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Abstract—In 5G and future cellular systems, use of multiple
millimeter-wave (mmWave) links in parallel can enable interac-
tive applications that demand consistent low delays with very
high data rates. In previous work we introduced a mmWave
multipath proxy that preemptively manages a set of mmWave
paths to guarantee a steady data rate with high confidence. Here
we explore the impact choice of packet sending path has on packet
delay in this dynamic system, as well as the potential benefits
erasure reconstruction codes (ERC) may provide in mitigating
packet reordering delays at the receiver. We find that capacity
aware scheduling improves packet delay, but that improvements
diminish relative to the staleness of the capacity knowledge. ERC
almost completely eliminates head-of-line blocking delays at the
receiver, but any benefit is diminished by additional queueing
delays induced by parity packets, unless they are selectively sent
according to available capacity.

Index Terms—Multipath scheduling, mmWave, erasure recon-
struction.

I. INTRODUCTION AND PROBLEM STATEMENT

M ILLIMETER-WAVE (mmWave) radio links allow data
rates of several Gbps to be achieved in 5G networks,

and they will remain a key element in 6G and future wireless
systems. The downsides of mmWave are the need for line-
of-sight (LoS) propagation, as well as the potentially severe
impact of atmospheric conditions on radio propagation. For
instance, data rates in non-line-of sight (NLoS) conditions can
drop as low as <1% of typical LoS rates.

In spite of these shortcomings, mmWave radio is touted as
an enabler of novel use cases for cellular networks, like ad-
vanced emergency communications or extended reality, based
on ultra-high-definition interactive video. However, for these
applications to work properly the network needs to ensure that
bit rates are not only very high, but also stable and consistent,
together with stable low latency. Vu et al. [1] look at this in
the context of multi-hop paths in self-backhauled mmWave
networks, and Dogan et al. [2] in terms of resilient paths
through multi-connected multi-hop mmWave networks. We
investigate this from the perspective of a multi-path proxy
directing packets over a changing number of possible mmWave
links to a single receiver, to achieve steady high rates and low
delays.

In [3, 4], we designed a mmWave multipath proxy and
evaluated it through packet-level simulations. Fig. 1 shows
the system architecture and Fig. 2 provides an abstract repre-
sentation of the multipath mmWave system under study. The
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Fig. 1. System architecture overview. MmWave base stations are connected
to a splitting multipath proxy, located in close network proximity to the base
stations (three depicted in this example, for clarity, with one radio path being
blocked by a pedestrian). The proxy gathers capacity information about the
set of mmWave paths at its disposal to schedule packets over paths.
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Fig. 2. The multipath proxy dynamically manages a set of mmWave paths (5
in this figure, labeled N1-N5). The proxy’s path manager periodically (every
150 ms here) updates the set of paths to be used for packet transmission
(shown as solid green circles), based on a probabilistic prediction of the proxy
queue state over a short time horizon of 200 ms. Paths are chosen so that the
aggregate capacity satisfies the application’s requirements with confidence
using the CDF-based path manager introduced in [3, 4]. In this paper we focus
on the packet scheduler’s choice of paths to send packets and its interaction
with an optional erasure-reconstruction coder (ERC), which can be used to
protect against packet reordering delays at the receiver. 𝑇proxy, 𝑇wireless and
𝑇Arr→App denote packet delays respectively: inside the proxy, over the wireless
link, and total delay from arrival at the proxy to delivery to the application.

proxy queues incoming packets and schedules each packet
for transmission over one among a set of mmWave paths.
Based on current network conditions and a Markov-modulated
fluid queue (MMFQ) model, the proxy uses a short-term
prediction of the future state of the queue (i.e., over a time
horizon of a couple of hundred ms) to periodically adjust
the set 𝑃 of paths used for transmission. That is, the proxy
dynamically adds/removes paths to/from 𝑃, in order to satisfy
the application’s quality-of-service (QoS) constraints with the
lowest number of paths. Our focus is not on “greedy” applica-
tions that just want to maximize throughput (like many TCP-
based applications), but rather applications that demand both
consistent, high data rates and low delays. A typical scenario
would be that of a mobile real-time application like immersive
3D video or ultra-high definition extended reality.

