
Solving Compressed Right Hand Side Equation

Systems with Linear Absorption

Thorsten Ernst Schilling and H̊avard Raddum

Selmer Center, University of Bergen
{thorsten.schilling,havard.raddum}@ii.uib.no

Abstract. In this paper we describe an approach for solving complex
multivariate equation systems related to algebraic cryptanalysis. The
work uses the newly introduced Compressed Right Hand Sides (CRHS)
representation, where equations are represented using Binary Decision
Diagrams (BDD). The paper introduces a new technique for manipu-
lating a BDD, similar to swapping variables in the well-known sifting-
method. Using this technique we develop a new solving method for CRHS
equation systems. The new algorithm is successfully tested on systems
representing reduced variants of Trivium.

Keywords: multivariate equation system, BDD, algebraic cryptanaly-
sis, Trivium.

1 Introduction

Keystream generators produce pseudo-random sequences to be used in stream
ciphers. A strong keystream generator must produce the sequence from a secret
internal state such that it is very difficult to recover this initial state from the
keystream. The security of a stream cipher corresponds to the complexity of
finding the internal state that corresponds to some known keystream.

The relation between the keystream sequence and the internal state of the
generator can be described as a system of algebraic equations. The variables in
the system are the unknown bits of the internal state (at some time), and possibly
some auxilliary variables. Solving the equation system will reveal the internal
state of the generator, and hence break the associated stream cipher. Solving
equation systems representing cryptographic primitives is known as algebraic
cryptanalysis, and is an active research field.

This paper explores one approach for efficiently solving big equation systems,
and is based on the work in [1], where the concept of Compressed Right Hand
Side (CRHS) equations was introduced. A CRHS equation is a Binary Decision
Diagram (BDD) together with a matrix with linear combinations of the variables
in the system as rows. The problem of solving CRHS equation systems comes
mainly from linear dependencies in the matrices associated with the BDD’s. In
this paper we introduce a new method for handling linear dependencies in CRHS
equations, which we call linear absorption. The basis for linear absorption are
two methods for manipulating BDD’s. One of them is the technique of swapping

T. Helleseth and J. Jedwab (Eds.): SETA 2012, LNCS 7280, pp. 291–302, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

292 T.E. Schilling and H. Raddum

variables in the well-known sifting method [2]. The other is similar, but, to the
best of our knowledge, not described in literature earlier. We call it variable
XOR.

We have tested the method of linear absorption on systems representing scaled
versions of Trivium [3]. We are able to break small versions of Trivium using lin-
ear absorption, proving that the method works. From these tests we derive an
early estimate for the complexity of breaking the full Trivium using linear ab-
sorption. Our results indicate that the complexity of solving systems representing
scaled Triviums increases with a factor 20.4 each time the size of the solution
space doubles.

2 Preliminaries

2.1 Binary Decision Diagrams

A Binary Decision Diagram (BDD) [4, 5] is a directed acyclic graph. BDDs were
initially mostly used in design and verification systems. Later implementations
and refinement led to a broader interest in BDDs and they were successfully
applied in the cryptanalysis of LFSRs [6] and the cipher Grain [7]. For our
purposes, we think of a BDD in the following way, more thoroughly described
in [1].

A BDD is drawn from top to bottom, with all edges going downwards. There
is exactly one node on top, with no incoming edges. There are exactly two nodes
at the bottom, labelled � and ⊥, with no outgoing edges. Except for � and ⊥
each node has exactly two outgoing edges, called the 0-edge and the 1-edge. Each
node (except for � and ⊥) is associated to a variable. There are no edges between
nodes associated to the same variable, which are said to be at the same level.
An order is imposed on the variables. The node associated to the first variable
is drawn on top, and the nodes associated to the last variable are drawn right
above � and ⊥. Several examples of BDDs are found in the following pages.

A path from the top node to either � or ⊥ defines a vector on the variables.
If node F is part of the path and is associated to variable x, then x is assigned
0 if the 0-edge is chosen out from F , and x is assigned 1 if the 1-edge is part of
the path. A path ending in � is called an accepted input to the BDD.

There is a polynomial-time algorithm for reducing the number of nodes in
a BDD, without changing the underlying function. It has been proven that a
reduced BDD representing some function is unique up to variable ordering. In
literature this is often referred to as a reduced, ordered BDD, but in this work
we always assume BDDs are reduced, and that a call to the reduction algorithm
is done whenever necessary.

