
On the Number of Linearly Independent

Equations Generated by XL

Sondre Rønjom and H̊avard Raddum

Department of Informatics, University of Bergen, N-5020 Bergen, Norway
sondrer@ii.uib.no, haavardr@ii.uib.no

Abstract. Solving multivariate polynomial equation systems has been
the focus of much attention in cryptography in the last years. Since most
ciphers can be represented as a system of such equations, the problem of
breaking a cipher naturally reduces to the task of solving them. Several
papers have appeared on a strategy known as eXtended Linearization
(XL) with a view to assessing its complexity. However, its efficiency
seems to have been overestimated and its behaviour has yet to be fully
understood. Our aim in this paper is to fill in some of these gaps in our
knowledge of XL. In particular, by examining how dependencies arise
from multiplication by monomials, we give a formula from which the
efficiency of XL can be deduced for multivariate polynomial equations
over F2. This confirms rigorously a result arrived at by Yang and Chen
by a completely different approach. The formula was verified empirically
by investigating huge amounts of random equation systems with varying
degree, number of variables and number of equations.

Keywords: XL, Gröbner bases, Stream Ciphers.

1 Introduction

The problem of solving multivariate polynomial equations is encountered in
many different fields. This problem has in particular received a great deal of
attention in cryptography. The problem of breaking a cipher is reformulated
as a problem of solving a (very large) system of polynomial equations. Solving
multivariate polynomial equations over F2 is known to be NP-hard.

XL was proposed in [10], as a new algorithm for solving multivariate poly-
nomial equations. A parameter D is associated with XL, and the complexity of
XL is exponential in D. In [10] and [11], the authors try to evaluate for which
D XL works. For a system with m equations in n variables they use the esti-
mation D ≈ n√

m
, which seems to work fine for special cases, but for general

systems this approximation becomes very inaccurate. For the AES, we estimate
that D ≈ n√

m
· 2.5, and for Serpent it is more like D ≈ n√

m
· 4.9, which makes

a huge difference, as running time is exponential in D. So it is evident that the
early estimations of D are inaccurate. This is also shown in [13] where a formula
for estimating D is given. This formula applies to quadratic systems over large
fields and is proved to be correct given one more assumption.

S.W. Golomb et al. (Eds.): SETA 2008, LNCS 5203, pp. 239–251, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



240 S. Rønjom and H. Raddum

The link between XL and computing Gröbner bases was established in [12].
Their computer simulations show that XL do not seem to follow the proposed
bound D ≈ n√

m
, but behave much worse. They also compare Faugères F4

Gröbner basis algorithm with XL, and show that F4 computes a Gröbner basis
in less time, using less space. This conclusion is not very surprising, as XL tries
to compute a Gröbner basis, but spends huge amount of time computing depen-
dent equations, such that the reduction step spends an equal amount of time
computing zero. The difference from other Gröbner basis algorithms is that XL
contains no strategies nor avoid linear dependencies. So XL can be said to be a
worst kind of Gröbner basis algorithm.

In [5], Yang and Chen describe a formula for estimating D, but as they men-
tion, their formula is neither trivial to use nor proved to be correct.

2 Preliminaries

Let λ = F2[x1, ..., xn]/{x2
i + xi}1≤i≤n denote the ring of Boolean functions in

n variables x1, x2, . . . , xn which satisfy the relation x2
i + xi = 0 since xi ∈ F2.

Then an f ∈ λ defines a function F
n
2

f−→ F2, on the n-dimensional vector space
F

n
2 , with values in F2. We define a set of polynomials by

F = {f1(x1, ..., xn), ..., fm(x1, ..., xn)} ⊆ λ

and the associated system of equations

E = {f1(x1, ..., xn) = 0, ..., fm(x1, ..., xn) = 0}.
We associate a function over F2 with its coefficient vector, so to avoid confusion

we introduce notation for this.

Definition 1. Let f ∈ λ. We denote by [f ] the vector indexed by the 2n mono-
mials in λ, which contains a 1 at indices where the corresponding monomial
appear in f and 0 otherwise, with respect to some monomial ordering. We call
[f ] the coefficient vector of f . When writing m[f ] for a monomial m, we will
mean [mf ]. This is well-defined, so for a polynomial g, g[f ] (a sum of vectors)
is equal to [gf ].