Our work in [3, 4] focused only on the path management
element, using the aggregate capacity, 𝐶, to send packets for
simplicity. This allowed us to show the feasibility and benefits
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of a predictive control for path management purposes. Though
the path manager tries to ensure that 𝐶 will remain large
enough to carry the application traffic over the control interval
(150 ms here), it does not select which path to send a packet
on. As discussed in [4], the scheduling technique may have
a strong impact on performance since paths may have very
different bit rates in a given instant. Considering a simple
Round Robin (RR) scheduler just cycling to the next path
irrespective of capacity, it may choose a NLoS path even when
a LoS path is available for use. If the LoS path has 100×
the capacity of the NLoS path, the unnecessary reordering
will cause head-of-line (HoL) blocking at the receiver for
the 100 packets sent on the LoS path which now need to
wait for the packet sent over the much slower NLoS path.
More sophisticated scheduling methods can prioritize higher-
capacity over lower-capacity paths, to minimize the chances
of reordering. We study two such algorithms in section II,
illustrating their impact on the total packet delay and the
improvement they offer over a naive scheduler like RR.

No scheduling algorithm can guarantee that a packet will
not be sent over a very low capacity path, whether due to the
lack of available high capacity paths or to stale knowledge
of path capacities (discussed later in section IV). Erasure-
Reconstruction Codes (ERC) [5] can be used to mitigate the
effect of packet delays on a slow path, and thus lower the
probability of HoL blocking. This is done at a cost since more
transmission capacity is needed to carry the parity packets.
We evaluate the potential benefit of ERC and its relation with
scheduling in section III.

The results in sections II and III rely on the assumption that
the path manager and the scheduler have perfect knowledge
of the capacity of all available paths when they make a path
selection decision. In practice, however, information about
changes in path capacities may not be known until after a
delay. Therefore, in section IV we further explore the impact
of imperfect (i.e., delayed) knowledge on path scheduling
decisions, with and without ERC.

II. PATH SCHEDULING FOR DYNAMIC CHANGING PATHS

We use the term path to refer to one of the possible routes
that a packet may take from the proxy to the mmWave receiver
over a particular mmWave link. We assume that the proxy is
able to route each individual packet over a particular path,
that the capacity of a path is only limited by the mmWave
link, and that the transit times from the proxy to the base
stations are insignificant (refer to Fig. 1 and 2). As in [4], the
mmWave link is modelled using the 3GPP 5G urban street
canyon channel model, UMi [6].

In this paper we assume that all packets are of equal value
to the receiving application and limit our consideration to a
simple FIFO queueing discipline for the proxy queue. More
advanced queueing disciplines may be beneficial, especially
where some packets are more valuable than others, and will be
examined in future work. The capacity of mmWave channels
fluctuates due to shadow fading, but drops dramatically when
LoS communication is temporarily blocked (NLoS). These
drastic capacity changes mean the choice of which of the

TABLE I
PATH TERMINOLOGY AND PARAMETERS

𝑁 Set of possible mmWave paths length(𝑁 ) = 8
𝑃 Paths available to the scheduler 𝑃 ⊂ 𝑁

𝐵 Paths busy sending a packet 𝐵 ⊂ 𝑃

𝐹 Paths free for use 𝐹 ⊂ 𝑃, 𝐹 ∪ 𝐵 = 𝑃,
and 𝐹 ∩ 𝐵 = ∅

𝑓1 Free path that has been in 𝐹 longest 𝑓1 ∈ 𝐹

𝑓max Free path with highest capacity 𝑓max = max( 𝑓 ∈ 𝐹 )
𝐴 Application’s required sending rate 2 Gbps
𝐶 Current combined capacity of 𝑃 𝐶 =

∑
𝐶 (𝑝) , ∀𝑝 ∈ 𝑃,

𝐶
(𝑝) ∈ {𝐶 (𝑝)

LoS , 𝐶
(𝑝)
NLoS}

TABLE II
KEY SIMULATION PARAMETERS RELEVANT TO THIS ARTICLE.
SEE [4] FOR A DETAILED DESCRIPTION OF THE SIMULATOR.