2.2 Compressed Right Hand Side Equations

In [1] the concept of the Compressed Right Hand Side Equations was introduced.
CRHS equations give a method for representing large non-linear constraints

Solving CRHS Equation Systems with Linear Absorption 293

along with algorithms for manipulating their solution spaces. In comparison to
previous methods from the same family of algorithms [8–10] they offer an efficient
way of joining equations with a very large number of solutions.

CRHS equations are a combination of the two different approaches Multiple
Right Hand Side Equations [9] (MRHS equations) and BDDs. While MRHS
equations were initially developed for cryptanalysis, BDDs were developed for
other purposes. Combining the two provides us with a powerful tool for algebraic
cryptanalysis. For instance, using CRHS equations it is possible to create a
single large BDD representing the equation system given by the stream cipher
Trivium.

Definition 1 (CRHS Equation [1]). A compressed right hand side equation
is written as Ax = D, where A is a binary k × n-matrix with rows l0, . . . , lk−1

and D is a BDD with variable ordering (from top to bottom) l0, . . . , lk−1. Any
assignment to x such that Ax is a vector corresponding to an accepted input
in D, is a satisfying assignment. If C is a CRHS equation then the number of
vertices in the BDD of C, excluding terminal vertices, is denoted B(C).

Example 1 (CRHS Equation). In order to write:

f(x1, . . . , x6) = x1x2 + x3 + x4 + x5 + x6 = 0

as a CRHS equation one chooses a name for every linear component in f(x1,
. . . , x6) = 0. Here we decide to name the linear components l0 = x1, l1 = x2, l2 =
x3 + x4 + x5 + x6. Furthermore one needs to define an ordering on these linear
components. For this example we we select the order l0, l1, l2, from top to bottom.

The matrix A formed by the linear components is then our left hand side
of the CRHS equation. The BDD formed by the possible values of l0, l1, l2 in
f(x1, . . . , x6) = 0 together with the before defined order forms the right hand
side of the CRHS equation.

The resulting CRHS equation is then:

⎡
⎣
x1 = l0
x2 = l1
x3 + x4 + x5 + x6 = l2

⎤
⎦ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l0

l1

l2

� ⊥

v0

v1

v2 v3

. (1)

The right hand side of the CRHS equation represents the possible values of
l0, l1, l2 in f(x1, . . . , x6) = 0 in compressed form. The set of solutions of (1) is
the union of all solutions of Ax = L, where L is a vector contained in the right
hand side as an accepted input to the BDD. Naming equation (1) as E0, we have
B(E0) = 4.

294 T.E. Schilling and H. Raddum

2.3 Joining CRHS Equations

Given two CRHS equations A and B it is natural to ask: What are the common
solutions to A and B?

In [1] an algorithm, called CRHS Gluing is introduced. The algorithm takes as
input two CRHS equations and has as output a new CRHS equation which con-
tains the solutions of the conjunction of the input. This algorithm is exponential
in space and time consumption. Nevertheless, the constant of this exponential
has been shown to be small enough for practical applications.

Here, we use a simpler and cheaper method of joining two CRHS equations.
Given two BDDs D1 and D2, the notation (D1 → D2) is defined to simply mean
that � in D1 is replaced with the top node in D2. The two ⊥-nodes from D1

and D2 are merged into one ⊥, and the resulting structure is a valid BDD.
Given the two CRHS equations [L1]x = D1 and [L2]x = D2 the result of

joining them is
[
L1

L2

]
x = (D1 → D2)

Any accepted path in (D1 → D2) gives accepted paths in both D1 and D2. In

other words, any x such that

[
L1

L2

]
x yields an accepted path in (D1 → D2) gives

solutions to the two initial CRHS equations.

When there are linear dependencies among the rows in

[
L1

L2

]
we get paths

in (D1 → D2) that lead to false solutions. The problem of false solutions is the
only problem preventing us from having an efficient solver for CRHS equation
systems. This problem is addressed in Section 3.3.

Example 2 (Joining CRHS equations). The following two equations are similar
to equations in a Trivium equation system. In fact, the right hand sides of the
following are taken from a full scale Trivium equation system. The left hand
matrices have been shortened.

