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Abstract

Fluid flow in helically coiled pipes is not fully understood. Although many
efforts have been devoted to investigating the complex characteristics of the
flow in helically coiled pipes, much is unknown for especially high Reynolds
numbers, i.e., turbulence.

In this thesis, turbulent flow in helically coiled pipes is numerically
investigated. First, direct numerical simulation of turbulent flow in a straight
pipe is carried out for numerical validation. Then, we examine turbulent flow
in helically coiled pipes using the fully turbulent flow from a straight pipe.
An increase in the turbulent kinetic energy is observed at the first curve of
helically coiled pipes. However, stabilization of the turbulent flow is observed
towards the outlet, which is observed numerically for the first time. Due to the
curved path and the centrifugal force, two counter-rotating vortices referred to
as Dean vortices are observed. These vortices rapidly intensify the dissipation
by creating smaller eddies in the flow and hence contribute to stabilizing the
flow. We found that the higher curvature and lower torsion are associated with
faster stabilization by modifying the geometry.

Lastly, numerical simulations of blood flow in the internal carotid artery
(ICA), which shares geometrical characteristics with helically coiled pipes,
are conducted with patient-specific geometries. Recent studies proposed the
correlation between flow instability and the initiation of cerebral aneurysms in
the ICA. Therefore, we aim to contribute to understanding the formation of flow
instability in the ICA by applying the gained knowledge from helically coiled
pipes. In some of the patients, ’turbulent-like’ flow is found. A patient with
stable flow has a higher curvature and lower torsion in the carotid siphon, which
agrees with the results of helically coiled pipes. Dean vortices are observed for
the first time and may be associated with flow instability in the ICA.
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Chapter 1

Introduction and Motivation

Fluid flows in helically coiled pipes have historically gained attention due to their
occurrence in the human body, such as the cardiovascular and the respiratory
system, and in engineering applications, such as heat exchangers and chemical
reactors. Nonetheless, the complex physics of the flow in helically coiled pipes
is not fully understood. Earlier works on the flow in curved or helically coiled
pipes were analytical [3, 14, 22, 33, 84, 86] and experimental [2, 7, 11, 19, 20].
Numerical analysis [47, 85] was limited to low Reynolds numbers, i.e., laminar
flow, and small curvature due to the lack of powerful computational tools.

In recent years, computational fluid dynamics (CFD) has emerged as a
powerful tool to investigate the motions of fluid flow. CFD may reduce the cost
and time necessary for experiments. It is easier to acquire the data from the
entire flow field with CFD than through experiments. One of the things that
CFD can give insight to is turbulence, which has been of great interest within
fluid mechanics for the past decades. Turbulence is a state of fluid motion
identified by apparently random and three-dimensional vorticity. Unlike the
steady flow, turbulence is chaotic and unpredictable, making both the setting and
measurements of the experiments very challenging. As computers have become
more powerful, several numerical techniques have been developed for simulating
turbulence, such as Reynolds averaged Navier-Stokes (RANS) [59] modelling,
Large-eddy simulation (LES) [66], and Direct Numerical Simulation (DNS)
[57]. RANS is the most computationally inexpensive approach where averaged
motion of turbulence is resolved. The idea of LES is to ignore the smallest
eddies by utilizing spatial filtering. LES is more accurate but computationally
expensive than RANS. DNS is a type of simulation where the entire range of
spatial and temporal scales of turbulence is resolved. Thus, DNS naturally
requires enormous computational resources. A number of mesh points (N3)
necessary to perform DNS are known to exponentially grow as a function of
Reynolds number (Re), N3 ≥ Re9/4 [25]. For this reason, the application of
DNS to very high Reynolds numbers or complex geometries is still a challenging
problem in fluid mechanics.

In 1987, Kim et al. [40] applied DNS for the first time to simulate the
fully developed turbulent flow between two parallel plates. The first DNS of
turbulent flow in a straight pipe was carried out by Eggels et al. [17] in 1994.
In recent years, Noorani et al. [55] used DNS to study the turbulent flow in
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curved pipes. Wang et al. [78] investigated the turbulent flow in pipes with
90-degree bend using DNS. Although the basic idea of DNS is simple, the
results obtained from DNS have proven to be extremely valuable in an attempt
to understand turbulence in different geometries. Furthermore, results from
previous studies [18, 40, 53] have been shared as DNS data set and are actively
used for validations.

On the other hand, turbulent flow in helically coiled pipes has not yet been
thoroughly studied using DNS. Hüttl and Friedrich [32] are the only ones to
ever apply DNS to the turbulent flow in helically coiled pipes. They simulated
turbulent flows in straight, curved, and helically coiled pipes. It was found that
the flow in a helically coiled pipe was less turbulent than that of a straight
pipe but was more turbulent than that of a curved pipe. This result indicates
both the stabilization and destabilization effects of helically coiled pipes. These
effects are also observed experimentally [28, 67]. Nevertheless, the mechanisms
of stabilization and destabilization of flow in helically coiled pipes are unknown.
Several other numerical studies of turbulent flow in helically coiled pipes were
recently reported [12, 13, 28]. However, the focus of their study was on flow
instability that triggers the transition from laminar flow to turbulence. As far
as we know, there have been no numerical studies that addressed the transition
from turbulence to laminar flow in helically coiled pipes. Therefore, we will
investigate turbulent flow in helically coiled pipes with focus on the stabilization
and destabilization of the flow.

Investigation of the flow in helically coiled pipes may also be applied to
understand the flow structures in blood vessels as they are typically curved and
twisted in three dimensions. CFD has been used in biomechanical applications to
investigate the correlation between blood flow and the initiation and development
of cardiovascular diseases in recent years. One example is cerebral aneurysms,
bulges in the artery often located in the vicinity of the brain, and are thought
to be present in ≈ 3% of adults [76]. It is well known that the blood flow
and the dynamics of blood flow (hemodynamic) are strongly affected by the
vascular geometry (morphology) [36]. In addition, mechanical forces, such as
wall shear stress, from blood flows are thought to have profound effects on
the initiation of the cerebral aneurysms [56, 63]. Advanced medical imaging
techniques enable measurements of the morphology to be easier and more
accurate. Yet, direct measurements of the flow field and hemodynamics are still
very challenging. Hence, CFD combined with patient-specific geometries has
been utilized to study the physics of blood flow [62, 68]. Recent patient-specific
CFD studies demonstrated a potential link between ’turbulent-like’ flow and the
initiation of the aneurysms [39, 74]. However, it is difficult to isolate the effects
of specific geometrical parameters in patient-specific geometries as there are
several parameters affecting flow patterns. Cerebral aneurysms are commonly
formed at the bifurcation, especially in the internal carotid artery, which shares
some geometrical characteristics with helically coiled pipes. Therefore, the
gained knowledge from turbulent flow in helically coiled pipes may be used to
understand flow instability in the ICA.

To summarize, the objective of this thesis is to investigate turbulent flow in
helically coiled pipes using numerical simulations. Particularly, we will examine
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the stabilization and destabilization effects of helically coiled pipes that are
experimentally observed [28, 67] but not numerically investigated. Simulations
of turbulent flow in a helically coiled pipe may also shed light on the initiation
of cerebral aneurysms. To this end, we will take the following steps.

• First, turbulent flow in a straight pipe will be simulated using direct
numerical simulations. The results will be compared against the published
DNS data [18] for numerical validation purposes. In addition, turbulent
flow obtained in a straight pipe will be used as an inlet velocity profile in
a helically coiled pipe.

• Second, turbulent flow in helically coiled pipes will be simulated using
data obtained from straight pipes. Five simulations based on different
geometry will be shown and we will discuss the stabilization effects in the
helically coiled pipe.

• Finally, numerical simulations of blood flow in patient-specific geometries
of the internal carotid artery will be performed. We will analyze flow
strictures in the internal carotid artery linking the flow in helically coiled
pipes.
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Chapter 2

Theory and Numerical Scheme

2.1 Turbulence

Turbulence has attracted people’s attention for a long time and is a universal
phenomenon that appears in many fields of science. In addition, turbulence
appears in everyday life, from atmospheric circulation to when birds are flying.
However, it is hard to define turbulence in a way that can cover all the
characteristics it has. Therefore, it is common to list those characteristics
when defining turbulence. Here are some of the essential properties that we
know.

• Turbulence is irregular or random.

• Turbulence occurs at high Reynolds numbers.

• Turbulence is rotational and three-dimensional.

• Turbulence is a flow property and not a fluid property.

Figure 2.1 shows an example of the transition from laminar flow to by using a
grid. Turbulence has a much more complex structure compared to laminar flow.

Figure 2.1: Transition from laminar (left) to turbulent (right) flow by a grid.
Adapted from An Album of Fluid Motion (p.89) by van Dyke, M., & White, F.
M. [16]
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2.1. Turbulence

One of the most critical yet often overlooked characteristics of turbulence
is that it is always a three-dimensional phenomenon and can never be two-
dimensional. Turbulence involves the appearance of eddies of multi-scale and
the energy cascade. During the process of energy cascade from larger eddies
to smaller eddies, vortex stretching is observed due to the conservation of
angular momentum. This lengthening of vortices can only happen in three-
dimensional space. Therefore, even though it is possible to create "two-
dimensional turbulence" numerically, such a simulation inhibits the vortex
stretching.

2.1.1 Reynolds averaged Navier-Stokes (RANS) equations

Although it is impossible to predict the precise velocity or pressure at any
point in time and space in turbulence, coherent structures may be observed.
Mathematically, the existence of the coherent structure can be interpreted as
having average values. In such a scenario, we can decompose the instantaneous
velocity and pressure into two parts as described in the equation (2.1), averaged
and fluctuating value.

u(x, t) = u(x, t) + u′(x, t)
p(x, t) = p̄(x, t) + p′(x, t)

(2.1)

Here overline denotes the average, and the prime denotes the fluctuating
part. When the velocity and pressure may be decomposed into the mean and
the fluctuating part, it is beneficial to derive equations that can predict the
mean motion of the turbulence. We can do so by taking the average over the
Navier-Stokes equations. The resulting equations are called Reynolds averaged
Navier-Stokes (RANS) equations and are written as follows [79].

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p̄+ ν∇2u−

∂u′iu
′
j

∂xj
+ f

∇ · u = 0
(2.2)

where u is the velocity, p is the pressure, and f is the external force. Here u′iu′j
is called Reynolds shear stress. This term introduces difficulty in analyzing
turbulence as fluctuating velocity is often much more complex to obtain
compared to the mean velocity.

As we will deal with turbulent flow in a circular pipe later, it is convenient
to express RANS equations in terms of cylindrical coordinates. Here, we pay
special attention to the case of pipe flow so that the mean flow is independent
of the axial coordinate z and axisymmetric. This means that we assume uθ = 0
and ur = 0. With these assumptions, the general RANS equations are reduced
to

1
ρ

∂p

∂z
= −1

r

d
dz
(
ru′ru

′
z

)
+ ν

(
d2uz
dr2 + 1

r

duz
dr

)
(2.3)

The equation (2.3) indicates that u′ru′z is the only Reynolds Stress in turbulent
pipe flow.
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2.1. Turbulence

2.1.2 Reynolds number related to turbulence

When dealing with the Reynolds number in the context of turbulence, several
Reynolds numbers are used in the literature which may confuse the reader.
Thus, the definition of the Reynolds number used in this thesis is given here.
The first one is the bulk Reynolds number (Reb) and it reads as follows.

Reb = UbD

ν
(2.4)

where Ub is the mean bulk velocity, D is the diameter of the pipe, and ν is the
kinematic viscosity. Bulk velocity is the average velocity over the cross-sectional
area. In the case of straight pipe, it can be computed as

UbπR
2 = 2π

∫ R

0
ruz(r)dr (2.5)

where uz is the streamwise velocity, r is the radial direction, and R is the radius
of pipe. Secondly, Friction Reynolds number (Kármán number) is introduced
as follows.

Reτ = uτR

ν
(2.6)

where uτ is a so-called friction velocity defined as

uτ =
√
ν
∂ū

∂y y=0
(2.7)

where y = 0 indicates that the velocity gradient is measured at the wall.

2.1.3 Q-criterion

Visualization of turbulence can be challenging. As turbulence consists of many
vortices, one common practice is visualizing the vortex structures through
Q-criterion. Q-criterion can extract the region where the vorticity magnitude is
greater than the magnitude of the rate of strain [34].

Q ≡ 1
2
(
u2
i,i − ui,juj,i

)
= −1

2ui,juj,i = 1
2
(
‖Ω‖2 − ‖S‖2) > 0 (2.8)

Here, Ω and S are the symmetric and antisymmetric components of the velocity
gradient.
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2.2. Differential geometry of curves

2.2 Differential geometry of curves

As will be shown later, our focus on this thesis lies in the correlation between
the geometry (morphology in the context of physiology) and the resulting flow
patterns. We, therefore, introduce the necessary background knowledge in
geometry with special attention to curves in the field of differential geometry.

2.2.1 Curvature and torsion of a helix

A circular helix is a type of smooth curve in three-dimensional space with the
following mathematical definition.

γ(θ) = (x, y, z) = (a cos θ, a sin θ, bθ), θ ∈ R (2.9)

where z is its axial direction, a is a constant representing the radius of the helix,
and b is a constant where 2πb represents the pitch of the helix. An example is
given as Figure 2.2.

a

2𝜋b

Figure 2.2: An example of a helix where a represents the radius of the helix
and 2πb represents the pitch of the helix.