2.1 The XL Algorithm

Let F be a system of m polynomials of degree De. We associate a number Dm ∈
N, such that XL is constrained by 1 ≤ deg(m) ≤ Dm, where m is a monomial.
Further let D = De + Dm, and let λ≤d denote the span of the monomials of
degree less than or equal to d. XL will construct a new system UD, formed by
multiplying each polynomial in F with all monomials of degree less than or equal
to Dm, that is, UD = λ≤Dm⊗F . Then UD will contain polynomials satisfying 0 ≤
deg(fi) ≤ D. The version of XL defined in [10] consider only quadratic systems,
but we generalize our analysis and consider polynomial systems of any degree
De. XL constructs a set of polynomials UD, satisfying the following properties:



On the Number of Linearly Independent Equations Generated by XL 241

– F ⊆ UD ⊆ λ≤D: F is contained in UD which is a subset of all polynomials
of degree less or equal to D.

– The total number of polynomials in UD after an execution of XL is |UD| =
m ·∑Dm

i=0

(
n
i

)
, but these are not necessarily linearly independent.

The XL algorithm can now be described as follows (adapted from original paper):

Algorithm (The XL algorithm). For a positive integer Dm and a set of
polynomial equations F = {f1, . . . , fm}, execute the following steps:

1. Multiply: Generate all the products m · fi ∈ UD, 1 ≤ deg(m) ≤ Dm, fi ∈ F
2. Linearize: Consider each monomial m with deg(m) ≤ D as a new variable

and perform Gaussian elimination on the equations obtained in Step 1.
3. Solve or Repeat : If the system is not solved, increase Dm and redo step 1

and 2.

Remark 1. Setting De = 2 gives the algorithm from [10].

The idea behind the algorithm is that new linearly independent equations are in
fact generated. But this comes at the expense of increasing the total degree D
of the system UD. In [12] it is shown that XL is basically the construction of the
Macaulay matrix. Lazard (see [17] and [18]) describes the link between linear
algebra and computing Gröbner bases and proves that Gaussian elimination on
the Macaulay matrix for D large enough returns a Gröbner basis. Thus the
problem presented above can be reformulated as:

Problem 1. For which D will the XL algorithm, after a row reduction of UD with
respect to a monomial ordering, return a matrix with full rank?

It should be noted that the fastest Gröbner basis algorithm, Faugeres F5 algo-
rithm, is based on the same type of computation as XL. However, F5 differs
from XL in that it avoids computing unnecessary linear dependencies. But our
result applies also to the case of F5, as both algorithms reach the same degree
D before a linear basis can be computed.

2.2 Restrictions on F

Exact analysis becomes very hard, if not impossible, if we assume nothing about
the polynomials in F . The best approach is to define a sufficiently general re-
striction on the system F in which the algorithm can be analyzed in fair terms.
In this section we define some restrictions on F , which is almost always fulfilled
for systems coming from cryptography.

First, we put the following restrictions on F :

– Total degree: deg(fi) = De, ∀fi ∈ F .
– All [fi] are linearly independent.

We will also restrict F by defining the types of relations which occur between
the polynomials.



242 S. Rønjom and H. Raddum

Construct the coefficient matrix H0 of the set UD, and assume Dm ≥ De. The
rows of H0 consist of all vectors m[fj], with 1 ≤ j ≤ m and 0 ≤ deg(m) ≤ Dm.
Since we have formed products of fj with all monomials of degree 0 ≤ deg(m) ≤
deg(fi), some of the rows in H0 will add together to [fj ]fi. We can do the
same starting with fi and construct some coefficient vectors that add up to
[fi]fj . Since [fi]fj = [fj ]fi we have identified a linear dependency among some
rows of H0.

During the execution of XL, as long as Dm ≥ De, we will always create linear
dependencies of the form

[fj ] · fi + [fi] · fj = 0.

The relation
fi · [fi] + [fi] = 0

also occurs since we have that x2
i + xi = 0. These relations are trivial in that

they will always exist for the equation systems over λ.