⎡
⎣
x1 = l0
x2 = l1
x3 + x4 = l2

⎤
⎦ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l0

l1

l2

� ⊥

u0

u1

u2 u3

,

⎡
⎣
x4 = l3
x5 = l4
x6 + x7 = l5

⎤
⎦ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l3

l4

l5

� ⊥

v0

v1

v2 v3

(2)

Solving CRHS Equation Systems with Linear Absorption 295

The joining of the equations above is

⎡
⎢⎢⎢⎢⎢⎢⎣

x1 = l0
x2 = l1
x3 + x4 = l2
x4 = l3
x5 = l4
x6 + x7 = l5

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l0

l1

l2

l3

l4

l5

�

w0

w1

w2 w3

w4

w5

w6 w7

, (3)

where ⊥-paths in this last graph are omitted for better readability. The resulting
equation has 8 nodes, where the corredsponding MRHS equation would have 16
right hand sides.

Joining two CRHS equations E0 and E1 is really nothing more than putting
one on top of the other and connect them. If E0 and E1 are joined to form E,
it is easy to see that B(E) = B(E0) + B(E1). The complexity of joining CRHS
equations is linear, and we can easily build a single CRHS equation representing,
for instance, the full Trivium. The CRHS equation representing the full Trivium
will have less than 3000 nodes, but 21336 paths in the long BDD, of which maybe
only one is not a false solution.

3 Solving Large CRHS Equation Systems

After joining several CRHS equations together the left hand side of the resulting
equation may contain linear dependencies which are not reflected in the right
hand side BDD. The matrix of the CRHS equation contains rows which sum to
0. The BDD on the other hand is oblivious to this fact and contains paths which
sum to 1 on the affected variables.

Since the set of solutions of the CRHS equation is the union of solutions to
the individual linear systems formed by each vector of the right hand side, we
need to filter out those vectors which yield an inconsistent linear system. Let for
example the left hand side of a CRHS equation contain the linear combinations
li, lj and lk and assume we found that li+lj+lk = 0. The BDD might nevertheless
contain a path which assigns li, lk and lk to values that make their sum equal to 1.

296 T.E. Schilling and H. Raddum

Since we know that this path in the BDD does not correspond to a solution we
would like to eliminate it from the BDD.

In practical examples from the cryptanalysis of Trivium we end up with the
situation that almost all paths on the right hand side are of this kind, i.e., not
corresponding to the left hand side. The major problem is that we cannot easily
delete a path by some simple operation, e.g., deleting a node. This is because
there are many paths passing through a single node.

In order to delete all invalid solutions from a CRHS equation, we introduce
the techniques Variable XOR and Linear Absorption in the following. They are
new methods for the manipulation of BDDs and can be used to take care of
removing paths which correspond to false solutions.

3.1 Variable Swap

A usual operation on a BDD is to swap variable levels [2] while preserving the
function the BDD represents. This means to change the permutation of variables
in a BDD by exchanging adjacent positions of two variables. This is done for
example to change the size of a specific BDD. We will use this technique in the
following and give a short introduction to it.

The origins of the BDD data structure lie within the Shannon Expansion
[11]. In the following let be F = f(x0, . . . , xn−1), Fxr = f(x0, . . . , xr−1, 1, xr+1,
. . . , xn−1) and Fxr

= f(x0, . . . , xr−1, 0, xr+1, . . . , xn−1). Then by the Shannon
expansion every Boolean function can be represented in the form

F = x · Fx + x · Fx. (4)

We write the function as a BDD with the root node denoted F = (x, Fx, Fx).
Here x is the variable defining the level of the node, Fx is the node connected
through the 1-edge and Fx is the node connected to the 0-edge. Fx and Fx are
called the co-factors of the node F .

Let the variable coming after x in the variable order be y. To expand (4) by
the variable y, we have to expand the subfunctions Fx and Fx accordingly:

F = x · (y · Fxy + y · Fxy) + x · (y · Fxy + y · Fxy). (5)

Again, as a root node of a BDD we have F = (x, (y, Fxy , Fxy), (y, Fxy, Fxy)) but
this time with explicitly written co-factors. Assume we would like to swap the
order of x and y. Then we can equivalently write (5) as

F ′ = y · (x · Fxy + x · Fxy) + y · (x · Fxy + x · Fxy) (6)

which leads us to the new node representation of F ′ = (y, (x, Fxy, Fxy), (x, Fxy ,
Fxy)). Now the order of the variables x and y is swapped. Since (5) and (6) are
equivalent so are our BDD nodes before and after the swap.