Channel path loss model UMi [6]
Packet size 1500 B
Predictive Control Interval 150 ms
Queue CDF prediction time horizon 200 ms
Shadow fading time 20 ms
Average time in LoS LinRange(3,4,length(𝑁 )) s
Average time in NLoS LinRange(4,3,length(𝑁 ) s
Simulation length 305 s (first 5 s discarded)
Number of independent repetitions 50

Salient points: (i) The random sequences for each channel and delays are all
separate and independent so that they are identical regardless of the scenario.
(ii) LoS↔NLoS transitions are modelled by a two-state continuous time
Markov model with averages as in the table (as in [7]). (iii) Each run is
initialised with a different set of seeds. (iv) We model the random shadow
fading variations while keeping our receiver at a fixed distance from all
base stations. This somewhat artificial scenario allows us to focus on the
scheduling and ERC dynamics without having to account for receiver motion
and changing base station distances.

currently available paths to send a packet on can significantly
impact its transit time to the receiver, which in turn can cause
head-of-line blocking delays at the receiver. Here we investi-
gate that effect with three simple schedulers1: Round Robin
(RR), Highest Capacity First (HCF) and Enhanced Highest
Capacity First (HCF+). We do not use erasure-reconstruction
coding in these initial experiments to better isolate the effect
of the scheduling discipline.

Both RR and HCF are work conserving schedulers. RR
simply chooses 𝑓1 to send a packet2, and paths that become
free are placed at the end of 𝐹. HCF chooses the free path with
the highest capacity, 𝑓max. HCF+ is a non-work conserving
heuristic enhancement of HCF that actively avoids sending
packets on low capacity paths when there is sufficient total
capacity. In these experiments, we define a low capacity path
as having a capacity <10%3 of the application’s required
sending rate, 𝐴. With HCF+, a packet will be sent over 𝑓max
only if (𝐶 ( 𝑓max ) > 0.1𝐴∨𝐶 < 𝐴), else the scheduler will wait
until another path with capacity > 0.1𝐴 becomes available.

We use the simulator described in [4] with the predictive
CDF-based path manager. Table II describes the relevant
parameters for this study. Figure 3 shows key measures from a
single simulation run with the RR scheduling discipline. The

1Our purpose is to understand the system dynamics rather than choose an
optimal scheduler; something that will depend on architectural details of an
implementation.

2See table I for the notation used in the paper regarding paths.
3We have also tried other values such as 1%, which yields similar results.

The advantage is in not sending on the very slow, occasionally even 106 times
slower, paths.
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Fig. 3. RR scheduling example showing the combined capacity changes of
the set of used paths, queueing at the two queues and the delay from proxy
arrival to the application receives the in-order packet. The red dashed line
indicates the average capacity and average proxy queue size.

predictive path manager [3, 4] attempts to ensure that there is
enough capacity available to send the 2 Gbps of data by adding
additional paths when needed and removing them when they
are not needed. The resulting capacity from the continually
varying number of used paths is shown in the Capacity graph
at the top. Occasionally there is not enough available capacity,
which results in proxy queue spikes that can be seen in the
Proxy Queue graph (see magenta ellipse), the dots at the top
representing packet losses in the proxy queue. The receiver
queue graph shows the queueing at the receiver due to HoL
blocking caused by out of order packets, such as when a packet
is sent on a very low bit rate path while subsequent packets are
sent on much faster paths (see dashed cyan ellipse). The final
graph shows 𝑇Arr→App, the packet delay from when a packet
arrives at the proxy until it is sent in-order to the receiver
application. A good scheduler can reduce packet transit times
from the proxy and significantly reduce HoL blocking delays
at the receiver queue.

Figure 4 shows a comparison of the high percentiles of the
CDF of 𝑇Arr→App in the absence of any erasure correction. Both
HCF and HCF+ noticeably improve over the simple RR dis-
cipline. The HCF+ discipline offers significant improvements
to HCF in the 97–98 percentiles, pushing the delays down to
under 200 𝜇s. However, HCF+ is not work conserving, and the
cost can be seen when the green dash-dot HCF line crosses
the HCF+ red dashed line at around 1 ms.