Curvature and torsion are the two scalar functions that together determine
the shape of a curve in R3. It turns out that circular helixes are the only curves
with constant curvature and torsion. Suppose that γ(t) is a curve in R3, then
its curvature is defined as ;

κ = ‖γ
′(t) × γ′′(t)‖
‖γ′(t)‖3 (2.10)

Curvature measures the derivation of the curve from a straight line. Torsion on
the other hand measures the derivation of the curve from lying on the same
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2.2. Differential geometry of curves

Figure 2.3: Examples of curves with (a) no torsion, (b) low, and (c) high
curvature (κ) and torsion (τ). Curvature and torsion respectively represent the
derivation of the curve from a straight line and lying on the same plane. Higher
curvature and torsion are associated with the sharp bend of the helix.

plane where its mathematical definition reads as follows;

τ = (γ′(t) × γ′′(t)) · γ′′′(t)
‖γ′(t) × γ′′(t)‖2 (2.11)

In case of helices, we can compute the curvature and torsion as;

κ = |a|
a2 + b2 (2.12)

τ = b

a2 + b2 (2.13)

Figure 2.3 shows three example of curves, where (a) has no torsion (τ = 0),
(b) and (c) respectively have low and high curvature and torsion.
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2.3. Numerical scheme

2.3 Numerical scheme

To simulate fluid flow in different geometries, we will use a finite element Navier-
Stokes solver called Oasis [52]. Oasis is built upon FEniCS [48] which is the
computing platform for solving partial differential equations. In Oasis, we are
solving the incompressible Navier-Stokes equations where the equation takes
the following form.

∂u

∂t
+ (u · ∇)u = ν∇2u−∇p+ f

∇ · u = 0
(2.14)

where u is the velocity field, p is the pressure, ν is the kinematic viscosity,
and f is the external force. The constant fluid density is incorporated into the
pressure. Oasis has two major numerical schemes in it. One is the coupled
solver where two equations are solved directly by assembling a large matrix.
It has high accuracy and is also robust, but the computational cost is very
expensive as it assembles all the governing equations into a linearized system
of equations. The other scheme solves the equations in a segregated manner
by splitting them into smaller equations. This segregated solver has lower
accuracy than coupled solver due to the splitting of the equations but is more
computationally efficient. In this thesis, we especially focus on the unsteady
three dimensional flow, and thus segregated solver is better suited because of
its computational efficiency.

In Oasis, a fractional step method is employed as a segregated solver.
Discretization in time is performed using a finite difference scheme, while
discretization in space is performed using finite elements. The generic fractional
step algorithm with second order accuracy in time can be written as [65]

u∗k − u
n−1
k

∆t +B
n−1/2
k = −∇kp∗ + ν∇2u

n−1/2
k + f

n−1/2
k for k = 1, . . . , d

(2.15)

∇2φ = − 1
∆t∇ · u

? (2.16)
unk − uk

∆t = −∇kφ for k = 1, . . . , d
(2.17)

where subscripts k and n denote spatial coordinates and temporal steps
respectively. u∗ and p∗ are the tentative velocity and pressure whereas
φ = p1/2 − p∗ is a correction of the pressure. The non-linear convective
term (Bn−1/2

k ) is linearized by Adams-Bashforth projection,

B
n−1/2
k =

(
u
n−1/2
k · ∇

)
u
n−1/2
k ≈

(
3
2u

n−1
k − 1

2u
n−2
k

)
· ∇un−1/2

k (2.18)

and a Crank–Nicolson discretization is chosen for the term u
n−1/2
k = 0.5(u∗k +

un−1
k ) to keep the second order accuracy in time. With all the dicretizations

presented, the equation (2.15) is solved for all the tentative velocity components
and the equation (2.16) for a pressure correction. In general, this process
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2.3. Numerical scheme

can be repeated a desired number of times before solving the equation (2.17),
which ensures the conservation of mass. In our simulations, this procedure is
performed once. This scheme is selected based on the efficiency and long-term
stability [65]. A shortcoming of this fractional step method is that an artificial
boundary condition for the pressure is introduced as a result of splitting. This
usually causes errors in the pressure at the boundary known as the numerical
boundary layer. Based on the review paper by Guermond et al. [26], we have
conducted the numerical tests to address the numerical boundary layer using
different numerical schemes. The results are presented in appendix A as it is
not directly associated with the scope of this thesis. Finally, we summarize the
whole procedure of the fractional step as shown in Algorithm 1. Although we
are still left with the spatial discretization, the reader may refer to the paper
by Mortensen and Valen-Sendstad [52] for the variational formulations.

Algorithm 1 Fractional step method. Rewritten from Mortensen and Valen-
Sendstad [52]
set initial conditions
t = 0;
while t < T do

t = t+ ∆t;
while error < max_error and iter < max_iter do

φ = p∗ = pn−1/2

solve eq. (2.15) for u∗k, k = 0, ..., d
solve eq. (2.16) for pn−1/2

end while
φ = pn−1/2 − φ
solve eq. (2.17) for unk , k = 0, ..., d
update to next time step

end while
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Chapter 3

Method and Computational
Details

In this chapter, we will present the methods and computational details for all
the simulations done in this thesis. Oasis is used with linear basis functions for
the velocity and the pressure. All the computations were parallelized through
Message Passing Interface (MPI) on Saga Supercomputer maintained by NRIS
- Norwegian research infrastructure.

3.1 Method for simulating turbulent flow in a straight pipe

3.1.1 Governing equations and computational domain

We considered the pressure-driven incompressible flow of a Newtonian fluid in
a smooth pipe at Reb = UbD/ν = 5300. The governing equations are written
in dimensionless form

∇ · u = 0 (3.1)
∂u
∂t

+ (u · ∇)u = −∇p+ 1
Reb
∇2u (3.2)

Reb of 5300 is equivalent to a friction Reynolds number (Reτ ) of 180. Technically,
Oasis solves the Navier-Stokes equations in dimensional form and the kinematic
viscosity needs to be given. However, as our results will be all presented in
dimensionless form, the value of the kinematic viscosity does not affect the
results. The pressure gradient was applied to the axial direction only and is
equal to 4u2

τ/D, which can be derived from considering the momentum equation
for a fully developed pipe flow as follows.

0 = −∂P
∂z

+ 1
r

∂

∂r
r

[
−〈uzur〉+ ν

∂uz
∂r

]
(3.3)

Here z is the streamwise direction, r is the radial direction, 〈uzur〉 is the
Reynolds shear stress. Since P does not depend on r, we can multiply the
equation (3.3) by r and integrate from the wall (r = R) to an arbitrary point r
to get

u2
τ =

( r
R

)[
−〈uzvr〉+ ν

∂uz
∂r

]
− 1

2

(
R2 − r2)
R

dP

dz
(3.4)

11



3.1. Method for simulating turbulent flow in a straight pipe

2R

L = 10R

(u, v, w)

Figure 3.1: Schematic of pipe geometry and illustration of periodic boundary
conditions. Here R is the pipe radius and L is the pipe length.

Integration to the centerline (r = 0) yields the relation between the pipe radius,
the wall shear stress and the imposed pressure gradient as:

u2
τ = −R2

dP

dz
→ dP

dz
= −2u2

τ

R
= −4u2

τ

D
(3.5)

The computational domain is depicted in Figure 3.1. The radius of the
pipe is denoted by R and the length of the pipe is L with L = 10R, which
was chosen to capture the very large motion near the wall region. This pipe
length is the same length used by other DNS studies [17, 21]. In Oasis, the
Navier-Stokes equations are described in the Cartesian coordinate system. In
this way, we avoided the singularity that might arise at the centreline with a
cylindrical coordinate system.

Linear stability analysis shows [15] that the transition to turbulence from
laminar flow could never happen for all Reynolds numbers if the circular
pipe geometry is axisymmetric with no geometrical features that can generate
angular velocities. For our simulations, small perturbations were initially added
to the base laminar flow to trigger turbulence quickly. It is presumed that the
magnitude of the perturbations needed to initiate the transition is proportional
to Re−1 [29] but the actual value depends on the mesh. Thus, several simulations
were conducted to find an appropriate magnitude of the perturbations.

To create turbulence efficiently in terms of computational cost, we employed
the periodic boundary condition to the inlet and the outlet of the pipe. In this
fashion, we can save computational costs since it can minimize the length of the
pipe. However, it should be noted that the inlet and outlet of the pipe must
have the identical mesh to achieve the periodic boundary condition, which is
the limitation of FEniCS, not the requirement for periodic boundary conditions
in general. Regarding the wall, no-slip boundary conditions have been applied.

12



3.1. Method for simulating turbulent flow in a straight pipe

(a)

(b)

Figure 3.2: An example of the computational domain for the straight pipe. (a)
shows the cross-section of the pipe with boundary layer mesh near the wall
region and (b) is the entire domain made by extruding (a) in the axial direction.

The computation domain is generated by Gmsh [23], which is an open-source
3D finite element mesh generator. The example of the mesh is shown in Figure
3.2 and has two important features that are critical for the simulation. The first
feature is that it has the so-called boundary layer mesh. Boundary layer mesh
is a region with dense element distribution in the normal direction along the
wall. This is essential in case the flow of interest involves a strong gradient near
the wall, such as turbulence [27]. The other one is that all the cross-sections
of the pipe have identical meshes. This is to achieve the periodic boundary
condition. We first made a 2D circle mesh and extruded it in the axial direction
to create the pipe.
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3.1. Method for simulating turbulent flow in a straight pipe

3.1.2 Mesh refinement study and computational time setting

The goal of simulating turbulent flow in a pipe is to produce data sets that
are as close as the DNS with moderate computational costs. To do so, we
have conducted a mesh convergence test to determine the desirable mesh
configuration.

In total, we have prepared three meshes (M1, M2, and M3). Cross-sectional
view of the mesh is shown in Figure 3.3. They are respectively coarse (M1),
intermediate (M2), and fine (M3) mesh. We will compute the mean velocity,
turbulent intensity, and Reynolds shear stress for each mesh. These values will
be compared against DNS results acquired by El Khoury et al. [18] to assess
the sensitivity of the solution against the mesh configurations. In particular,
we changed the number of cells of the whole domain and the property of the
boundary layer mesh. The distance to the first node from the wall was also
controlled to investigate the effect of different boundary layer mesh. A close
view of the boundary layer mesh is shown in Figure 3.4. It can be seen that the
boundary becomes smoother as the number of nodes consisting of the boundary
is increased.

(a) M1 (b) M2 (c) M3

Figure 3.3: Cross-sectional view of the mesh showing the increase of the number
of cells.

(a) M1 (b) M2 (c) M3

Figure 3.4: Quarter-section of the cross-sectional view of the mesh is shown
to highlight the difference of boundary layer mesh. As the mesh resolution is
increased, the boundary becomes smoother.
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3.1. Method for simulating turbulent flow in a straight pipe

# of cells hmin,max havg y+
1

M1 236,400 (0.133, 0.209) 0.161 4.73
M2 462,000 (0.112, 0.193) 0.130 3.61
M3 1,260,600 (0.105, 0.135) 0.113 1.80

Table 3.1: Summary of the mesh configurations. Number of cells, minimum,
maximum, and the average of characteristic edge length, and the distance to the
first node (y+

1 ) from the wall normalized by the kinematic viscosity are shown.

Table 3.1 shows the summary of mesh properties. Here, y+
1 represents the

distance to the first node from the wall normalized by kinematic viscosity ν
and friction velocity uτ . The M1 mesh has the least number of cells and the
mesh is coarser near the centerline region. The M2 mesh can be regarded as the
improvement of M1 mesh as it has a larger number of cells and y+

1 is smaller
than that of M1. The M3 has the most number of cells and y+

1 is the shortest
of all and thus should produce the closest results to DNS case.

The initial velocity field was generated by parabolic flow with small
perturbations that were created using a stream function constructed with
random numbers. The computational time step was fixed at ∆t = 0.01 and the
sampling interval was 5∆t for all the simulations. We set T = 2× 105∆t for
M1, M2 and T = 6× 105∆t for M3. Sampling was conducted during the last
5×104∆t which is equivalent to ≈ 190R/U b where U b is the mean bulk velocity.
As the pipe length is 10R, this is enough to allow a particle to travel through the
pipe 19 times at the bulk velocity. The reason why the total computational time
was different is that the time for the transition to occur became larger for the M3.
We will discuss this later in the discussion. Briefly, this is because the velocity
gradient between neighboring cells becomes smaller while a higher velocity
gradient is necessary to trigger the transition. Hence, the total time steps and
the start of the sampling were adjusted based on how many time steps were
necessary to trigger the transition of the flow. Since it is impossible to predict
in advance when turbulence appears, we first conducted the simulations to
estimate the time for the transition and then performed simulations again based
on the previous results to sample the data. We have used 8 central processing
units (CPUs) for the M1 and 16 CPUs for the M2 and M3 cases. The code
used for this chapter can be accessed at https://github.com/mikaem/Oasis/
blob/master/oasis/problems/NSfracStep/StraightPipe.py, which, among other
things, describes parameters, constructions of boundary conditions, initialization
of velocity field, and a method for collecting data.
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3.2. Method for simulating turbulent flow in helically coiled pipes

3.2 Method for simulating turbulent flow in helically coiled
pipes

The method for simulating turbulent flow in helically coiled pipes is presented.
Since we will use simulation results from the straight pipe as an inlet velocity
profile, the main difference from the straight pipe is the geometry and boundary
conditions. Most of the other parameters were kept constant. Thus, we will
mainly explain how the computational domain is generated as well as well how
we modified it to produce additional models.

3.2.1 Computational domains

Figure 3.5 illustrates the geometry of helically coiled pipes. Helically coiled
pipes were made based on the helix whose mathematical description follows the
equation (2.9). Cylindrical flow extensions were added to the inlet and outlet
of the pipe that enabling us to use the pre-computed turbulence in a straight
pipe without any coordinate transformation. The radius of the pipe was the
same as the straight pipe. As Oasis solves dimensional Navier-Stokes equations,
the specification of the units is practically required. Here, as a convention, we
employed the International System of Unit, but the choice of the units would
not affect the results.

