Is respiration the major regulator of CSF flow?

A computational study based on in vivo pressure measurements

Vegard Vinje

Simula Research Laboratory

P. K. Eide K-A. Mardal M. Rognes

September 26th, 2017

MRI studies have revealed respiratory CSF motion in the aqueduct

In this study we calculate CSF flow based on in vivo pressure measurements

In vivo measurements of intracranial (ICP) and lumbar (LP) pressure

Extract frequency and amplitudes from fourier transform of $\Delta p = ICP - LP$

CFD calculations of flow resulting from the dominant pressure frequencies

Simultaneous measurements of intracranial (ICP) and lumbar (LP) pressure

Pressure differences drive CSF flow

$$\frac{\partial v}{\partial t} + v \cdot \nabla v = -\frac{1}{\rho} \nabla p + \nu \nabla^2 v$$
$$\nabla \cdot v = 0$$

Experimental data from a Chiari patient, by Fric & Eide (2015)

CFD simulations are used to calculate cervical CSF flow in the subarachnoid space

Experimental pressure data results in irregular flow

Frequencies in dP(t) can be quantified by a Fourier transform

Frequencies in dP(t) can be quantified by a Fourier transform

The signal is decomposed into two sinusoidal waves

$$\Delta p = a_0 \sin(2\pi t f_0) + a_1 \sin(2\pi t f_1)$$

where

$$f_0 = 0.10, a_0 = 0.46$$
 $f_1 = 0.82, a_1 = 1.68$ Respiratory Cardiac

Frequencies due to respiration (10s) and cardiac activity (0.8s) are most prominent

Pressure is dominated by cardiac pulsations, flow is dominated by respiration

FFT of input pressure difference

FFT of simulated flux

Aqueductal flow can be investigated in the same manner

Eide and Sæhle, 2016

More relative noise in the difference between ventricular and subdural pressure

In the aqueduct, flow is evenly regulated by cardiac and respiratory cycle

In the aqueduct, flow is evenly regulated by cardiac and respiratory cycle

In the aqueduct, flow is evenly regulated by cardiac and respiratory cycle

Clinical aspects

 ICP monitoring and PC-MRI measure different types of pulsatility

Is cardiac gated MRI sufficient for clinical use?

 Pressure and flow studies, regulate/monitor breathing and motion?

ICP gradients may also affect brain motion and possibly interstitial fluid flow

ICP gradients may also affect brain motion and possibly interstitial fluid flow

Biot's equations relate pressure to displacements in a porous medium. We use pressure boundary conditions on the brain surface and the ventricles $_{21}$

"

CSF flow may be dominated by respiration, even though pressure is dominated by the cardiac cycle

In vivo pressure measurements

CFD experiment, quantifying flow from a simplified input pressure function

CSF flow may be dominated by respiration, even though pressure is dominated by the cardiac cycle

In vivo pressure measurements

CFD experiment, quantifying flow from a simplified input pressure function

Thank you!