III. CONVOLUTIONAL PACKET ERASURE CODES TO AVOID
HEAD OF LINE BLOCKING

The dynamic nature of the capacity of each path invariably
leads to intermittent queues at the proxy, and infrequent severe
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Fig. 4. Comparison of mmWave path selection using RR, HCF and HCF+
scheduling disciplines.

packet transit delays in some paths. For latency-sensitive
applications, the effect of these path delays is similar to packet
erasures. When this occurs, it makes sense to apply erasure-
reconstruction codes (ERCs) to avoid receiver queueing de-
lays. ERCs have properties similar to forward-error correcting
codes (FECs) [5], but require simpler receiver processing since
erasure locations are known. ERCs are used extensively in dis-
tributed cloud storage [8], Internet packet recovery [9–11], and
coding for stragglers in distributed computing [12]. In each of
these cases, codes are selected to optimize application specific
criteria that fail to align perfectly with what we want for our
application. Codes in [9] are designed for optimum efficiency
in coding and decoding as well as a flexible adaptation to the
Internet channel, but these codes work best with a very large
block length, which implies long delays and problems with
adapting to quick capacity changes. Convolutional codes [5]
work by encoding few information symbols (here: packets)
at a time, which allows a quick recovery at the receiver.
Random linear convolutional codes are discussed in [10, 11].
In general, random codes are flexible, but offer sub-optimum
performance and require extra overhead in capacity as well as
extra processing at the proxy and the receiver.

Instead, for our application, we use ERCs designed to satisfy
conditions 1) and 2) below. A set, 𝑃, of paths is made available
to the scheduler by the path manager described in [4] (see
Fig. 2 and table I). Packet traffic is scheduled onto these paths
according to the scheduling disciplines described in section II.
Coded communication entails adding a parity packet after
every 𝑘 information packets. This parity packet is a linear
combination of the 𝑘 information packets. The sequence of
parity packets should satisfy the conditions:

1) After one block of 𝑘+1 packets has been sent, the receiver
should be able to reconstruct all the 𝑘 corresponding
information packets as soon as any 𝑘 packets have been
received. More generally, after 𝑤 ≥ 1 blocks of 𝑘 + 1
packets each have been transmitted, the receiver should be
able to reconstruct all the 𝑤𝑘 corresponding information
packets as soon as any 𝑤𝑘 packets have been received.

2) The code should guarantee 1) for all 𝑤 ≤ 𝑊 , where the
window size 𝑊 is as large as possible.

It turns out that for a binary convolutional code, the 𝑊 value
described in 2) is limited to 1. However, increasing the size of
the finite field over which the convolutional code is constructed
allows larger values of 𝑊 . In this paper we consider the
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Fig. 5. Scheduling with convolutional erasure codes. The uncoded line corresponds to the case where no erasure codes are used, as in Fig. 4.

convolutional codes designed and presented in [13]. These
codes are constructed over finite fields F2𝑚 , 𝑚 ≤ 14, and have
maximum or the highest value known for 𝑊 for the field sizes
considered.

There is a tradeoff in using coding: when paths are correctly
estimated to provide sufficient capacity, coding is unnecessary
and wastes capacity. In our application, coding can be seen
as an “insurance” against unexpected channel capacity fluctu-
ations, at a premium of extra capacity usage.

We now test the effect on the queuing delay from using
these convolutional erasure codes with the three scheduling
disciplines and the simulation model introduced in section II.
The minor computation delay incurred by the recovery process
of delayed packets is ignored, since this amounts to solving
a typically very simple set of linear equations [13]. The path
capacities in the simulator’s Path Manager’s predictive MMFQ
based model are reduced by a factor 𝑘

𝑘+1 to account for the
extra parity packets. The erasure codes do indeed eliminate any
significant queueing at the receiver’s ordered delivery queue,
but this does not necessarily translate to a corresponding delay
advantage, as seen in Fig. 5. Erasure codes improve latency
if reliable capacity information is not available or not used,
such as in the RR scenario (see Fig. 5a): A bad scheduling
choice (i.e., choosing a slow path for transmission) can be
mitigated by use of an erasure code. However, when good
path scheduling choices are made, prioritizing use of higher-
capacity paths, the delay cost in the overhead outweighs the
advantages of removing HoL blocking at the receiver. Even
though the path manager attempts to preemptively provide
enough capacity, this does not always happen: (i) the queue-
state prediction may be incorrect; (ii) If all 8 possible paths are
blocked (NLoS), the combined capacity may not be sufficient.
When this happens, i.e., 𝑘+1

𝑘
𝐴 > 𝐶, queueing at the proxy

causes more delay than is saved by removing HoL blocking.

This suggests sending parity packets only when 𝑘+1
𝑘
𝐴 ≤ 𝐶.

