Is respiration the major regulator of
CSF flow?

A computational study based on in vivo pressure measurements
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Signal Intensity / a.u.

MRI studies have revealed respiratory

CSF motion in the aqueduct
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In this study we calculate CSF flow based on
IN VIVO pressure measurements
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In vivo measurements of intracranial Extract frequency and amplitudes from
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CFD calculations of flow resulting from the dominant pressure frequencies



Simultaneous measurements of intracranial
(ICP) and lumbar (LP) pressure
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A p [mmHg]

Pressure differences drive CSF flow

1
@nwwvu: —=Vp + vV
ot 0

V-v=0

time [s]

Experimental data from a Chiari patient, by Fric & Eide (2015)




CFD simulations are used to calculate
cervical CSF flow in the subarachnoid space

L =60cm
ro =5cm
rtl =9cm




flux [mL/s]

A p [mmHg]

Experimental pressure data results in
irregular flow
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Frequencies in dP(t) can be quantified

by a Fourier transform

10

20

30
time [s]

40

50

o
Sl

{I Te v 1 L] ? TT
1.0

— filtered
ro1 fft(Ap)

Frequeﬁcy [Hz]

2.0



A p [mmHg]

Frequencies in dP(t) can be quantified
by a Fourier transform
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The signal is decomposed into two
sinusoidal waves

Ap = agsin(27t fy) + a1 sin(27t f1)
where
fo = 0.10, a9 = 0.46 f1 = 0.82,a1 = 1.68

Respiratory Cardiac 10



Flux [mL/s]

Pressure [mmHg]

Frequencies due to respiration (10s) and
cardiac activity (0.8s) are most prominent
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Pressure is dominated by cardiac

pulsations, flow is dominated by
respiration

Simulated flux frequencies
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Agueductal flow can be investigated in
the same manner

Eide and Saehle, 2016
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More relative noise in the difference
between ventricular and subdural pressure
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In the aqueduct, flow is evenly regulated by
cardiac and respiratory cycle

Flux [ml/s]
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In the aqueduct, flow is evenly regulated by
cardiac and respiratory cycle

Flux [ml/s]
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In the aqueduct, flow is evenly regulated by
cardiac and respiratory cycle
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Clinical aspects

e ICP monitoring and PC-MRI measure different
types of pulsatility

* |s cardiac gated MRI sufficient for clinical use?

* Pressure and flow studies, regulate/monitor
breathing and motion?
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ICP gradients may also affect brain
motion and possibly interstitial fluid flow
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ICP gradients may also affect brain
motion and possibly interstitial fluid flow

Biot’s equations relate pressure to displacements in a porous medium. We
use pressure boundary conditions on the brain surface and the ventricles ,,
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CSF flow may be dominated by respiration, even
though pressure is dominated by the cardiac cycle
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In Vivo pressure measurements CFD experiment, quantifying flow from a

simplified input pressure function

23



CSF flow may be dominated by respiration, even
though pressure is dominated by the cardiac cycle
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simplified input pressure function
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