𝑃

𝑅

2𝑟
𝐻 = 10𝑟

𝐶 = 2

𝐶 = 1

Figure 3.5: Schematic of helically coiled pipe with two coils (C=2). P represents
the pitch of the coil and R represents the radius of the coil. H is the height of
the coil and is fixed as 10r where r represents the radius of the pipe.
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3.2. Method for simulating turbulent flow in helically coiled pipes

In total, we prepared 5 coiled pipes (i∼ v) and all meshes are shown in
Figure 3.6. First, we made a default case (ii) where the number of coils (denoted
as C) was 2 and the radius of the coil (denoted as R) was 3. Then, we either
decreased or increased the number of coils (± C) and the radius of the coil (±
R) to create additional four cases (i, iii, iv, v). The height of the pipe was kept
constant. By decreasing the number of coils ( - C, case i), the curvature was
decreased while the torsion was increased. On the other hand, by increasing the
number of coils (+C, case iii), the curvature was increased while the torsion was
decreased. Decreasing the radius of the coil (-R, case iv) resulted in the increase
of both curvature and torsion. Increasing the radius of the coil (+R, case v)
resulted in the decrease of the both curvature and the torsion. Table 3.2 lists the
summary of geometrical parameters and the details of mesh configuration. The
number of cells and the length are also listed in the table 3.2. The length of the
computational domain differs as we fixed the height of the coil. However, the
number of cells per volume is all approximately set to 29000 to avoid numerical
errors from spatial resolution.

ⅰ)

ⅱ)

ⅲ)

ⅳ) ⅴ)

Default

− C + C

− R + R

Figure 3.6: Volume mesh of helical pipes with different geometrical parameters.
Here C and R represents the number of coils and the radius of coils, respectively.
Based on the case ii), four additional models were created by changing the
number of coils (±C) and the radius of the coil (±R).
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3.2. Method for simulating turbulent flow in helically coiled pipes

case C R P κ τ Nc L
i) 1 3 10 0.260 0.191 2, 99× 106 32.114
ii) 2 3 5 0.311 0.105 4, 59× 106 49.767
iii) 3 3 3.33 0.323 0.0572 6, 24× 106 68.187
iv) 2 2 5 0.432 0.172 3, 49× 106 38.820
v) 2 4 5 0.240 0.0478 5, 70× 106 63.019

Table 3.2: Summary of the geometry and mesh configurations of coiled pipes.
C represent the number of coils. The radius of the coil (R), pitch of the coil
(P), curvature (κ), torsion (τ), length (L) are non-dimensionalized by the pipe
radius r. Curvature and torsion are computed by equation (2.12) and (2.13).
The number of cells (Nc) are also shown. Case i), ii), and iii) have the same
radius of the coil while case ii), iv), and v) have the same number of coils.

In previous studies that used numerical [32] and experimental [28] method
to investigate turbulent flow in helically coiled pipes, curvature (κ) was fixed to
be 0.1. Here, we cover the range of the curvature from κ = 0.24 to κ = 0.43,
thus higher range of curvature is covered. Torsion (τ) ranges from 0.0478 to
0.172 covering from small to large values.

Meshes were generated by using Gmsh [23] and The Vascular Modeling
Toolkit (VMTK) [58]. We first made surface meshes by Gmsh and used them
as inputs for VMTK for volume meshing. It would have been ideal to use only
Gmsh for a simpler procedure but the boundary layer meshing was not possible
with Gmsh at the time of writing. This is due to the complexity of the geometry,
unlike the straight pipe where the extrusion was done for only one direction.
For all the cases, four boundary layers were employed.

3.2.2 Boundary conditions and computational time setting

The simulation was started by the fully developed turbulent flow that was
acquired from simulations with straight pipes at Reτ = 180. This is equivalent
to the Re = 5300 at the inlet based on the bulk velocity and the pipe diameter.
Due to the limitation of FEniCS, the inlet of the coiled pipe had to be identical
to the cross-section of the straight pipe. Therefore, we have created five straight
pipes corresponding to each coiled pipe and acquired the velocity field at the
outlet of the straight pipe. At the wall, no slip condition was applied and the
Dirichlet boundary condition for the pressure (p = 0) was realized at the outlet.

The same time step as straight pipes ∆t = 0.01 was used. Total time
steps were set to 8× 104∆t and the sampling of the statistics was started after
4× 104∆t with the sampling interval being 5∆t. Either 16 CPUs or 32 CPUs
were used depending on the number of cells. A python script used to run the
simulation can be found at https://github.com/keiyamamo/Oasis/blob/master/
oasis/problems/NSfracStep/CoiledPipe.py where problem specific parameters,
initial conditions, and the boundary conditions are described.
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3.3. Method for simulating blood flow in the internal carotid artery

3.3 Method for simulating blood flow in the internal carotid
artery

Here, we will present the method for simulating blood in the internal carotid
artery. Our cohort consists of ten healthy cases (P0086, P0134, P0157, P0163,
P0207, P0220, P0228, P0250, P0251, P0252) from the Aneurisk database [49]
where surface models are constructed from the 3D rotational angiography.
Although we have conducted the simulations for all ten cases, five representative
cases were selected for this thesis. We intentionally selected healthy patients.
Our aim was to investigate the flow instability that might be associated with
the initiation of the cerebral aneurysms. If we had chosen the patients with
aneurysms, it could have been difficult to exclude the possibility of the flow
instability as a consequence of cerebral aneurysms.

3.3.1 Mesh generation

Mesh generations from the surface models are done in an automated manner
through the python script that is built upon VMTK [58] and each step will be
explained in this subsection.

First, the surface model needs to be smoothed as the high frequency feature
in the surface model may locally result in a poor quality mesh. Such a mesh can
lead to the inaccuracy and divergence of the numerical solution when performing
CFD study. There are multiple methods available for smoothing (e.g., laplace
smoothing, taubin smoothing) but we have performed smoothing based on the
Voronoi diagram. Briefly, the Voronoi diagram is a way to represent the three
dimensional surface by points inside the domain and the inscribed sphere that
are associated with the points. In general, points that are located near the
surface have a smaller radius of the inscribed sphere while the points near the
centerline have a larger radius of the inscribed sphere. The surface model can
be smoothed by removing the points that have a small radius of the inscribed
sphere. Here, we removed the sphere with less than 25% of the maximum radius
in the model. As the Voronoi diagram is a mathematical way of representing the
surface, it is an objective way of smoothing the surface. Note that the smoothing
of the surface is to be done only to remove the high frequency features and the
care needs to be taken to preserve the original surface as much as possible.

Following the smoothing of the surface mesh, the cylindrical extensions to the
inlet and outlet need to be added. Adding flow extensions has several purposes.
For the inlet, the flow must be developed before it enters the ICA as the
Womersley boundary condition, which will be explained in the next subsection,
is applied to the inlet. For the outlet, it is crucial to have a flow extension
to avoid numerical instability often caused by incoming velocity referred to
as backflow. This problem may happen as only the boundary condition for
the pressure is prescribed at the outlet [6]. It is important to remind that the
adding flow extension increases the computational cost as the number of cells
increases, and hence the length of the flow extensions should be as short as
possible. Figure 3.7 shows an example of the surface model after the surface is
smoothed and the flow extension is added.
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3.3. Method for simulating blood flow in the internal carotid artery

Figure 3.7: Example of surface model (P0086) after the surface is smoothed
and the flow extensions are added to the inlet and outlets. Left is the original
model; Right figure is the modified model.

After the surface model is improved, the surface meshing is to be performed
which will then be used to perform the volume meshing. We have three ways of
performing the surface meshing within our framework depending on the way of
computing the edge length of each cell. The first and the simplest way is to
impose the constant edge length for all the cells. This method can be useful if
the geometry is relatively simple and the flow patterns are expected to remain
the same. However, when the geometry is complex and the flow is assumed to
experience the transition it is necessary to have a denser mesh in the vicinity of
the complex geometries. One way to accomplish such a meshing is to compute
the edge length based on the distance to the centerline. It is well known that
the flow can become unstable in the narrow region where the surface is close to
the centerline and thus higher resolution of the mesh is desired. The other way
is to compute the edge length based on the surface curvature. When the surface
has higher curvature it can also lead to unstable flow and a higher resolution of
the mesh is also required. In our case, we performed surface meshing based on
the distance to the centerline.

Finally, the volume meshing is performed based on the surface mesh.
Generating boundary layer mesh is possible with VMTK [58] and is preferable
for our simulations as the flow of interest is transient. Four boundary layers
were created and the total number of the cells ranges from approximately three
million to eight million depending on the patient-specific geometry. Based on
the previous studies, it is known that this meshing resolution is more than
adequate to detect the flow instability [38, 72]. The volume meshing algorithm
of VMTK is relied on TetGen [64]. Figure 3.8 shows an example of a volume
mesh with an enlarged view of the inlet with four boundary layers. Table 3.3
lists the mean curvature and torsion, the number of cells, and the minimum
and the maximum Reynolds number of five selected ICA.
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3.3. Method for simulating blood flow in the internal carotid artery

Figure 3.8: Example of volume mesh (P0086) with an enlarged view at the inlet
with boundary layer. Part of the volume mesh is clipped to show the inside of
the domain.

case κ [mm−1] τ [mm−1] Number of elements [-] Reinlet [-]
P0207 0.189 -0.0142 4.42× 106 115 ∼ 582
P0220 0.194 0.343 5.81× 106 141 ∼ 712
P0228 0.212 0.0545 3.75× 106 150 ∼ 758
P0250 0.134 -0.130 6.87× 106 167 ∼ 845
P0252 0.178 -0.0904 2.84× 106 162 ∼ 820

Table 3.3: Mean curvature (κ), torsion (τ), the number of the elements, and the
minimum and maximum Reynolds number at the inlet of the patient-specific
geometry of the ICA are listed.
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3.3. Method for simulating blood flow in the internal carotid artery

3.3.2 Boundary conditions and computational time setting

To simulate the flow in a patient-specific geometry of the ICA, boundary
conditions are required for both inlet and outlet. For the inlet boundary
condition, we have used Womersley flow which is a pulsatile blood flow named
after John R. Womersley [81]. The form of Womersly flow depends on several
parameters, such as fluid density and pulsatile frequency. In this thesis, we
used the waveform from Hoi et al. [30] to specifically adjust the Womersly flow
so that it is similar to the flow in ICA of older adults. Figure 3.9 illustrates the
waveform we used.
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Figure 3.9: Normalized velocity waveform taken from Hoi et al. [30]. The
waveform represents the velocity profile in the ICA of older adults during one
cardiac cycle.

We used the following approximation of the mean flow rate as proposed by
Valen-Sendstad et al. [75] where Q is the flow rate and A is the cross-sectional
area of the inlet.

Q = 0.27A (3.6)

At the outlets, the boundary condition for the pressure was applied and was
iteratively adjusted during the simulation as the inlet boundary condition was
time-dependent. Since we have bifurcation and several outlets depending on
the patient-specific geometry, the pressure condition for each outlet needs to
be computed to correctly achieve the flow division. To this end, we used the
so-called dual-pressure boundary condition developed by Gin et al. [24]. At the
dth outlet, pressure Pd is corrected using a power-low of the form

Pd,new = βPd,old ·ME
err (3.7)

where Merr is the mass flow error described as

Merr = Rdesired

Ractual
(3.8)
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3.3. Method for simulating blood flow in the internal carotid artery

where R is the flow ratio at the bifurcation. E is an exponent that controls the
magnitude and direction of the pressure with the following definition.

E =


1 + |Rdesired −R|

Rdesired
, for Pd, old < 0

−
(

1 + |Rdesired −R|
Rdesired

)
, for Pd, old > 0

(3.9)

β in the equation (3.7) is a relaxation coefficient used to accelerate the
convergence when R is far from Rdesired. We prescribed a no-slip boundary
condition for the boundary at the walls.

One cardiac cycle is known to be 0.951 s on average [30], and we set the
time step to be ∆t = 9.51 · 10−5 ms, which is 1× 104∆t per one cardiac cycle.
The simulation was run for two cardiac cycle but only the results from second
cycle was collected to disregard the non-physiological effects from the first cycle.
The kinematic viscosity was set to ν = 3.3081 · 10−6m2s−1 to mimic the blood
flow.
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Chapter 4

Results and Discussion

4.1 Direct numerical simulations of turbulent flow in a
straight pipe

The result of direct numerical simulations of turbulent pipe flow is presented.
Our results are compared against DNS results done by El Khoury et al. [18] for
numerical validation purposes.

4.1.1 Instantaneous velocity and vorticity

Figure 4.1 represents the instantaneous velocity magnitude sliced along the axial
direction for all cases. In all cases, random behavior of flows can be observed.
The coarse mesh (M1) has relatively high velocity along the wall compared to
the intermediate (M2) and the fine (M3) mesh. This indicates the importance
of having dense meshes near the boundary.

(a) M1

(b) M2

(c) M3

Figure 4.1: Instantaneous velocity sliced along the axial direction obtained from
the (a) coarse (M1), (b) intermediate (M2), and (c) fine (M3) mesh.
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4.1. Direct numerical simulations of turbulent flow in a straight pipe

(a) 

(b) 

Figure 4.2: Instantaneous velocity magnitude taken from the M2 case. (a)
represents cross-sectional view at z = 0.5L where z is the axial coordinate and
L is the total length of the pipe. (b) shows flow field on the surface at r = 0.9R
where r is the radial coordinate and R is the radius of the pipe. Long wavy
flow structures can be observed near the wall.