Of course, then some head-of-line blocking will occur, but
since the delay impact of that is less than that of queueing
at the proxy queue we expect to see an overall benefit.
Figure 6 shows that this provides delay advantages for all three
scheduling disciplines. Notice that the order of the erasure
code lines on the CDF is the reverse of that in Fig. 5.
This simple change to the schedulers compensates for the
disadvantages of the higher overhead codes.

IV. IMPERFECT PATH CAPACITY KNOWLEDGE

In the preceding results, the path manager and the sched-
ulers had perfect knowledge of the capacity of the available
paths. In a real system, this knowledge is likely to be delayed.
Hence, next we introduce a delay in the proxy for obtaining
capacity change information. We model this as a random
truncated normally distributed delay, with parameters 𝜇 ms,
𝜎 = 𝜇/10, and limited by [0, 2𝜇]. Fig. 7 presents results for
interesting points of Fig. 6: 𝑃

[
𝑇Arr→App ≤ {300 𝜇s, 3 ms}] , for

0 ≤ 𝜇 ≤ 30 ms, showing the trend as the working knowledge
of the capacity becomes more stale. In a deployed system,
the critical value will be determined by the overall sender
to receiver delays and the jitter buffer configuration at the
receiver, which is beyond the scope of this work.

The knowledge of path capacities affects the following three
elements of the system: (i) the path manager’s parametrization
of the MMFQ and its selection of paths to add or remove;
(ii) the path scheduling choices of HCF and HCF+; (iii) the
choice of whether to send a parity packet or not. Imperfect
capacity knowledge affects the RR discipline results the least
since it does not use capacity knowledge to make scheduling
decisions (Fig. 7a). Both HCF (Fig. 7b) and HCF+ (Fig. 7c)
rely on knowledge of the channel capacity to schedule packets,
with delays in capacity knowledge naturally affecting the
smaller delay probabilities (𝑇Arr→App ≤ 300 𝜇s) more. Since
the ERC scenarios suffer all three effects of the delayed
capacity knowledge, they suffer more as indicated by the larger
slopes of their respective lines compared with the uncoded
scenario. The effect is most dramatic for HCF+, which relies
on capacity knowledge for choosing not to send on very
low capacity paths; the detrimental effects of the delay being
exacerbated by it not using capacity when it is available.
The effect of increasing delays in capacity knowledge on
delay probabilities is roughly linear in these experiments
suggesting that it will be easy to model and predict. This
needs further verification, but was found to roughly hold for
𝑃
[
𝑇Arr→App ≤ [0.3, 100] ms

]
.

V. CONCLUSIONS AND FUTURE WORK

The HCF and HCF+ capacity aware scheduling disciplines
significantly reduce proxy to receiver delays, with the non-
work conserving HCF+ allowing a high probability of very
low delays. Adding ERC eliminates most HoL blocking delays
in the receiver, but the overhead tends to increase the overall
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Fig. 6. Scheduling with convolutional erasure codes, but sending parity packets only when capacity allows it, i.e., only when 𝑘+1
𝑘

𝐴 ≤ 𝐶.
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Fig. 7. Scheduling with imperfect capacity knowledge for 0 ≤ 𝜇 ≤ 30 ms. Sending parity packets only when capacity allows it.

delay, only having a net delay improvement in the naive RR
scheduling scenario. Since the delay cost in sending parity
packets is higher than the delays they reduce at the receiver
queue, choosing not to send parity packets when capacity
is insufficient redresses the balance in the capacity aware
disciplines. This allows a net delay reduction at the expense
of a little receiver queueing for HCF and HCF+ with ERC.

We investigated the effect of imperfect knowledge of path
capacities in terms of delays in capacity knowledge. Looking
at 𝑃

[
𝑇Arr→App ≤ {300 𝜇s, 3ms}] , we find the effect is roughly

linear and affects the capacity aware schedulers more, and
the non-work conserving HCF+ worst. This suggests that the
benefits of HCF+ may not be achievable in a deployed system
with a low ms target delay.

The effectiveness of ERC in reducing delay depends on the
probability of packets being sent on very low capacity paths,
which is related to the LoS↔NLoS transition probabilities.
We plan to investigate this information theoretic problem to
determine the ideal coding rates for any given scenario. Further
steps in this work will examine the whole system [see 4],
optimising in real-time the balance of mmWave path use,
sender data rate, receiver quality, battery usage, scheduling
and ERC coding for a particular scenario in use.
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