiable cores in sat modulo theories,
in: SAT’07, Springer. p. 334.

De Moura, L., Bjørner, N., 2008. Z3: An efficient SMT solver, in:
TACAS’08, pp. 337–340.

Delahaye, M., Botella, B., Gotlieb, A., 2010. Explanation-based gen-
eralization of infeasible path, in: ICST’10: International Confer-
ence on Software Testing, Verification, and Validation 2010, IEEE
Computer Society, Los Alamitos, California, USA. pp. 215–224.

Dershowitz, N., Hanna, Z., Nadel, A., 2006. A scalable algorithm for
minimal unsatisfiable core extraction, in: SAT’06, Springer. p. 36.

Do, H., Elbaum, S.G., Rothermel, G., 2005. Supporting controlled
experimentation with testing techniques: An infrastructure and
its potential impact. Empirical Software Eng. 10, 405–435.

Dutertre, B., de Moura, L., 2006. The Yices SMT solver. Tool paper
available on line at http://yices.csl.sri.com/tool-paper.pdf.

Godefroid, P., Klarlund, N., Sen, K., 2005. DART: directed auto-
mated random testing, in: PLDI’05: ACM SIGPLAN conference
on Programming Language Design and Implementation, pp. 213–
223.

Godefroid, P., Levin, M.Y., Molnar, D.A., 2008. Automated white-
box fuzz testing, in: NDSS’08: Network and Distributed System
Security Symposium, The Internet Society.

Jaffar, J., Murali, V., Navas, J.A., 2013. Boosting concolic testing
via interpolation, in: ESEC/FSE’13: 9th Joint Meeting on Foun-
dations of Software Engineering, ACM. pp. 48–58.

Jhala, R., Majumdar, R., 2005. Path slicing, in: PLDI’05: ACM
SIGPLAN conference on Programming Language Design and Im-
plementation, ACM. pp. 38–47.

Junker, U., 2004. QuickXplain: preferred explanations and relax-
ations for over-constrained problems, in: AAAI’04: 19th national
conference on Artifical intelligence, AAAI Press. pp. 167–172.

Jussien, N., Debruyne, R., Boizumault, P., 2000. Maintaining arc-
consistency within dynamic backtracking, in: CP’00, Springer.
pp. 249–261.

King, J.C., 1975. A new approach to program testing, in: Proceed-
ings of the international conference on Reliable software, ACM.
pp. 228–233.

Kroening, D., Strichman, O., 2008. Decision Procedures: An Algo-
rithmic Point of View. Springer Publishing Company, Incorpo-
rated.

Marre, B., Arnould, A., 2000. Test sequences generation from LUS-
TRE descriptions: GATEL, in: ASE’00, IEEE Computer Science.

Ngo, M.N., Tan, H.B.K., 2007. Detecting large number of infeasi-
ble paths through recognizing their patterns, in: ESEC-FSE’07,
ACM. pp. 215–224.

Ngo, M.N., Tan, H.B.K., 2008. Heuristics-based infeasible path de-
tection for dynamic test data generation. Inf. Softw. Technol. 50,
641–655.

Offutt, A.J., Pan, J., 1996. Detecting equivalent mutants and the
feasible path problem, in: COMPASS’96: 11th Annual Conference
on Computer Assurance, IEEE. pp. 224–236.

19



Papadakis, M., Malevris, N., 2010. A symbolic execution tool based
on the elimination of infeasible paths, in: ICSEA’10: 5th Interna-
tional Conference on Software Engineering Advances, IEEE Com-
puter Society. pp. 435–440.

Papadakis, M., Malevris, N., 2012. Mutation based test case gener-
ation via a path selection strategy. Information & Software Tech-
nology 54, 915–932.

Santelices, R., Harrold, M.J., 2010. Exploiting program dependen-
cies for scalable multiple-path symbolic execution, in: ISSTA’10:
19th International Symposium on Software Testing and Analysis,
ACM. pp. 195–206.

Sen, K., Marinov, D., Agha, G., 2005. CUTE: a concolic unit testing
engine for C, in: ESEC/FSE-13, ACM Press. pp. 263–272.

Tillmann, N., de Halleux, J., 2008. Pex: White box test generation
for .NET, in: TAP’08, pp. 134–153.

Visser, W., Geldenhuys, J., Dwyer, M.B., 2012. Green: reducing,
reusing and recycling constraints in program analysis, in: ACM
SIGSOFT 20th International Symposium on the Foundations of
Software Engineering, pp. 58:1–58:11.

Weyuker, E.J., 1979. The applicability of program schema results to
program. Int. J. Parallel Program. 8, 387–403.

Williams, N., Marre, B., Mouy, P., Roger, M., 2005. PathCrawler:
Automatic generation of path tests by combining static and dy-
namic analysis, in: EDCC’05, pp. 281–292.

Xie, T., Tillmann, N., de Halleux, P., Schulte, W., 2009. Fitness-
guided path exploration in dynamic symbolic execution, in:
DSN’09: 39th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, pp. 359–368.

Yates, D., Malevris, N., 1989. Reducing the effects of infeasible paths
in branch testing, in: TAV3, pp. 48–54.

Zhang, L., Malik, S., 2003. Extracting small unsatisfiable cores from
unsatisfiable boolean formulas, in: SAT’03.

20


	Introduction
	Background and Notations
	Program and Path
	Feasibility and Path Condition
	Data Dependencies
	Finite-State Automata
	Explanation
	Intrusive methods
	Non-intrusive methods


	Infeasible Path Generalization
	Explaining the Infeasibility
	Symbolic Execution without Substitution
	Extracting the Explanation
	From Constraints to Statements

	Tracking Data Dependencies
	Building an Infeasible Path Automaton
	Method Rundown
	Correctness and Completeness
	Complexity Analysis
	A Complete Example

	Integration to Dynamic Symbolic Execution
	Problems with Symbolic Expression Simplifications
	Problems with Concrete Data

	Experimental Evaluation
	Prototype
	Benchmark programs
	Unitary Evaluation
	Protocol
	Results

	Integration Evaluation
	Scaling up the Integration
	Threats to Validity

	Related Work
	Conclusion