Next, the general flow features based on the simulation results from the
intermediate mesh resolution (M2) will be presented. Although there was slight
difference of the velocity field between each mesh configuration, all cases shared
the similarity. Figure 4.2 shows the instantaneous flow field where (a) is a
cross-sectional view of velocity magnitude and (b) shows flow field of near
wall region r = 0.9R. Figure 4.2 (a) indicates the variations of the velocity
magnitude near the wall region. Figure 4.2 (b) shows that the flow exhibits
a turbulent structure near the wall and a large wavy fluid structure can be
observed. This demonstrates the importance of having long pipe length to
capture the large motion near the wall.
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4.1. Direct numerical simulations of turbulent flow in a straight pipe

(a) (b) 

Figure 4.3: (a) Cross-sectional view of axial vorticity and (b) enlarged view of
the upper right quarter of the (a) where small pairs of positive and negative
vorticity are apparent manifesting the conservation of momentum.
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Figure 4.4: Velocity plot over the horizontal line of cross-section of the pipe. The
straight curve represents the mean velocity ( ). The dotted and dashed plot
is an instantaneous velocity ( ) and the root-mean-square of the fluctuating
velocity component( ), respectively. Velocity is normalized by the bulk
velocity Ub and the radial coordinate is normalized by the pipe radius R.

Instantaneous axial vorticity is shown in Figure 4.3. There are strong
vorticities near the wall compared to near the centerline region. Pairs of vortices
with positive and negative values manifesting the conservation of momentum
can also be observed. Near the centerline, no strong vorticity was observed.
Figure 4.4 shows the plot of mean, instantaneous, and the root-mean-square
(r.m.s) of fluctuating velocity over the horizontal line of a cross-section of the
pipe. The mean velocity follows the parabolic profile with symmetry that is
similar to the laminar flow. The instantaneous and the r.m.s of fluctuating
velocity indicate the strong variation of velocity near the wall region.
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4.1. Direct numerical simulations of turbulent flow in a straight pipe

4.1.2 Statistical results

Statistical results from our simulations will be shown as well as the results from
El Khoury et al. [18]. In this subsection, an overline denotes time averaging,
superscript + refers to normalized quantities by friction velocity uτ for velocity,
and by viscous wall unit ν/uτ for distance. Ideally, we would quantitatively
compare the results with El Khoury et al., but such a comparison is difficult.
This is because their results are all scaled with parameters based on their
simulation results, not the prescribed parameters. Therefore, only qualitative
comparison is possible against DNS while quantitative comparison among our
simulations is still possible.

Figure 4.5 shows the comparison of mean axial velocity for all the meshes
against DNS of El Khoury et al. [18]. The mean axial velocity was plotted
against y+ = (1 − r)+, which is a dimensionless distance from the wall. In
general, our simulations predicated the axial mean velocity well near the wall
region as the boundary layer mesh was used. On the other hand, all the cases
over-predicted the mean velocity at (1 − r)+ > 10. When it comes to the
difference between each case, there is a large improvement in accuracy from the
coarse (M1) to the intermediate (M2) while the M2 and the fine (M3) mesh
predicted the mean axial velocity well compared to El Khoury et al. No clear
difference between M2 and M3 was observed.

(b) (a) 

(c)

Figure 4.5: Mean axial velocity U+
z as a function of distance from the wall where

(a), (b), and (c) show the results for the meshes M1, M2, and M3, respectively.
Dashed black curves ( ) are the DNS results obtained by El Khoury et al.
[18].
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4.1. Direct numerical simulations of turbulent flow in a straight pipe

The r.m.s of the fluctuating velocities (also called turbulent intensity) and
Reynolds shear stress are shown in Figure 4.6. Figure 4.6 (a) shows the axial
component of turbulent intensity and all the simulations over-predicted the value
compared to El Khoury et al. [18]. However, the discrepancy was weakened
as the number of cells increased. Especially, the improvement from the M1
to M2 is clear. Figure 4.6 (b) and (c) respectively show radial and azimuthal
components of the turbulent intensity. Contrary to the axial component, radial
and azimuthal components were generally under-predicted. Finally, the only
non-vanishing Reynolds shear stress 〈uzur〉+ is shown in Figure 4.6 (d). As the
Reynolds shear stress is the product of the radial and azimuthal components
of the fluctuating velocity, the under-prediction of the M1 and M2 and the
over-prediction of the M3 at the peak can be understood from examining Figure
4.6 (b) and (c). This over-prediction of the axial turbulent intensity and the
under-prediction of the radial and azimuthal turbulent intensity is also reported
by Wu and Moin [82] with coarse DNS or Large-eddy-simulation calculations.
Although the general improvements in the accuracy can be observed with finer
mesh resolution, the results indicate that the higher order quantities converged
slower to the DNS than the mean axial velocity.

(a) (b)

(d)(c)

Figure 4.6: Turbulent intensities and Reynolds shear stress scaled by uτ and u2
τ ,

respectively. Turbulent intensities are shown in the (a) axial direction (b) radial
direction (c) azimuthal direction. (d) shows the only non-vanishing Reynolds
shear stress < uzur >

+. Each line in the plot represents M1( ), M2( ),
M3( ), DNS by El Khoury et al. ( ). In general, the convergence towards
the DNS can be observed as the mesh resolution is increased.
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4.1. Direct numerical simulations of turbulent flow in a straight pipe

4.1.3 Effects of under-resolution on statistics

Although our simulations showed agreements with DNS data, it is clear that
the simulation was under-resolved, meaning motions of the smallest eddies were
not captured. To investigate the effect of under-resolution, it is beneficial to
introduce the equation for turbulent kinetic energy. Such an equation can be
derived by manipulating the instantaneous Navier-Stokes equations and the
Reynolds averaged Navier-Stokes equations. The derivation is omitted here
(attributed to Appendix B), but the equation for the turbulent kinetic energy
reads

∂k

∂t
+ ūj

∂k

∂xj
=− ∂

∂xj

(
1
ρ
p′u′iδij + 1

2u
′
iu
′
iu
′
j − 2νs′iju′i

)
− 2νs′ijs′ij − u′iu′j

∂ūi
∂xj

(4.1)

where the first term on the right hand side of the equation represents the
production of the turbulent kinetic energy, i.e., kinetic energy is removed from
the mean motion and added to the fluctuations.

P = u′iu
′
j

∂ūi
∂xj

(4.2)

The forth term of the right hand side of the equation appear as rate of dissipation
of turbulence kinetic energy per unit mass due to viscous stresses, which act to
reduce the turbulent kinetic energy.

ε = 2νs′ijs′ij (4.3)

where
s′ij = 1

2

(
∂u′i
∂xj

+
∂u′j
∂xi

)
(4.4)

From the equation (4.2), the production of the turbulent kinetic energy depends
on the gradient of the mean velocity. The rate of dissipation, on the other hand,
depends on the gradient of the fluctuating components of the velocity, as can
be seen from the equation (4.3) and (4.4). Using under-resolution is that the
smallest scale of the velocity is not resolved, whereas the smallest eddies have a
higher dissipation rate and fluctuating velocity. Thus, under-resolution led to
under-prediction of the total dissipation of the flow and fluctuating components
of the velocity compared to DNS. Over-prediction of the mean axial velocity
near the centerline of the pipe observed in Figure 4.5 is a consequence of under-
prediction of the dissipation. This over-prediction of the mean velocity can
explain the larger over-prediction of the axial component of turbulent intensity
near the centerline in Figure 4.6 (a) as the production of the turbulent kinetic
energy depends on the mean velocity. We also observed the under-prediction
of the turbulent intensity in radial and azimuthal directions. This indicates
that too little turbulent kinetic energy was transferred from the axial to the
radial and azimuthal components. The kinetic energy was introduced to the
axial direction by the pressure gradient and should be distributed to the radial
azimuthal directions.
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4.1. Direct numerical simulations of turbulent flow in a straight pipe

4.1.4 Effects of using higher order basis functions for the
velocity

To achieve mesh refinement, we simply increased the number of elements while
polynomial orders used as basis functions were kept constant. Mesh refinement
can also be accomplished by using higher order polynomials at the cost of
computational time while the meshing remains unchanged. However, as our
domain consists of circles, the number of nodes that create the boundary circle
has a crucial effect on the flow field. This is because a smaller number of nodes
consisting of the boundary may introduce the surface roughness and hence
perturbations in the velocity field. To demonstrate the difference between using
a larger number of elements and the higher order of basis functions, we have
computed the mean axial velocity by using second-order polynomials (P2) for
the velocity and first-order polynomials (P1) for the pressure.

Figure 4.7 shows the comparison of mean axial velocity for the coarse (M1)
case with linear and quadratic basis functions, and the intermediate (M2)
case with linear basis functions. Using quadratic basis functions improved the
accuracy of predicting the mean velocity compared to linear basis functions
with the same number of elements. However, the result with quadratic basis
functions from the M1 case had poorer accuracy than those with linear basis
functions from the M2 case. This confirms that the number of nodes that
consists of the boundary circle has a larger impact on the accuracy than the
order of basis functions. This is not the case when the boundary of the domain
is made of straight lines as the number of nodes is not related to the surface
roughness.
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Figure 4.7: Axial mean velocity as a function of distance from the wall. The
black and red curve represents the coarse mesh (M1) results with linear (P1P1)
and quadratic (P2P1) basis functions, respectively. The blue curve represents
the intermediate mesh (M2) result with linear basis functions indicating the
higher accuracy with a larger number of cells than using higher order basis
functions.

30



4.1. Direct numerical simulations of turbulent flow in a straight pipe

We also computed the Reynolds shear stress using quadratic basis functions
to investigate how the results converge to the DNS. In this case, the fine
mesh (M3) was used. The results are shown in Figure 4.8. Although using
quadratic basis functions for M3 case (1.26 M cells) should be equivalent to
using 1.26 × 8 ≈ 10M cells for the velocity with linear basis functions, the
obvious improvement from using linear basis functions was not observed. This
implies the difficulty of acquiring high accuracy for the higher order quantities
with lower order basis functions.
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Figure 4.8: Reynolds shear stress as a function of distance from the wall for
the fine mesh (M3). The black and red curve represents the results with linear
(P1P1) and quadratic (P2P1) basis functions, respectively. The result highlights
the difficulty of acquiring the high accuracy for the Reynolds shear stress even
with the fine mesh (M3) with quadratic basis functions for the velocity.

4.1.5 Computational cost and the accuracy of the results

The objective of this section was to find the proper mesh configuration that can
reproduce the results from DNS with moderate computational cost. Based on the
results from the mesh refinement test, convergence towards the DNS results was
observed. Therefore, a higher mesh resolution is desired to generate turbulent
flow, but that requires larger computational costs. It is worth mentioning that
the total computational time steps needed for the fine mesh (M3) was three
times larger than the coarse (M1) and the intermediate (M2) mesh. For the M3
case, longer time steps were necessary for the transition to occur and the flow
to become statistically steady. Figure 4.9 shows an instantaneous velocity field
at t = 100000∆t for all the cases. The only difference between the M1, M2, and
M3 was the mesh resolution, and the other parameters were kept constant. It is
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(a) M1 (b) M2 (c) M3

Figure 4.9: Cross-sectional view of instantaneous velocity field at t = 100000∆t.
Turbulent flow was already developed in the coarse (M1) and the intermediate
(M2) mesh while laminar flow was still observed in the fine mesh (M3). This
led to the increase of total computational time for the M3 case.

clear from the Figure 4.9 that the turbulent structure was already observed for
the M1 and the M2, while the M3 still had laminar flow. This led to an increase
in total computational time steps for the M3 case. Although increasing the
number of CPUs could speed up the time for one computational time step, the
M2 case showed good agreement with the DNS, and no significant difference
in the accuracy of statistics was observed from the M3 case. Therefore, we
concluded that the M2 case is the most appropriate mesh configuration to be
used as it had small discrepancy from DNS data with moderate computational
costs.

4.1.6 Limitations and summary

There are several limitations of our simulations. The first limitation is the pipe
length. Chin et al. [10] recently reported the minimum pipe length necessary
for the convergence of turbulence statistics. They concluded that, respectively,
pipe length ≈ 6R for the mean velocity and ≈ 13R for the turbulent intensity
are necessary for the convergence of statistics at Reτ = 170. In our case, we
carried out simulation with L = 10R for Reτ = 180. Thus, our pipe length was
sufficient for the mean velocity but not the turbulence intensity. This explains
the slower convergence of the turbulent intensity of our simulations in addition
to the under-resolution. Secondly, the spatial refinement was conducted but
not the time refinement. We understand that the increasing time resolution
could improve the accuracy. However, we prioritized generating data sets with
reasonable computational time as we did not observe any numerical instability
with the employed time step.

To summarize, we have demonstrated that Oasis is capable of simulating
turbulent flow in a straight pipe at Reτ = 180 with high accuracy on parallel
clusters. We have computed the mean velocity, turbulent intensity, and the
Reynolds shear stress for all the mesh configurations. The convergence towards
the DNS results by El Khoury et al. [18] was observed. The effects of using
under-resolved simulation are the over-prediction of the axial mean velocity
and the turbulent intensities near the centerline of the pipe. We also found
that using higher-order basis functions for the velocity has a smaller effect on
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4.1. Direct numerical simulations of turbulent flow in a straight pipe

the accuracy when the number of the cells is relatively small. This is because
the surface roughness impacts the solution. As we did not observe the large
difference in the solutions between the intermediate (M2) and the fine (M3)
mesh, the M2 case was chosen to be used for an inlet velocity profile of helically
coiled pipes. In this way, we can reduce the total computational cost while
securing the adequate accuracy of the solutions.
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4.2. Numerical simulations of turbulent flow in helically coiled pipes

4.2 Numerical simulations of turbulent flow in helically
coiled pipes

The results of numerical simulations of flow in helically coiled pipes are presented.
Turbulent flow generated and validated in the previous section has been utilized
as an inlet velocity profile to study the coupled effect of curvature and torsion
on the stability of the flow.