Moreover, it becomes clear that swapping two variables is a local operation,
in the sense that only nodes at levels x and y are affected. If one would like to
swap the levels x and y (where as above x is before y in the BDD permutation)
one has to apply the operation above to every node at level x and change it
accordingly.

Solving CRHS Equation Systems with Linear Absorption 297

Example 3 (Variable Swap).

l0

l1

l2

� ⊥

u0

u1

u2 u3

−→

l0

l2

l1

� ⊥

u0

u′
1 u3

u′
2 u′

3

Fig. 1. Swapping l1 and l2

On the left side in Fig. 1 a BDD along with its permutation (l0, l1, l2) is de-
picted. In order to swap levels l1 and l2, i.e., change the permutation to (l0, l2, l1),
one has to apply the swapping routine described above to all nodes at level l1.
In this case u1 = (l1, u2, u3) is the only node affected. With explicitly written
co-factors we get u1 = (l1, (l2,�,⊥), (l2,⊥,�)). From the swapping procedure
above we know that the resulting new node is u′

1 = (l2, (l1,�,⊥), (l1,⊥,�)) =
(l2, u

′
2, u

′
3). Node u3 stays unchanged.

3.2 Variable XOR

In this section we introduce a new method for manipulating BDDs, the variable
XOR operation. As the name suggests, we change a variable by XORing a dif-
ferent variable onto it. To preserve the original function we have to change the
BDD accordingly. Below we explain how this is done. In fact, the procedure is
quite similar to Variable Swap, and is only a local operation.

Let x and y be two consecutive BDD variables (x before y) and σ = x + y.
We want to transform (5) into:

F ′ = x · (σ · Fxσ + σ · Fxσ) + x · (σ · Fxσ + σ · Fxσ). (7)

We can see that if x = 1 then Fxσ = Fxy and Fxσ = Fxy. Similarly if x = 0 then
Fxσ = Fxy and Fxσ = Fxy. With that in mind (7) can be written as

F ′ = x · (σ · Fxy + σ · Fxy) + x · (σ · Fxy + σ · Fxy) (8)

which leads immediately to the new node representation
F ′ = (x, (σ, Fxy , Fxy), (σ, Fxy, Fxy)). With this manipulation extra care has to
be taken of edges incoming to nodes at the y-level that jumps over the x-level.
Here temporary nodes have to be introduced since y goes over into σ and cannot
longer be addressed directly.

298 T.E. Schilling and H. Raddum

Example 4 (Variable XOR).

l0

l1

l2

� ⊥

u0

u1

u2 u3

→

l0

l1

l2

� ⊥

u0

u1

u2 u3

t0

→

l0

l1

l1 + l2

� ⊥

u0

t′0

u′
2 u′

3

The first diagram shows the initial BDD in which the variable levels l1 and l2 are
to be XORed. The second diagram represents how the auxilliary node t0 needs
to be introduced since the edge (u0, u3) ignores the l1 level. Then the variable
XOR procedure is applied to both u1 and t0, and the resulting BDD is reduced.
After the application of the modification of equation (5) to (7) the result of the
variable XOR method to variables l1 and l2 of the initial diagram is depicted.

3.3 Linear Absorption

We are now ready to explain the method of linear absorption.
Assume we have a BDD with (l0, . . . , lk−1) as the ordered set of linear com-

binations associated with the levels. We can easily find all linear dependencies
among the li’s. Assume that we have found the dependency li1+li2+. . .+lir = 0,
where i1 < i2 < . . . < ir.

By using variable swap repeatedly, we can move the linear combination li1
down to the level just above li2 . Then we use variable XOR to replace li2 with
li1 + li2 . Next, we use varlable swap again to move li1 + li2 down to the level
just above li3 , and variable XOR to replace li3 with li1 + li2 + li3 . We continue
in this way, picking up each lij that is part of the linear dependency, until we
replace lir with li1 + li2 + . . .+ lir . Let us call the level of nodes associated with
li1 + li2 + . . .+ lir for the zero-level.

We know now that the zero-level has the 0-vector associated with it. This
implies that any path in the BDD consistent with the linear constraint we started
with has to select a 0-edge out of a node on the zero-level. In other words, all
1-edges going out from this level lead to paths that are inconsistent with the
linear constraint li1 + li2 + . . .+ lir = 0, and can be deleted.