3 Equation Systems from LFSR-Based Stream Ciphers

Equations coming from LFSR-based stream ciphers are examples of equations
that are very interesting with respect to an XL-type algorithm. Assume we are
given a set of equations F = {f1 = 0, f2 = 0, . . . , fm = 0} coming from a reg-
ularly clocked filter generator. Let g(x) ∈ F2[x] denote a primitive generator of
F2n such that the binary sequence st =

∑n−1
i=0 st−n+ici is a sequence with maxi-

mal period 2n − 1 (an m-sequence). Then let f(x1, . . . , xn) denote a Boolean
filter function of degree d. Then the keystream-sequence z = {zt}t=0,1,... is
generated by

zt = f(st, st+1, . . . , st+n−1),

which can be represented by the equations F = ft(s0, . . . , sn−1) + zt = 0t=0,1,...,
where f(st, . . . , st+n−1) = ft(s0, . . . , sn−1), since st can be written in terms of
the initial state bits s0, s1, . . . , sn−1. Let Wd =

∑d
i=1

(
n
i

)
denote the number of

monomials of degree less or equal to d. Then the coefficient vector [f ] may be
restricted to a length W binary vector. Notice that in the direct algebraic attack
we need W equations in order to solve the system using a naive linear algebra
attack. Following [RonHel], there exist a W ×W linear matrix operator T , which
is invariant of the filtering function f(x1, . . . , xn), but variant of the polynomial
g(x). Using their notation, we may instead write the sequence zt by

zt = f(st, st+1, . . . , st+n−1)
= s∗t [f0]
= s∗0T

t[f ]
= s∗0[ft],



On the Number of Linearly Independent Equations Generated by XL 243

where s∗t is the expanded state vector [st, . . . , st+n−1, stst+1, . . . , st+n−1 · · ·
st+n−d]. Thus, the equations in F are simply generated by F = {T tf}0≤t≤m

for some m ≤ W . In [19], the exact rank of the equation system F is deter-
mined. If l(z) denotes the degree of the minimal polynomial of the sequence
z = {zt}t=0,1,..., then we have that dim(F ) = m where 0 ≤ m ≤ ls(z) ≤ W .
There are basically two cases to consider:

– A. if m = l(z) ≤ W , then the system can be solved using a linear subspace
attack or variations (see for instance [20]).

– B. if m < l(z) ≤ W , then the system of m linearly independent equations
may be solved using an XL-type algorithm.

This just tells us that the systems coming from the filter generator satisfy the
two first restrictions in our analysis; that they are linearly independent and
have the same degree. But there is a possibility that the system may contain
nonlinear dependencies to begin with. For instance, the sequence z may satisfy
a nonlinear recursion zt+r = h(zt, zt+1, . . . zt+r−1), 0 ≤ r ≤ m, meaning that
ft+r = h(ft, ft+1, . . . , ft+r−1), 0 ≤ r ≤ m. If such a relation exist, we do not
need to use a method like XL, since we may generate as many equations as
we need using the nonlinear recursion h. On the other hand, determining such
relations on practical systems seems to be a very hard problem.

But for a Dm and De where D = Dm + De, then if there are no nonlinear
relations between the m equations in F of degree 
Dm

De
�, our estimate of the

number of linearly independent equations will be exact since the system will
only contain relations that we construct ourselves. Thus if the smallest degree
of a nonlinear relation between the equations in F is k, then our analysis will be
exact when applying XL with Dm = k · De − 1, but not for Dm = k · De.

4 Preliminary Observations

Before we present an explanation of XLs behaviour, we give an intuitive presen-
tation of how to count the dependencies which occur in the application of an
algorithm such as XL.

We assume that the systems we study behave according to our assumptions
in Section 2 and use the notation introduced in Section 2. We will look at the
analysis of XL on quadratic systems presented in [11], and correct a mistake
made there. This will help to see how to systematically count the number of
linear dependencies created by XL.

In the following, we set De = 2 and D = Dm +De. In [11] they use R to count
the total number of equations, and set S to be the number of dependencies and
I the number of linearly independent equations generated by XL, such that

I = R − S.