4.2.1 Instantaneous velocity and vortex structures

Figure 4.10 shows the volume rendering of velocity magnitude after the flow was
developed for all the cases. The results indicate the stabilization of turbulent
flow towards the outlet for all cases. Changing the number of coils (i, ii, iii) did
not lead significant changes in the velocity. Although increasing the number
of coils (iii) resulted in more stable flow near the outlet, pipe length was the
longest in this case. Changing the radius resulted in difference in the velocity.
Decreasing the radius (iv) led to the partial increase in the velocity at the first
inner curve while increasing the radius (v) showed comprehensible stabilization
towards the outlet. For all cases, a long wavy structure with a relatively lower
velocity magnitude can be observed after a few turns of the coil. Along the
inner wall, lower velocity magnitude was also observed.

ⅰ)

ⅱ)

ⅲ)

ⅳ) ⅴ)

Figure 4.10: Volume rendering of the instantaneous velocity magnitude after
the flow was developed. Stabilization of the flow towards the outlet can be
observed. Changing the radius (iv, v) showed larger difference than changing
the number of coils (i, iii). Height was kept constant.
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4.2. Numerical simulations of turbulent flow in helically coiled pipes

Figure 4.11 shows iso-surfaces of the Q-criterion Q = 0.5 based on the
instantaneous velocity after the flow was developed. With the selected criteria
Q = 0.5, this figures shows the local destabilization and the global stabilization
of the flow. An increase in the vortex structures at the first curve can be
observed for all cases, which indicates the local destabilization. After the
first turn, flows were generally stabilized as there were fewer vortex structures.
However, vortex structures were still observed near the upper and lower walls.
This visualization indicates the stronger stabilization along the inner and outer
wall compared to the upper or lower wall. As the centrifugal force originating
from the curvature affects the flow, the stronger stabilization along the inner
and the outer wall is understandable. Qualitatively, changes in the number of
coils (i, ii, iii) did not lead to the difference in the vortex structures. On the
other hand, changes in the radius of the coil (ii, iv, v) showed the difference
in the density of vortex structures. In the case of the decreased coil radius
(iv), where the curvature and torsion are the highest, vortex structures were
spatially spread in the coil. In the case of the increased coil radius (v), vortex
structures were narrower and confined to the smaller region of the pipe.

ⅰ)

ⅱ)

ⅲ)

ⅳ) ⅴ)

Figure 4.11: Iso-surface of Q-criterion = 0.5 based on the instantaneous velocity
is shown to examine vortex structures. A local increase in the vortex structure
can be observed at the first curve. Towards the outlet, there are fewer vortex
structures indicating the stabilization of the flow, especially along the inner and
outer wall.
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4.2. Numerical simulations of turbulent flow in helically coiled pipes

4.2.2 Mean velocity

We will now consider the time-averaged flow field. First, we start analyzing the
velocity distribution on the cross-section where the flow was almost stabilized.
This means that we chose the location near the outlet. The mean velocity
distribution is plotted in Figure 4.12 and the default case (ii) is chosen as
a representative case. Here, r/R = −1 is at the inner (horizontal) or lower
(vertical) wall and r/R = 1 at the outer (horizontal) or upper (vertical) wall.
From the plot with horizontal cut ( ), it can be seen that the velocity
magnitude is low at the inner wall and increases almost linearly towards the
outer wall. On the other hand, the plot with a vertical cut ( ) shows a large
velocity magnitude near the lower and upper wall with an almost constant
velocity profile near the centerline of the pipe. This may explain the vortex
structures observed along the lower or upper wall.

𝑟
𝑅 = −1

𝑟
𝑅 = 1

Figure 4.12: Mean velocity magnitude along the horizontal cut ( ) with
r/R = −1 being at the inner wall and r/R = 1 at the outer wall, and along
the vertical cut ( ) with r/R = −1 at the lower wall and r/R = 1 at the
upper wall. The plot is made from the cross-sectional slice corresponds near the
outlet. The default case (ii) is selected as a representative case. Higher velocity
is colored with red.

To further analyze the transition of the flow inside the coil, Figure 4.13
shows the cross-sectional view of the mean velocity cut perpendicular to the
centerline. This figure qualitatively shows how fast the flow was stabilized in
each case. Each figure showing the mean velocity is positioned in a way that
the left side of the figure is ensured to be the inner wall and the right side
of the figure is the outer wall. Based on the difference in the mean velocity
on the two consecutive cross-sections, the magnitude of the secondary flow
may be estimated. For example, when both the curvature and the torsion
were decreased (v) from the default case (ii), the mean velocity showed the
convergence to the specific shape after the first turn (slice 3 or higher). On the
other hand, when both the curvature and the torsion were increased (iv), the
mean velocity constantly changed over all slices.
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Figure 4.13: Cross-sectional view of the mean velocity cut perpendicular to
the centerline of the coiled pipes. The left side of the figure is the inner wall
and the right side is the outer wall. From the changes in the mean velocity
between two consecutive slices, the magnitude of the flow on the cross-section
(the secondary flow) may be estimated. Case iv) exhibits strong secondary flow
until the outlet while case v) shows convergence of the flow.
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4.2. Numerical simulations of turbulent flow in helically coiled pipes

4.2.3 Mean pressure

Figure 4.14 shows the time-averaged pressure distribution on the cross-section of
the coil. Here, the increased number of coils (iii) was selected as a representative.
Plots on the right side show the pressure cut along the vertical line of the cross-
section with r = −1 and r = 1 at the inner and outer wall, respectively. The
pressure was low at the inner wall and almost linearly increased towards the
outer wall. At the inlet (slice1) and the outlet (slice 7), the pressure gradient is
relatively low compared to the inside coil. Although the absolute value of the
pressure changed towards the outlet, the magnitude of the pressure gradient
was similar inside the coil. As the pressure gradient acts as a force, this means
that the turbulent flow in helically coiled pipes constantly experiences the force
from the outer to the inner wall. At the same time, the centrifugal force also
acts to push the fluid towards the outer wall. This imbalance between those
two forces creates the secondary flow on the cross-section of the coil.

Although the results from other cases are not shown here, the pressure
distribution shared some characteristics. However, the difference in the
magnitude of the pressure gradient was observed when the radius of the coil was
changed. Increasing and decreasing the radius of the coil, respectively resulted
in a smaller and larger pressure gradient. Changing the number of coils did not
lead to the noticeable difference in the pressure gradient. Pressure gradient was
almost constant along the vertical direction.
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Figure 4.14: Left : Cross-sectional view of time-averaged pressure distributions.
Higher pressure is colored with red. The increased number of coils (iii) was
selected. Right : Plots show the pressure distribution along the horizontal cut
of each slice with r = −1 and r = 1 at the inner and outer wall, respectively.
The numbering in the plots corresponds to the numbering in the left figure.
Near the inlet (1) and outlet (7), pressure gradient was relatively low. Inside
the coil (2 ∼ 6), pressure gradient was developed with lower and higher pressure
at the inner and outer wall, respectively. Pressure was almost constant along
the vertical direction.
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4.2. Numerical simulations of turbulent flow in helically coiled pipes

To investigate the dominant factor determining the magnitude of the pressure
gradient, Figure 4.15 is prepared. Pressure gradient (∆p = pmax − pmin) across
the vertical cut from all slices were averaged for all five cases and plotted
against the curvature and torsion of each coil. Although the results are from
only five cases, higher curvature (κ) seems to be associated with a higher
pressure difference. The correlation between torsion (τ) and the pressure
gradient is unclear. As the centrifugal force is a function of the curvature, it is
understandable that curvature is a dominant factor determining the pressure
gradient of the helically coiled pipes.
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Figure 4.15: Scatter plot of the pressure difference along the horizontal cut of
cross-section of coils. The left and right y-axis represents the curvature (κ) and
the torsion (τ), respectively. The pressure difference is averaged over slices in
each coil. The blue dashed line is added to highlight the correlation between
the pressure difference and the curvature.

4.2.4 Cross-sectional analysis of the turbulent kinetic energy

To quantitatively assess the instability of the flow and the speed of the transition
of the flow, we have computed the turbulent kinetic energy (TKE). TKE is
defined as follows where u′i is the fluctuating components of the instantaneous
velocity, and overline denotes the time averaging.

k = 1
2

(
(u′x)2 +

(
u′y
)2 + (u′z)

2
)

(4.5)

First, we will present the results from the default case (ii) and cases with
decreased (i) or increased (iii) number of coils. Figure 4.16 shows cross-sectional
view of the TKE. The plot shown on the middle and right represents the TKE
along the horizontal and vertical cut, respectively. The x-axis in the plot is
defined in the same way as in Figure 4.12. This result again confirms the
destabilization at the first turn of the coil (slice 2) and stabilization of the flow
towards the outlet.
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Figure 4.16: Left : Cross-sectional view of the TKE with different number of
coils. Higher TKE is colored with a brighter red. Two plots on the right side
show the TKE along the horizontal (left) and the vertical (right) cut. r/R = −1
is the inner (horizontal) or lower (vertical) wall and r/R = 1 is the outer
(horizontal) or upper (vertical) wall. Numbering in the plots corresponds to the
numbering in the left figure. This figure indicates the shift of the maximum
TKE location inside the coil.

Although there is a strong shift in the TKE distribution from the inlet to the
outlet, changing the number of the coils (i, ii, iii) did not lead to the significant
difference in the distribution and the evolution of the TKE. Thus, we will focus
on examining the shift of TKE distribution inside the coil.

First, we start analyzing the TKE along the horizontal cut (middle plot).
All plots near the inlet (slice 1) showed the largest value near the outer wall
(r ≈ 0.9) and also the local peak near the inner wall (r ≈ −0.9). The maximum
TKE was larger at the outer wall possibly due to the centrifugal force. Near
the inlet, small curvature induced the centrifugal force, which pushed the fluid
with higher velocity towards the outer wall. This might have introduced some
disturbance to the velocity. Plots from the first turn (slice 2) showed an increase
in the TKE compared to the inlet for most of regions except the outer wall. The
maximum value was located at around r = −0.75 for all cases. This means that
the most turbulent region shifted from the outer to the inner wall during the
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4.2. Numerical simulations of turbulent flow in helically coiled pipes

first turn. Plots from the second turn or above (slice 3 or above) are similar with
a small peak near the outer wall. This indicates another shift of the maximum
TKE from the inner to the outer wall with a decrease in the overall value. At
the outlet, the TKE was decreased and flattened for all cases.

Plots along the vertical cut (right plot) also exhibited the transition of
the TKE distribution in the coil. Plots from the inlet (slice 1) had two large
peaks at lower (r = −0.9) and upper (r = 0.9) wall with upper wall being
the maximum. This is again considered to be caused by the centrifugal force
as the coil is curved upwards. Similar to the plots along the horizontal cut,
an increase of the TKE was observed in the first turn (slice 2). All cases had
almost uniform TKE distribution. Then, plots from the second turn or higher
(slices 3 or higher) generally showed a similar TKE distribution between each
case with two large peaks near the lower and upper wall. The decreased number
of coils (i) has a high TKE at the outlet along the lower wall, but this is due to
the surface roughness introduced by the flow extension at the outlet.

Next, the results from changing the radius of the coil are shown in Figure
4.17. Contrary to changing the number of the coils, large difference in the TKE
distribution can be observed. Especially in the first turn (slice 2), the decreased
(iv) and increased (v) radius of the coil showed very different TKE distribution.
However, at the outlet (slice 5), both cases exhibited the large reduction in the
value even though the decreased radius of the coil (iv) has shorter length of the
coil. This indicates the fast stabilization of the decreased radius of coil (iv).
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Figure 4.17: Left : Cross-sectional view of the TKE for the decreased (iv) and
increased (v) radius of the coil. See Figure 4.16 for the explanation of the
plot. Plots on the right indicates large difference in the TKE distribution when
the radius of the coil was changed. However, stabilization of the flow was still
observed in both cases.
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4.2.5 Turbulent kinetic energy along the centerline

Although we observed the global stabilization and the local destabilization of
turbulent flow, cross-sectional analysis is not sufficient to measure the speed
of transition towards the outlet. Therefore, we have measured the TKE as a
function of the distance from the inlet. However, as cross-sectional analysis
revealed, the TKE differed significantly depending on the point on the cross-
section. Therefore, we measured the surface average TKE from a number of
slices cut perpendicular to the centerline. In this way, we can estimate the
averaged changes of the TKE along the centerline. As a comparison, we also
conducted the simulation of a straight pipe with length L = 45r where r is the
pipe radius. Fully developed turbulent flow was used as an inlet velocity and
the pressure was set to 0 at the outlet.

First, Figure 4.16 shows the TKE where the number of coils was changed.
TKE is normalized by its value at the inlet. Arc length used as the x-axis is
the distance of the centerline point from the inlet. Although an increase in
the TKE near the outlet was observed from all cases, this is due to the surface
roughness introduced by the flow extensions. To recap, we increased the number
of coils from case i) to iii), which resulted in the increase in the curvature and
the decrease in the torsion. It is known that higher curvature and torsion are
respectively suppress and enhance turbulence [28, 55]. However, the effects of
simultaneously changing curvature and torsion were unknown. As the case iii),
which had the highest curvature and the lowest torsion, stabilized faster than
the other two cases, this result shows the agreement with the previous studies
even when these two parameters were modified simultaneously.
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Figure 4.18: TKE as a function of the distance from the inlet with different
number of coils. The decreased (i) and the increased (iii) number of coils
respectively stabilized the flow slower and faster compared to the default case
(ii). The results confirm the suppression of turbulence by the higher curvature
and the lower torsion as the most stable case (iii) has the highest curvature and
the lowest torsion.
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Next, the TKE with different radius of the coil is shown in Figure 4.19. In
this case, the maximum TKE differed significantly between three cases. Case iv)
showed the highest TKE but the stabilization after the maximum was also the
fastest. Case v) had the lowest TKE but the stabilization was relatively slow
judging from the smoothness of the curve. Since the case iv) had the highest
curvature and the torsion while the case v) had the lowest, the increase in the
TKE might be associated with the higher torsion while the faster stabilization
could be explained by the higher curvature. Yet, it is difficult to determine the
separate the effect of each parameter.
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Figure 4.19: Surface averaged TKE with different radius of the coil. Increasing
the radius (iv) resulted in the sharp transition of the flow while decreasing (v)
led to the smoother stabilization. This result may show faster stabilization with
the higher curvature and the enhancement of turbulence by the higher torsion.
Case iv) had the highest curvature and the torsion.