After deleting all outgoing 1-edges, there is no longer any choice to be made
for any path going out from a node at the zero-level. If F is a node at the
zero-level, any incoming edge to F can go directly to F0, jumping the zero-level
altogether. After all incoming edges have been diverted to jump the zero-level,

Solving CRHS Equation Systems with Linear Absorption 299

all nodes there can be deleted, and the number of levels in the BDD decreases
by one. We are now certain that any path in the remaining BDD will never be
in conflict with the constraint li1 + li2 + . . . + lir = 0; we say that the linear
constraint has been absorbed.

We can repeat the whole process, and absorb one linear constraint at the time,
until all remaining li are linearly independent. At that point, any remaining path
in the BDD will yield a valid solution to the initial equation system.

4 Experimental Results

We have tested Linear Absorption on equation systems representing scaled ver-
sions of Trivium.

4.1 Trivium and Trivium-N

Trivium is a synchronous stream cipher and part of the ECRYPT Stream Cipher
Project portfolio for hardware stream ciphers. It consists of three connected non-
linear feedback shift registers (NLFSR) of lengths 93, 84 and 111. These are all
clocked once for each keystream bit produced.

Trivium has an inner state of 288 bits, which are initialized with 80 key bits, 80
bits of IV, and 128 constant bits. The cipher is clocked 1152 times before actual
keystream generation starts. The generation of keystream bits and updating the
registers is very simple. For algebraic cryptanalysis purposes one can create four
equations for every clock; three defining the inner state change of the registers
and one relating the inner state to the keystream bit. Solving this equation
system in time less than trying all 280 keys is considered a valid attack on the
cipher.

Small Scale Trivium. In [1] a reduced version of Trivium, called Trivium-N was
introduced. N is an integer value which defines the size of the inner state of that
particular version of Trivium. Trivium-288 is by our construction equivalent to
the originally proposed Trivium.

All versions of Trivium-N with N < 288 try to preserve the structure of
the original Trivium as well as possible. This yields equation systems which
are comparable to the full cipher. Other small scale version of Trivium e.g.,
Bivium [12], in which an entire NLFSR was removed, seems to be too easy to
solve.

4.2 Results

We have constructed CRHS equation systems representing Trivium-N for several
values of N , and run the algorithm for absorbing linear constraints described in
Section 3.3. For N ≤ 41 we were able to absorb all linear constraints, which
means that any remaining path in the BDD is a valid solution to the system (we
have also verified this).

300 T.E. Schilling and H. Raddum

The number of nodes in the BDD grows very slowly when absorbing the
first linear constraints, but increases more rapidly when the linear constraints
of length two have been absorbed. We know, however, that the number of paths
will be very small once all linear constraints have been absorbed since we expect
a unique, or very few, solution(s). Thus the number of nodes must also decrease
quickly after the number of absorbed constraints is past some tipping point.
For each instance we have recorded the maximum number of nodes the BDD
contained during execution, and used this number as our measure of complexity.
The memory consumtion is dominated by the number of nodes, and in our
implementation each node took 60 bytes. The memory requirement in bytes can
then be found approxiamtely by multiplying the number of nodes with 60.

The results for testing the algorithm on Trivium-N for 30 ≤ N ≤ 41 is written
below.

N max. # of nodes
30 219.92

31 221.02

32 221.15

33 220.84

34 221.41

35 222.32

36 221.61

37 223.27

38 223.49

39 223.79

40 223.69

41 224.91

The number of solutions (paths) in each instance was found to be between 1
and 3. The number of levels in the final BDD was 73 for N = 30, and 97 for
N = 41.

The numbers above have been produced using only a single test for each N .
We can expect some variation in the maximum number of nodes when re-doing
tests using different initial states for some particular Trivium-N . The numbers
are plotted in Fig. 2 to show the general trend in the increase of complexity.

4.3 Extrapolating

We can use the least-square method to fit a linear function to the data points we
have. Letting 2M be the maximum number of nodes needed, the linear function
that best approximates our data is M = 0.4N + 7.95.

When N increases by 1, the size of the solution space for the variables in
the initial state doubles. However, the total number of variables in the system
increases by three when N increases by 1. This is because we need to clock the
cipher one step further to have enough known keystream for a unique solution,
and each clock introduces three new variables. Hence we can say that the size

Solving CRHS Equation Systems with Linear Absorption 301

 19.5

 20

 20.5

 21

 21.5

 22

 22.5

 23

 23.5

 24

 24.5

 25

 30 32 34 36 38 40 42

""

Fig. 2. Trend of complexities for Trivium-N

of the problem instance increases by a factor 23 for each increase in N . The
complexity of our solving method only increases with a factor of approximately
20.4 on the tested instances, which we think is quite promising.