The authors do computer simulations on quadratic polynomial equations for
3 ≤ D ≤ 6 and identify some relations. For instance, for D = 4 they identify
two dependencies:



244 S. Rønjom and H. Raddum

1. fi[fj ] + fj[fi] = 0,
2. fi[fi] + [fi] = 0.

For D = 5 they identify additionally two types of dependencies:

3. fi[fj ]xk + [fi]fjxk = 0
4. fi[fi]xk + [fi]xk = 0

The authors conclude that these are the only existing dependencies for D = 4 and
D = 5, and verify that their estimations are coherent with computer simulations.
For D = 4 there are

(
m
2

)
ways of constructing relations on the form 1 and m ways

of constructing relations of the form 2. For D = 5 these numbers are multiplied
with the n+1 monomials of degree ≤ 1 to form additional types of dependencies:

– Case D = 4: I = R − (m2
)− m

– Case D = 5: I = R − (n + 1)
(
m
2

)− (n + 1)m.

For D = 6 they state that the number of linearly independent equations is

I = R −
((

n

2

)

+
(

n

1

)

+ 1
)

·
((

m

2

)

+ m

)

. (1)

At this point we step in and show where their analysis becomes wrong. They
conclude that the only relations will be multiples of fi[fj ] + fj [fi] = 0. It seems
reasonable to assume that they have drawn this conclusion based on Buchberger’s
two criterion, but this is not correct and will turn out fatal in further analysis
for larger D. Their formulas are indeed correct for 3 ≤ D ≤ 5, but for D = 6
they forget to count the dependencies among the dependencies. By a slight abuse
of notation, which will be clarified in the next section, these dependencies may
be expressed as follows (the number of such dependencies is indicated in the
brackets to the right):

5. fi[fj [fk]] + [fi[fj ]]fk + [[fi]fk]fj = 0 (
(
m
3

)
)

6. [[fi]fj ]fj + [[fi]fj] = 0 (2 · (m2
)
)

7. [[fi]fi]fi + [[fi]] = 0 (
(
m
1

)
)

This means we count
(
m+2

3

)
of the dependent equations twice, so we need to

balance this by calculating from an inclusion/exclusion point of view. Using the
authors notation, the correct bound should have been:

I = R −
((

n

2

)

+
(

n

1

)

+ 1
)

·
((

m

2

)

+ m

)

+
((

m

3

)

+ 2
(

m

2

)

+
(

m

1

))

(2)

Note that the formulas above for 3 ≤ D ≤ 6 works only for quadratic equations.
The dependencies behave with respect to the degree De of the initial system
E. If for instance De = 7 there would be constructed no dependencies applying
XL with Dm ≤ 6. If we work with linear equations, XL will introduce new
dependencies for each time we increase Dm.



On the Number of Linearly Independent Equations Generated by XL 245

5 The Number of Linearly Independent Equations in XL

In this section we will estimate the number of linearly independent equations
one generates with the XL-method. As we will see, the linear dependencies we
can identify is governed by products of polynomials from F , and the number of
dependencies is calculated by counting the number of such products. We multiply
each fi with all monomials of degree ≤ Dm (including the monomial 1, which
keeps the original polynomials) to form the set UD.

Let H0 be the matrix whose rows are the coefficient vectors of all polynomials
in UD. The columns of H0 are indexed by all monomials of degree ≤ Dm + De.
To avoid confusion in the generalization that follows, the rows of H0 are indexed
by m · r(fi), instead of m[fi]. The entry (m · r(fi), m′) is 1 if m′ occurs as a term
in m · fi and 0 otherwise.

We will now recursively construct a sequence of binary matrices Hi, i ≥ 1. The
rows of Hi will be indexed by m · r(fe1

i1
fe2

i2
· · · fes

is
), where

∑s
j=1 ej = i + 1 and m

is a monomial with deg(m) ≤ Dm − i ·De. The columns of Hi will have the same
indices as the rows of Hi−1. The degree of m needs to be non-negative, so the
final Hi we construct is for i = 
Dm

De
�. When writing g · r(· · · ) for a polynomial

g = m1 + . . . + mk, we will mean the sum m1 · r(· · · ) + . . . + mk · r(· · · ). The row
m · r(fe1

i1
fe2

i2
· · · fes

is
) will contain a 1 in all columns that occur as terms in the

following sum:

m ·
s∑

j=1

(fij + (eij − 1 mod 2))r(fe1
i1

· · · fej−1
ij

· · · fes

is
). (3)

The rest of the entries in row m · r(fe1
i1

fe2
i2

· · · fes

is
) will contain 0.