To sum up, as a result of changing the number of coils (i, iii), we observed that
higher curvature and lower torsion are correlated with the faster stabilization
of the flow. The results from changing the radius of the coil (iv, v) showed
the increase in the TKE by the higher torsion and the faster stabilization by
the higher curvature. Curvature alone is known to suppress the turbulence
[32, 55] and torsion alone is known to enhance the turbulence [28]. However,
our simulations showed the complex evolution of turbulence when these two
parameters are changed simultaneously. This highlights the coupled effect of
curvature and torsion and both parameters need to be carefully taken into
account when analyzing the flow in helically coiled pipes or similar geometry,
e.g, blood vessels.
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4.2.6 Dean vortices as a stabilization factor

Dean vortices were observed in all the cases based on the mean velocity. Though
the location of the Dean vortices and structures are different in each case, they
were observed after the first turn of the coil. Here we will focus on the two
cases, the decreased number of coils (i) and radius of the coil (iv), to illustrate
the development of Dean vortices. Figure 4.20 shows the mean secondary flow
on the two selected cross-sections from the two cases. The secondary flow
is measured by removing components of the velocity vectors normal to the
cross-sectional surface. We employed line integral convolution technique [8] to
create the figure shown on the top side of Figure 4.20. Open-source scientific
visualization tool Paraview [1] was used. Before (slice 2) and after (slice 4) the
maximum TKE location are selected to show the difference of vortices. As can
be seen, Dean vortices consisting of two counter-rotating vortices were observed
before the maximum TKE (slice 2). Typically, cores of the Dean vortices are
located near the centerline of the curved pipe [14]. However, the centers of the
two vortices were moved towards the inner wall in helically coiled pipes. A
single vortex rotating clockwise was observed after the maximum TKE (slice4).
The formation of the Dean vortices before the maximum TKE suggests the
correlation between enhanced flow instability and the Dean vortices.
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Figure 4.20: Visualization of Dean vortices using the line integral convolution
(top) and the vector plot of the mean secondary flow (bottom). Slice 2 and
slice 4 were located before and after the maximum TKE, respectively. This
suggests the correlation between the increased TKE and the presence of the
Dean vortices.
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Dean vortices are known to introduce instability to the flow [46] in the case
of laminar flow as a consequence of induced rotations. This is one of the reasons
why helically coiled pipes are used as heat exchangers. The increase of heat
and mass transfer can be achieved without internal installations [42]. In our
simulations, all of the Dean vortices were observed in the first turn, which is
also the location of maximum TKE. Thus, even in the case of turbulent flow,
Dean vortices may further introduce the fluctuations to the velocity.

Figure 4.21 is a representative visualization of streamlines of the mean
velocity indicating how Dean vortices were formed. There were rotations of
the flow near the inner wall. When the fluid entered the curve, those with
higher velocity were pushed and impinged to the outer wall. Consequently, they
moved along the outer, upper, and inner walls with rotating motions due to
the impingement. During this rotation, the axial velocity is weakened while
the radial and azimuthal velocities are strengthened. At the same time, a
pressure gradient from the outer to the inner wall was developed. Therefore, the
imbalance between the centrifugal and the pressure gradient evolved, and strong
rotations were created near the inner wall. This visualization may explain
the transition of the maximum TKE location from the outer to the inner wall
observed from the cross-sectional analysis.

Figure 4.21: Streamlines of the mean velocity near the first turn of the helically
coiled pipe. Along the inner wall, strong rotations can be observed indicating
the formation of the Dean vortices. The rotations are considered to be formed
by the centrifugal force and the adverse pressure gradient.
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We also observed the global stabilization of the turbulent flow through the
helically coiled pipe. Kuhnen et al. [44] conducted a numerical simulation that
showed stabilization of turbulent flow in a pipe. In the numerical simulation,
they increased the perturbations of fully developed turbulent flow and observed
relaminarization of the flow. They described "when increasing the turbulent
fluctuations well beyond their usual levels (k > 2.5), surprisingly the highly
turbulent flow almost immediately collapses and returns to laminar". They
also conducted two experiments to further investigate this effect. In the first
experiment, four counter-rotating rotors are placed in the cross-section of the
pipe and quickly stir a fully turbulent pipe flow (Re = 3, 500). In the second
experiment, turbulent flow (Re = 3, 100) is disturbed by injecting fluid through
25 small holes in the pipe wall. They wrote "Each injected jet creates a pair
of counter-rotating vortices, intensifying the eddying motion beyond the levels
of ordinary turbulence.". In both experiments, the quick disappearance of
turbulent flow similar to the numerical simulation was observed. Figure 4.22
shows the result from the first experiment. In the case of helically coiled pipes,
Dean vortices that arise originally from the centrifugal force can be considered
to act the same way as rotors or vortices generated by the jet did in their
experiments. In other words, Dean vortices introduced the local destabilization
that eventually led to the stabilization of the turbulence. The surface averaged
TKE was amplified by 2.34 (case v) up to 5.26 (case iv) times. According to
Kuhnen et al.’s criteria ( k > 2.5), this might have been enough perturbations
to stabilize the turbulent flow. As the bulk of dissipation happens within the
smallest eddies, Dean vortices inside the coils may break up the larger eddies
into smaller eddies which results in the decrease of the TKE by promoting the
dissipation.

Figure 4.22: Relaminarization of turbulence adapted from Kuhnen etl al. [44]
with the following caption. "Fully turbulent flow (top panel) at Re = 3,100 is
perturbed by vigorously stirring the fluid with four rotors. The more strongly
turbulent flow (second panel) eventually relaminarizes as it proceeds downstream
(third and fourth panel). "
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The vortices at the location of maximum TKE were visualized based on the
instantaneous velocity. Figure 4.23 shows the vortex structures at two different
time step. Contrary to the Dean vortices observed before the maximum TKE,
several smaller vortices were observed changing their size and location. As the
TKE was quickly decreased after its maximum, these small vortices might be
dissipated and led to the decrease of the TKE. Therefore, the process of the
local destabilization and the global stabilization can be summarized as follows.

1. When the flow entered helically coiled pipes, Dean vortices were first
formed. This is a direct consequence of the imbalance between the
centrifugal force, the adverse pressure gradient.

2. Dean vortices intensified the rotations and the dissipation, and thus the
increase of the TKE was locally observed.

3. Smaller eddies introduced by the Dean vortices dissipated and the TKE
quickly decreased.

4. As a result, fluctuating components of the velocity were reduced and the
turbulent flow was stabilized.

Figure 4.23: Visualization of vortices on the cross-section where the TKE was
maximum for all the cases. The default case (ii) is used as a representative
case, and two different time step was randomly picked, showing the presence of
several small vortices. A sharp decrease of the TKE after its maximum indicates
the strong dissipation by small vortices.

4.2.7 Limitations and summary

Our simulations have limitations, and we will address some in this subsection.
First, we have used the turbulent flow in a straight pipe as an inlet velocity
profile. The validation process showed that the mean axial velocity and its
fluctuations were over-estimated while radial and azimuthal velocity fluctuations
were under-estimated. Therefore, our results of turbulent flow in helically coiled
pipes are also not fully resolved. Although our simulations could be expanded
to resolve all the spatial and temporal resolutions, computational time would
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be enormous as the DNS of a straight pipe also needs to be carried out with
our method. For this reason, large-eddy simulations might be an adequate next
step to further understanding the flow in helically coiled pipes.

Second, since we used the data set from the straight pipe as an inlet velocity
profile, the straight section was added to the coiled pipes to make mapping
velocity easier. However, a higher curvature was introduced near the inlet and
outlet as a result. Although this should not affect the observed stabilization
of the turbulent flow, it would have been ideal if the transition from straight
to curved part was smoother than our case. Generally speaking, this could be
pointed out as a shortcoming of the FEniCS as the meshing is not part of the
FEniCS except for some simple geometry like a rectangle or circle. On the other
hand, commercial software such as ANSYS [4] are equipped with the CAD
meshing tool and have higher flexibility when it comes to creating 3D meshes.
We have used Gmsh [23] and VMTK [58], both of which do not currently export
the mesh file that is compatible with FEniCS. Therefore, we had to spend some
time developing code to convert the mesh file one to another.

Third, we have created five meshes in total while the height was fixed. This
method of changing the geometry resulted in variations in pipe length. We
admit that keeping the pipe length would have made the comparison easier.
However, given that Hüttl and Friedrich [32] employed one curvature (κ = 0.1)
and two torsion (τ = 0.11, 0.165), our results with curvature (κ = 0.240 ∼ 0.432)
and torsion (τ = 0.0478 ∼ 0.172) cover the wide ranges of parameters that
might help expand the investigations of flow in the helically coiled pipe.

Finally, we have conducted the simulations with only one Reynolds number.
We would need another set of simulations and validations of turbulent pipe flow
if we were to perform the simulations at a higher Reynolds number. Simply this
requires even more computational time. It is not clear from our simulations if
similar phenomena would be observed at a higher Reynolds number.

To summarize, numerical simulations of turbulent flow in helically coiled
pipes have been conducted. To the best of our knowledge, this is the first
numerical study that addressed the stabilization of turbulent flow in helically
coiled pipes. We also observed the local destabilization of the flow. Dean
vortices were formed near the location of maximum TKE. Our simulations
suggested that the Dean vortices may create smaller vortices, enhance the
dissipation and thus stabilize the turbulent flow. By changing the number of
coils, we observed that the combination of the higher curvature and the lower
torsion stabilized the flow quickly, which agrees with the previous studies [28,
32, 55]. On the other hand, changing the radius of the coil showed a significant
increase in the TKE with the highest curvature and torsion, indicating the
destabilization by the higher torsion.
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4.3 Numerical simulations of blood flow in the internal
carotid artery

In the previous section, we investigated turbulent flow in helically coiled pipes
that have some common geometrical characteristics as internal carotid arteries
(ICA). In this section, we will present the results of the numerical simulation of
blood flow in patient-specific ICA. The objective of this chapter is to investigate
flow instability in the ICA. In previous studies that examined the initiation or
rupture of cerebral aneurysms, hemodynamic indices, such as wall shear stress
(WSS), are often focused on [36, 51, 77] as they act directly on the vascular
wall. Therefore, we have also computed such hemodynamic indices. Yet, we will
only focus on the the flow structures in the ICA in this thesis (see Appendix
C for the computed hemodynamics indices). This is largely motivated by the
previous work by Bergersen (2016) and Kjeldsberg (2018) in their master thesis,
both of which studied the hemodynamic indices at the apex of bifurcation.
They performed objective manipulations of the geometrical parameters, such
as peak curvature, area variation, and bend angle. As these parameters are
statistically shown to be correlated with the presence of the aneurysms, WSS
should also change if it is the cause of the aneurysms. However, they found no
correlation between time-averaged WSS and these parameters, concluding WSS
could not explain the aneurysm formation. Instead, they found flow instabilities
to exhibit a noticeable difference when the geometries were modified. Therefore,
we speculate that flow instabilities might be correlated with the initiation of
aneurysms and aim to contribute to understanding flow structures in the ICA.

4.3.1 Instantaneous velocity and vortex structures

Figure 4.24 shows velocity magnitudes measured over one cardiac cycle at
selected probe points. The numbering shown on the right side of each plot
corresponds to the number indicated inside patient-specific geometries. The
lowest number is located near the inlet, and the number increases towards
the outlet. It is clear from the plots that flow patterns can vary significantly
between cases. P0207 shows slight velocity fluctuations throughout the entire
domain, while all the other cases show quite significant fluctuations of the
velocity magnitude downstream of the ICA. Flow instability can be observed at
the peak of the acceleration phase (called systole), was amplified right after that,
and disappeared during the de-acceleration phase (called diastole). Generally,
when flow instabilities were observed, it was formed in the carotid siphon, an
S-shaped part of ICA, and persisted even after the bifurcation. By simulating
the turbulent flow in helically coiled pipes, we observed the increase in the
velocity fluctuations at the first curve. This may explain why flow instabilities
tend to be formed in the carotid siphon, as they are typically characterized by
a series of bends and twists [61]. It is also worth mentioning that the probes
were located along the centerline of the ICA. However, our simulations in the
helically coiled pipes suggested that the peak of the TKE was usually located
either along the inner or outer wall. Therefore, even stronger flow instabilities
might be present along the vessel walls.

Figure 4.25 shows iso-surface of Q-criterion Q = 0.5 at the peak of cardiac
cycle. The general trend is that the vortex structures are formed at the carotid
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siphon. For example, P0250 explicitly reveals the presence of vortex structures
after the curve. One common characteristic of all cases is that vortex structures
are observed near the bifurcation. Since the most of the cerebral aneurysms
(> 80% ) are formed at the bifurcation [80], the presence of flow instabilities
near the bifurcation might be stimuli for the aneurysm initiation.