Admittedly, we have too little data to draw any clear conclusions, but it is
still interesting to see what value of M we get for N = 288. Based on the data
we have, we find that currently we need to be able to handle around 2123 nodes
in a BDD for successfully attacking the full Trivium.

5 Conclusions and Future Work

We have introduced how to alter a BDD to preserve the underlying function when
two variables are XORed. Together with variable swap, we have introduced a
new solving method in algebraic cryptanalysis, which we call linear absorption.
The solving technique works on equations represented in CRHS form.

The work in this paper gives more insight into how to solve some of the open
questions in [1], and provides a complete solving method. We have shown how the
method works on systems representing scaled versions of Trivium. The structure
of the equations is exactly the same in the down-scaled and the full versions of
Trivium, it is only the number of equations and variables that differ. Our tests
thus gives some information on the complexity of a successful algebraic attack
on the full Trivium.

302 T.E. Schilling and H. Raddum

Unfortunately, we have not had the time to test linear absorption on other
ciphers, or test more extensively on Trivium-N . This is obviously a topic for
further research. We also hope to further investigate the problem of how to find
a path in a BDD that satisfies a set of linear constraints. There may be tweaks
to the algorithm of linear absorption, or there may be a completely different and
better method. In any case, we hope to see more results on solving methods for
CRHS equation systems.

References

1. Schilling, T.E., Raddum, H.: Analysis of trivium using compressed right hand side
equations. In: 14th International Conference on Information Security and Cryptol-
ogy, Seoul, Korea, November 30-December 2. LNCS (2011)

2. Rudell, R.: Dynamic variable ordering for ordered binary decision diagrams. In:
Proceedings of the 1993 IEEE/ACM International Conference on Computer-aided
Design, vol. 12, pp. 42–47 (1993)

3. Cannière, C.D., Preneel, B.: Trivium specifications. ECRYPT Stream Cipher
Project (2005)

4. Akers, S.B.: Binary decision diagrams. IEEE Transactions on Computers 27(6),
509–516 (1978)

5. Somenzi, F.: Binary decision diagrams. In: Calculational System Design. NATO
Science Series F: Computer and Systems Sciences, vol. 173, pp. 303–366. IOS Press
(1999)

6. Krause, M.: BDD-Based Cryptanalysis of Keystream Generators. In: Knudsen,
L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 222–237. Springer, Heidelberg
(2002)

7. Stegemann, D.: Extended BDD-Based Cryptanalysis of Keystream Generators. In:
Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 17–35.
Springer, Heidelberg (2007)

8. Raddum, H.: MRHS Equation Systems. In: Adams, C., Miri, A., Wiener, M. (eds.)
SAC 2007. LNCS, vol. 4876, pp. 232–245. Springer, Heidelberg (2007)

9. Raddum, H., Semaev, I.: Solving multiple right hand sides linear equations. De-
signs, Codes and Cryptography 49(1), 147–160 (2008)

10. Schilling, T.E., Raddum, H.: Solving Equation Systems by Agreeing and Learning.
In: Hasan, M.A., Helleseth, T. (eds.) WAIFI 2010. LNCS, vol. 6087, pp. 151–165.
Springer, Heidelberg (2010)

11. Shannon, C.E.: The synthesis of two-terminal switching circuits. Bell Systems
Technical Journal 28, 59–98 (1949)

12. McDonald, C., Charnes, C., Pieprzyk, J.: Attacking Bivium with MiniSat. eS-
TREAM, ECRYPT Stream Cipher Project, Report 2007/040 (2007),
http://www.ecrypt.eu.org/stream

http://www.ecrypt.eu.org/stream

	Solving Compressed Right Hand Side Equation Systems with Linear Absorption

	Introduction
	Preliminaries
	Binary Decision Diagrams
	Compressed Right Hand Side Equations
	Joining CRHS Equations

	Solving Large CRHS Equation Systems
	Variable Swap
	Variable XOR
	Linear Absorption

	Experimental Results
	Trivium and Trivium-N
	Results
	Extrapolating

	Conclusions and Future Work
	References