P0228

P0207 P0220

P0250

P0252

Time [ms] Time [ms]

Time [ms]
Time [ms]

Time [ms]

Figure 4.24: Velocity magnitude over one cardiac cycle was measured at probe
points. Velocity magnitude was normalized by the cycle-average. The lowest
number shown on the right side of the plot corresponds to the inlet. P0207
exhibited a stable velocity profile, while the other cases manifested strong
fluctuations of the velocity at the peak of the cardiac cycle.
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P0207 P0220 P0228

P0250 P0252

Figure 4.25: Iso-surface of Q-criterion Q = 0.5 representing vortex structures.
Time was selected at the peak of the cardiac cycle. For cases P0220, P250,
and P0252, vortex structures first appeared in the carotid siphon, an S-shaped
bend in the ICA. P0207 exhibited the vortex structure at the first curve of
the carotid siphon, but it disappeared quickly and was re-introduced at the
second curve. For case P0228, vortex structure was observed right before the
bifurcation, where a strong area reduction existed.
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4.3.2 Curvature, torsion, and flow instability

We have investigated the correlation between curvature, torsion, and flow
instability in helically coiled pipes. Changing the number of coils revealed that
the combination of the highest curvature and the lowest torsion stabilized the
flow the fastest. On the other hand, by changing the radius of coils, it was
observed that the combination of the highest curvature and the highest torsion
produced the most turbulent flow but also stabilized the flow quickly. This
highlighted the coupled effects of the curvature and torsion on flow instability.
Although our results were inconclusive, we showed the significant changes of the
flow pattern when both the curvature and torsion were modified at the same
time. When it comes to the ICA, curvature is often of great interest as the ICA
is characterized as having several bends. For example, a statistical study by
Lauric et al. [45] showed the correlations between the sidewall aneurysms and
the higher curvature. Klis et al. [41] also found the statistical link between
the ICA aneurysm and higher curvature. However, there have been few studies
about the torsion of the ICA. This is due to the fact that the torsion is harder to
measure with high accuracy than the curvature. As we saw in the equation (2.12)
and (2.13), curvature requires the second derivative of the curve while torsion
requires the third, which makes the measurement of the torsion challenging.
Yet, the effect of the torsion can not be neglected. To investigate the coupled
effects of curvature and torsion, torsion parameter β may be utilized. Hayamizu
et al. [28] experimentally studied the critical Reynolds number in helically
coiled pipes using the torsion parameter β = τ/(2κ)1/2. They found that the
flow became unstable as the torsion parameter increased. Since their focus was
the transition from laminar flow to turbulence, we did not use this parameter
for our simulations of turbulent flow in helically coiled pipes. However, in the
case of the ICA, this torsion parameter might be beneficial to account for the
effect of the torsion.

Figure 4.26 shows the curvature (κ), the torsion (τ), and the torsion
parameter (β) of the centerline of the each patient. Abscissas (s) here represents
the distance from the inlet. We used the VMTK script, vmtkcenterlinegeometry,
to compute the curvature and torsion. Note that Laplace filtering was applied
to smooth the outputs as VMTK uses a simple finite difference scheme along
the line to compute the derivatives, resulting in the noise. Both curvature and
torsion constantly change along the centerline with wave-like form, representing
the bends. P0207 case shows very high curvature κ = 0.467 mm−1 at abscissas
s = 52.4 mm, which is inside the carotid siphon. The torsion at the same
location is τ = −0.00465 mm−1, which is a relatively low value compared to the
mean τ = −0.0142 mm−1. Although the Reynolds number employed for P0207
was the lowest among the five cases, this combination of the high curvature
and the low torsion might be associated with the flow stability in the P0207.
Such a combination can also be observed for P0220 at s ≈ 20, but this is not
inside the carotid siphon. Although the torsion parameter was computed as
shown in Figure 4.26 (c), the correlation with flow instability is unclear even
though several peaks can be observed in some cases. The investigation with
larger cohort might be necessary to examine the effects of the torsion parameter.
As the curvature and torsion are not constant in the ICA, and other factors
may affect the flow patterns, the results from the helically coiled pipe may not
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be directly applicable. Still, the analyses of the curvature and torsion may shed
light on the formation of flow instability.
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Figure 4.26: (a) Curvature, (b) torsion, and (c) torsion parameter of the
centerline for each patient. Abscissas represents the distance from the inlet.
The centerline is taken from the inlet to the bifurcation, neglecting the branches.
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4.3. Numerical simulations of blood flow in the internal carotid artery

4.3.3 Dean vortices near the bifurcation

Dean vortices have been experimentally found in the pulsatile flow in 90◦ bends
pipe at high Reynolds number [35]. However, whether Dean vortices could be
formed in the ICA is unclear. Typically Dean number is used to determine the
formation of the Dean vortices [69], but such an analysis is restricted to the
simple geometry and can not be applied to the ICA. As the Dean number is the
production of the Reynolds number and the square root of the curvature, either
a higher Reynolds number or higher curvature is required for the Dean vortices
to appear. An experimental study by Takeuchi and Karino [70] reported "the
flow proximal to the terminal bifurcation of the ICA ... was highly disturbed
by the presence of a strong helicoidal flow, which was generated first within the
carotid siphon and then reinforced at the last bend (the fifth bend) of the carotid
siphon.", but the presence of Dean vortices has not been described or visualized.
Given the mean diameter of the ICA is 4.77± 0.78mm [43], visualizations of the
secondary flow on the cross-section might have been difficult for the experiments.
Here, we chose P0207, P0250 as representative cases and examined if Dean
vortices were formed near the bifurcation. Note P0207 showed little fluctuations
of the velocity while P0250 showed strong fluctuations. Figure 4.27 and 4.28
show the secondary flow on the four selected cross-sections of the ICA at the
peak systole. Although our visualization is a qualitative analysis and highly
dependent on the subjective choice of visualization parameters, the formation
of the Dean vortices was observed in the carotid siphon (slice 2, 3) for P0207
and near the bifurcation (slice 4) for P0250.

1 2

3 4

1

2 3

4

Figure 4.27: P0207 : Formation of single vortex is observed slice 1. Dean
vortices are observed inside the carotid siphon (slice 2, 3), an S-shaped bend.
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1 2

3 4

1

2 3

4

Figure 4.28: P0250 : Single vortex was observed on lower side of 1. Flow in the
carotid siphon (slice 2) is highly disturbed. Single vortex is observed on the left
side of slice 3 and formation of Dean-type vortices may be observed near the
bifurcation (slice4).

Although our results from simulating turbulent flow in helically coiled pipes
suggested the enhancement of the dissipation by the Dean vortices and the
stabilization of the flow. A local increase in the turbulent kinetic energy was
also observed. Whether Dean vortices inside ICA may stabilize or destabilize
the flow can not be determined from our simulations. Still, the location of
Dean vortices may impact the flow instability at the bifurcation. For example,
the P0207 case showed the formation of Dean vortices from slice 2, which is
relatively far from the bifurcation, while Dean vortices were first observed from
slice 4 in P0250, which is closer to the bifurcation. Because flow instability
was almost exclusively formed at the carotid siphon, the formation of the Dean
vortices inside the carotid siphon may be able to suppress the fluctuations of
the flow before distinct flow instability was developed. On the contrary, if the
secondary flow is disturbed and no Dean vortices are generated in the carotid
siphon, the formation of the Dean vortices may happen near the bifurcation.
This can further increase the flow instability as the vessel near the bifurcation
is less curved compared to the carotid siphon.

The temporal evolution of the Dean vortices was also investigated. Figure
4.29 shows the formation of Dean vortices at a different time step. The location
of the cross-section was chosen near the bifurcation from P0250. Before the
peak systole, a single vortex was observed (I), and Dean vortices were formed
right after that (II). Before the second peak, one of the Dean vortices became
small (III) and re-amplified at another location (IV). After that, a single vortex
was observed (V, VI). Although this oscillatory behavior of vortices is likely
to be caused by the pulsatile base flow, oscillations of the Dean vortices were
observed in turbulent flow through 90◦ bend pipes [9, 31]. This low-frequency
oscillatory phenomenon is termed as swirl switching or vortex core switching and
is known to cause fatigue in piping systems. The effects of this swirl switching
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4.3. Numerical simulations of blood flow in the internal carotid artery

can not be determined from our simulations, but the induced low-frequency
flow may be associated with the flow instability at the apex of bifurcation.

Ⅰ Ⅱ

Ⅳ

Ⅲ

Ⅴ Ⅵ

Ⅰ
Ⅱ
Ⅲ

Ⅳ

Ⅴ

Ⅵ

Figure 4.29: Temporal evolution of the Dean vortices near the bifurcation of
P0250, which exhibited flow instability. Roman numeral indicates the time of
each slice and corresponds to the plot below. Right after the two peaks (II,
IV), the formation of Dean vortices was observed that might be associated with
enhanced flow instability.

4.3.4 Limitations and summary

Here, we will address the assumptions we made and the limitations of this
study. Although blood is a non-Newtonian fluid, we assumed blood to be a
Newtonian fluid. As blood viscosity decreases with shear stress (known as
shear thinning), the assumption of Newtonian fluid may overestimate the WSS
[83]. However, Khan et al. [37] showed that the effects of non-Newtonian
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4.3. Numerical simulations of blood flow in the internal carotid artery

rheology is of ’second-order’ and negligible when high temporal and spatial
resolution are employed. As our simulations can be classified as high-resolution,
we assume the effects of non-Newtonian rheology would be negligible. We also
made assumption of rigid walls. Although Fluid-structure interaction (FSI)
have been recently used [5, 71] and such an analysis is definitely a prospective
step, FSI solvers are still computationally much more expensive than fluid solver
such as Oasis. In addition, measurements of wall thickness is in general still
challenging and thus using FSI solver with a patient-specific geometry is both
numerically and clinically difficult. Lastly, we used the waveform from Hoi et al.
[30] for the inlet boundary condition. Patient-specific flow rates might change
the results but is rarely available.

Our study is qualitative and not quantitative. The detection of the Dean
vortices was done by the visualization technique. Depending on the choice of
parameters, the results might be different. In addition, the number of patient-
specific geometry was limited. A larger cohort study is necessary to further
assess the correlation between flow instability and the initiation of cerebral
aneurysms.

To summarize, numerical simulations of blood flow in the patient-specific
geometry of the ICA have been conducted. In some of the cases, we detected
the ’turbulent-like’ flow developed in the carotid siphon, which contains several
acute bends. In addition, Dean vortices were observed in some of the patients.
Although the result is inconclusive, the formation of the Dean vortices might
have negligible effects on the flow instability of the ICA.
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Chapter 5

Conclusion and Future work

5.1 Conclusion

The main objective of this thesis was to investigate the turbulent flow in helically
coiled pipes. Of particular interest was the stabilization and destabilization
effects of helically coiled pipes and how they may be associated with the flow
patterns in the internal carotid artery. As a first step, we performed validation
of Oasis against published DNS [18] by simulating turbulent flow at Reτ = 180
in a straight pipe. Our mesh refinement test showed convergence towards DNS
data by increasing the spatial resolution. At the same time, we have managed to
acquire our data set of turbulent flow. These data sets were used to simulate the
turbulent flow in helically coiled pipes. Numerical simulations of turbulent flow
in helically coiled pipes with five different geometries were subsequently carried
out. The results showed the local destabilization and the global stabilization
both of which may be associated with the presence of Dean vortices. To the
author’s knowledge, this is the first numerical report on the stabilization of
turbulent flow in helically coiled pipes. Modifying the number of coils did not
lead to significant changes in the flow field, while modifying the radius of coils
resulted in a large difference in turbulence. Although the effects of changing
curvature and torsion were already investigated in separation [28, 32, 55], we
examined the consequence of chaining two parameters simultaneously. When
the curvature was increased and the torsion was decreased, the maximum TKE
was constant but the faster stabilization of the flow was observed. On the
other hand, when the curvature and the torsion were increased simultaneously,
the maximum TKE increased, but also a faster stabilization of the flow was
observed. This indicates the complex coupled effects of the curvature and
torsion on the flow when both of them are modified at the same time.

Finally, we have performed numerical simulations of blood flow in the internal
carotid artery (ICA) using ten healthy patient-specific geometries, although five
cases were shown. In a patient with the highest curvature in the carotid siphon
with relatively low torsion, we did not observe flow instability. Even though
there are several factors affecting the flow patterns in the ICA, the combination
of the high curvature and the low torsion may suppress flow instability in the
ICA. This agrees with the results from helically coiled pipes. However, as
curvature and torsion are not constant in the ICA, it is unclear how much
the analysis of curvature and torsion could explain the flow patterns in the
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ICA. We have measured the torsion parameter [28, 85], which accounts for
both curvature and torsion, but a clear correlation with flow instability was not
observed. To our best knowledge, Dean vortices inside the ICA were observed
for the first time. The location of the Dean vortices may be associated with
flow instability that appears near the bifurcation. During the cardiac cycle, the
low-oscillatory behaviour of the Dean vortices were observed. Further analysis
of the Dean vortices inside the ICA would be necessary to assess the effects of
the Dean vortices on flow instability.

5.2 Future work

For the turbulent flow in helically coiled pipes, to the author’s knowledge, there
has been no study about swirl-switching phenomena in the helically coiled
pipes. Hufnagel et al. [31] used proper orthogonal decomposition to detect
several modes of the oscillations, and a similar approach could be applied to
helically coiled pipes. We investigated the correlation between the Dean vortices
and the flow instability in the ICA. To detect the Dean vortices, we relied on
the visualization technique, but visualization is only qualitative analysis. We
attempted frequency analysis using Fourier-transform but did not observe a
frequency peak that might have been associated with the presence of the Dean
vortices. Recently, Natarajan et al. [54] used spectrograms to visualize the
frequency structures and such a method might be useful.
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Appendix A

Investigation of the numerical
boundary layer

Oasis has been previously verified by Mortensen and Valen-Sendstad [52]. In
their published work, two dimensional Taylor-Green flow is used to conduct the
rate of convergence test and achieved the expected accuracy. For this reason,
another set of verification test has not been conducted in this thesis since the
solver chosen for the verification is the same one that will be used later in
this thesis. However, we conducted series of numerical experiments to further
address the difference of the solvers implemented in Oasis. The purpose of this
study is to investigate the numerical boundary layer and the gained knowledge
from this experiment may be subsequently used to improve Oasis in the future.

In the review paper on the projection methods written by Guermond et
al. [26], they performed two numerical tests to assess the influence of the
numerical boundary layer on the pressure error. They employed method of
manufactured solutions (MMS), which is a robust way of verification of the codes
[60]. The basic idea of MMS starts from choosing an analytical solution. Then,
the analytical solution is used to construct the source term in the governing
equation that can produce the analytical solution. In this fashion, the numerical
solution can be compared against the known analytical solution to estimate the
numerical error in the code.

The first numerical test was conducted with spectral approximation to
investigate the numerical boundary layer with standard and rotational form of
the pressure correction algorithm. The result is illustrated in Figure A.1. The
analytical solution takes the following form.

u(x, y, t) = π sin t
(
sin 2πy sin2 πx,− sin 2πx sin2 πy

)
p(x, y, t) = sin t cosπx sin πy.

(A.1)

They observed the disappearance of the numerical boundary layer with
rotational form but the large peaks of the error at the corners of the domain
were still observed.

The next numerical test was conducted with P2/P1 finite elements to further
assess the influence of the smoothness of the domain boundary on the accuracy
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Figure A.1: Pressure error field with standard (left) and rotational (right) form
of the pressure correction algorithm. Adapted from An overview of projection
methods for incompressible flows by J.L. Guermond et al. [26]

of rotational pressure correction method. They used the following analytical
solution

u = (sin(π(x+ t))sin(π(y + t)), cos(π(x+ t))cos(π(y + t)))
p = sin(π(x− y + t))

(A.2)

in the square domain [0, 1]2 and in the circular domain (x, y);
√
x2 + y2 ≤ 0.5.

Note the original equation in the review paper was missing π. The result is
shown in Figure A.2. There are two large peaks of the error with square domain
while there is no such peaks with circular domain.

Figure A.2: Pressure error field with rotational form of the pressure correction
algorithm in the square and circle domain. Adapted from An overview of
projection methods for incompressible flows by J.L. Guermond et al. [26]

We conducted series of numerical tests by means of MMS. Our numerical tests
also used P2/P1 finite element for the equation (A.2) and computed the pressure
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error field with three schemes. First scheme is the non-incremental pressure
correction scheme, the second is the incremental pressure correction scheme,
and the last is the incremental pressure correction scheme in rotational form.
Each scheme will be hereafter referred as Chorin, IPCS, BDFPC respectively
following the naming from Oasis. The mesh-size was h = 1/40 and ∆t = 0.00625
with T = 1 meaning total computational time step was 160.

Figure A.3 shows the pressure error field at T = 1. The results from both
Chorin scheme and IPCS scheme (Figure A.3 (a) and (b)) show the numerical
boundary layer, but the error is reduced with IPCS scheme. The result from
BDFPC (rotational form) shown in Figure A.3 (c) shows the disappearance of
the numerical boundary layer with two large peaks of errors at the corner of
the domain, which is similar to the results presented by Guermond et al. in
Figure A.2. It is likely that these two large peaks of the error come from the
fact that the there are only one node point at the corner of the domain due
to its meshing. Figure A.3 (d) shows the error in a circular domain with no
obvious peaks of the error, which is also consistent to the results presented by
Guermond et al. in Figure A.2.

(a) Chorin (b) IPCS

(c) BDFPC (d) BDFPC

Figure A.3: Pressure error field with (a) Chorin scheme (b) IPCS scheme (c)
BDFPC scheme in a rectangular domain (d) BDFPC scheme in a circular
domain.

To summarize, several numerical schemes built inside Oasis have been tested
against analytical solutions. Each scheme manifested the characteristics of its
own that are mathematically proven and shown by Guermond et al. [26]. In
this way, the implemented numerical scheme in Oasis are proven to be accurate.
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Appendix B

Derivation of the turbulent
kinetic energy equation

As the first step to derive the turbulence kinetic energy equation, we will make
an attempt to derive the equation for fluctuating velocity u′. This can be
done by subtracting equation Reynolds averaged Navier-Stokes equations from
instantaneous momentum equation.

∂u− u

∂t
+ (u · ∇)u− (u · ∇)u = −1

ρ
∇(p− p̄) + ν∇2(u− u) +

∂u′iu
′
j

∂xj
+ f − f

⇒ ∂u′

∂t
+ (u · ∇)u− (u · ∇)u = −1

ρ
∇p′ + ν∇2u′ +

∂u′iu
′
j

∂xj
+ f ′ (B.1)

The convection terms can be computed as

(u · ∇)u− (u · ∇)u = ((u + u′) · ∇) (u + u′)− (u · ∇)u
= (u · ∇)u′ + (u′ · ∇) (u + u′)

(B.2)

Thus, inserting (B.2) into (B.1) gives

∂u′

∂t
+ (u · ∇)u′ = −1

ρ
∇p′ + ν∇2u′ − (u′ · ∇) (u + u′) +

∂u′iu
′
j

∂xj
+ f ′ (B.3)

We can also write equation (B.3) in terms of index notation.

∂u′i
∂t

+ ūj
∂u′i
∂xj

= −1
ρ

∂p′

∂xi
+ ν

∂2u′i
∂xj∂xj

− u′j
∂ūi
∂xj
− u′j

∂u′i
∂xj

+
∂u′iu

′
j

∂xj
+ f ′i (B.4)

Here, recall that the turbulence kinetic energy is described as k = 0.5u′u′ =
0.5u′iu′i and the Reynolds stress is defined as Rij = u′iu

′
j . Thus it is easier to

derive the Reynolds stress equation first and then take the trace of that to
derive the turbulence kinetic energy. To do that, we will multiply the equation
(B.4) by u′k and then take the average of the entire equation. Here, we neglect
the body force for the convenience.

u′k

(
∂u′i
∂t

+ ūj
∂u′i
∂xj

= −1
ρ

∂p′

∂xi
+ ν

∂2u′i
∂xj∂xj

− u′j
∂ūi
∂xj
− u′j

∂u′i
∂xj

+
∂u′iu

′
j

∂xj

)
(B.5)
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The last term on the right-hand side disappears and all the other terms can
easily computed as

u′k
∂u′i
∂t

+ ūju′k
∂u′i
∂xj

= −1
ρ
u′k
∂p′

∂xi
+ νu′k

∂2u′i
∂xj∂xj

− u′ku′j
∂ūi
∂xj
− u′ku′j

∂u′i
∂xj

(B.6)

The indices i and k are interchangeable as they are free indices. Thus, we also
have

u′i
∂u′k
∂t

+ ūju′i
∂u′k
∂xj

= −1
ρ
u′i
∂p′

∂xk
+ νu′i

∂2u′k
∂xj∂xj

− u′iu′j
∂ūk
∂xj
− u′iu′j

∂u′k
∂xj

(B.7)

Summing up the previous two equations and using the relationship,∂u′iu′k/∂t =
u′i∂u

′
k/∂t+ u′k∂u

′
i/∂t, we get

∂u′iu
′
k

∂t
+ ūj

∂u′iu
′
k

∂xj
= −1

ρ

(
u′i
∂p′

∂xk
+ u′k

∂p′

∂xi

)
+ ν

(
u′i

∂2u′k
∂xj∂xj

+ u′k
∂2u′i
∂xj∂xj

)

− u′iu′j
∂ūk
∂xj
− u′ku′j

∂ūi
∂xj

− u′iu′j
∂u′k
∂xj
− u′ku′j

∂u′i
∂xj

(B.8)

We can rearrange the first term of the right-hand side in the following way.

u′i
∂p′

∂xk
+ u′k

∂p′

∂xi
= p′

(
∂u′i
∂xk

+ ∂u′k
∂xi

)
+ ∂

∂xj

(
p′u′iδkj + p′u′kδij

)
= 2p′s′ik + ∂

∂xj

(
p′u′iδkj + p′u′kδij

) (B.9)

where
s′ij = 1

2

(
∂u′i
∂xj

+
∂u′j
∂xi

)
(B.10)

The second term of the right-hand side can be rewritten as

u′i
∂2u′k
∂xj∂xj

= ∂

∂xj

(
∂u′iu

′
k

∂xj
− u′k

∂u′i
∂xj

)
− ∂u′i
∂xj

∂u′k
∂xj

(B.11)

and
u′k

∂2u′i
∂xj∂xj

= ∂

∂xj

(
u′k
∂u′i
∂xj

)
− ∂u′i
∂xj

∂u′k
∂xj

(B.12)

These two equations can be summed up to produce

u′i
∂2u′k
∂xj∂xj

+ u′k
∂2u′i
∂xj∂xj

= ∂2u′iu
′
k

∂xj∂xj
− 2 ∂u

′
i

∂xj

∂u′k
∂xj

(B.13)
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Now, we are able to use all the simplifications above to rewrite equation (B.8)
as follows.

∂u′iu
′
k

∂t
+ ūj

∂u′iu
′
k

∂xj
=− 2p′s′ik

ρ
− ∂

∂xj

(
1
ρ

(
p′u′iδkj + p′u′kδij

)
+ u′iu

′
ku
′
j − ν

∂u′iu
′
k

∂xj

)

− 2ν ∂u
′
i

∂xj

∂u′k
∂xj
− u′iu′j

∂ūk
∂xj
− u′ku′j

∂ūi
∂xj

(B.14)
This is the final form for the Reynolds stress transport equation. As it it stated
before, an equation for the turbulent kinetic energy can be obtained by setting
index k equals to i. Some terms will vanish due to continuity and symmetry.

∂u′iu
′
i

∂t
+ ūj

∂u′iu
′
i

∂xj
=− ∂

∂xj

(
2
ρ
p′u′iδij + u′iu

′
iu
′
j − ν

∂u′iu
′
i

∂xj

)

− 2ν ∂u
′
i

∂xj

∂u′i
∂xj
− 2u′iu′j

∂ūi
∂xj

(B.15)

By inserting the definition of the turbulent kinetic energy, we get

∂k

∂t
+ uj

∂k

∂xj
=− ∂

∂xj

(
1
ρ
p′u′iδij + 1

2u
′
iu
′
iu
′
j − 2νs′iju′i

)
− 2ν ∂u

′
i

∂xj
s′ij − u′iu′j

∂ūi
∂xj

(B.16)

The last term of the divergence terms(the first term of the rhs) can be rewritten
as

ν
∂2u′iu

′
i

∂xj∂xj
= 4ν

∂s′iju
′
i

∂xj
− 2ν ∂u

′
i

∂xj

∂u′j
∂xi

(B.17)

Inserting this into (B.16) gives

∂k

∂t
+ uj

∂k

∂xj
=− ∂

∂xj

(
1
ρ
p′u′iδij + 1

2u
′
iu
′
iu
′
j − 2νs′iju′i

)
− 2ν ∂u

′
i

∂xj
s′ij − u′iu′j

∂ūi
∂xj

(B.18)

The velocity deformation tensor can be rearranged as

∂u′i
∂xj

= s′ij + ω′ij (B.19)

where
ω′ij = 1

2

(
∂u′i
∂xj
−
∂u′j
∂xi

)
(B.20)

By combining previous two equations together, the second term of the rhs of
equation (B.18) can be rewritten as

s′ij
∂u′i
∂xj

= s′ijs
′
ij + s′ijω

′
ij = s′ijs

′
ij (B.21)
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here, we used the fact that the contraction of a symmetric tensor with an
anti-symmetric is identically zero. Therefore, the final form of the turbulent
kinetic energy can be written as

∂k

∂t
+ ūj

∂k

∂xj
=− ∂

∂xj

(
1
ρ
p′u′iδij + 1

2u
′
iu
′
iu
′
j − 2νs′iju′i

)
− 2νs′ijs′ij − u′iu′j

∂ūi
∂xj

(B.22)
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Appendix C

Hemodynamic indices and flow
instability

We computed the time-averaged WSS (TAWSS) and the temporal WSS gradient
(TWSSG) that are derived from the shear stress τ . The mathematical definitions
for each indices are as follows.

TAWSS = 1
T

∫ T

0
|τ |dt (C.1)

TWSSG = 1
T

∫ T

0

∣∣∣∣∂τ∂t
∣∣∣∣ dt (C.2)

Several hemodynamic indices have been used to investigate the cause of initiation
of the aneurysms, but none of these indices have been proven to be sufficient to
explain the initiation of the aneurysms. Although TAWSS is the most reported
indices among the researchers, it is still unclear whether high TAWSS or low
TAWSS is associated with the initiation of the aneurysms [50]. As you can
see from Figure C.1, low or high TAWSS can be observed in several locations
throughout the ICA. This wide-speared distribution of TAWSS can not explain
why the majority of the aneurysms are located at the bifurcations. In addition,
if we assume that flow instability plays an important role in the aneurysms
imitation, TAWSS is not suited for measurements as it can not accommodate
the temporal variation. Therefore, hemodynamic indices that can account for
flow instability need to be identified.

One alternative would be TWSSG which measures the temporal changes in
the direction and magnitude of WSS. Our simulations suggested the presence of
high TWSSG at the apex of bifurcation. Given the fact that the high-frequency
velocity fluctuations in the bifurcation were previously reported [73] and the
higher presence of aneurysms at the bifurcation, the hypothesis of high TWSSG
being the stimulus for aneurysm initiation seems plausible.
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P0207 P0220 P0228

P0250 P0252

Figure C.1: Time-averaged WSS (TAWSS) having high values at several
locations.
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P0207 P0220 P0228

P0250 P0252

Figure C.2: Temporal WSS gradient (TWSSG) having high values exclusively
near the bifurcation.
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