Let v be a binary vector indexed by the rows of Hi. If v ·Hi = 0, v identifies a
linear dependency between the rows of Hi. With the matrices Hi, i = 0, . . . , 
Dm

De
�

defined, we are ready to prove the first result.

Theorem 1. Hi · Hi−1 = [0], the all-zero matrix for i = 1, . . . , 
Dm

De
�. That is,

each row of Hi identifies a linear dependency among the rows of Hi−1.

Proof. The row m · r(fe1
i1

fe2
i2

· · · fes

is
) in Hi contains a 1 in the columns indexed

by the terms in the following sum

m ·
s∑

j=1

(fij + (eij − 1 mod 2))r(fe1
i1

· · · fej−1
ij

· · · fes

is
). (4)

If ej = 1, it means that f
ej−1
ij

vanishes from the expression r(· · · ). Assume
without loss of generality that et+1 = . . . = es = 1, and that ej > 1, j = 1, . . . , t.
We need to show that (4) is the all-zero vector when the terms are regarded as
rows in Hi−1. We substitute r(fe1

i1
· · · fej−1

ij
· · · fes

is
) with the expression given

by (3) to find which columns in Hi−1 that contain a 1 in the rows found in (4).



246 S. Rønjom and H. Raddum

We then examine the parity of the number of 1’s in these columns. After substi-
tuting, (4) can be written as

m·
s∑

j=1

(fij +(ej−1 mod 2))
s∑

k=1,k �=j

(fik
+(ek−1 mod 2))r(· · · fej−1

ij
· · · fek−1

ik
· · · )

+m ·
t∑

j=1

(fij + (ej − 1 mod 2))(fij + (ej − 2 mod 2))r(· · · fej−2
ij

· · · ). (5)

Each term in (5) represents a 1 in the column in Hi−1 corresponding to the
same term. In the double sum where j �= k, each r(· · · fej−1

ij
· · · fek−1

ik
· · · ) will

occur exactly twice, once when j < k and once when j > k. Both times the
polynomials to be multiplied with r(· · · fej−1

ij
· · · fek−1

ik
· · · ) will be m(fij + (ej −

1 mod 2))(fik
+ (ek − 1 mod 2)), so the number of 1’s in columns involving

r(· · · fej−1
ij

· · · fek−1
ik

· · · ) is even. For the remaining single sum, we note that
fij fij = fij and that exactly one of ej −1 and ej −2 is 1 mod 2 and the other is
0 mod 2. Multiplying out the brackets in the single sum we get m(fij + fij) = 0
mod 2 in front of each r(· · · fej−2

ij
· · · ), so the number of 1’s in columns involving

r(· · · fej−2
ij

· · · ) is also even. �
We are now ready to proceed to the main result, an estimation of the number
of linearly independent equations generated by the XL-method.

Theorem 2. Let I be the number of linearly independent equations generated by
the XL-method on a system of m equations in n variables, where each equation
has degree De and we multiply with all monomials of degree ≤ Dm. If the only
linear dependencies among the rows of Hi−1 are the ones indicated by Hi, then

I =
�Dm

De
	

∑

i=0

(−1)i

(
m + i

i + 1

)Dm−i·De∑

j=0

(
n

j

)

.

Proof. By the construction of the matrices Hi, we have I = rank(H0). Let
the number of rows in Hi be bi. If all the rows of Hi are linearly independent
we will have rank(Hi−1) = bi−1 − bi. However, there will in general be linear
dependencies also between the rows of Hi, so the correct expression will be

rank(Hi−1) = bi−1 − rank(Hi), i = 1, . . . 
Dm

De
�. (6)

The matrix H�Dm
De

	 will have full rank b�Dm
De

	 since there is no H-matrix coming
after it. By recursively using (6) for substituting the expressions for rank(Hi)
we have the following formula

I = rank(H0) =
�Dm

De
	

∑

i=0

(−1)ibi. (7)



On the Number of Linearly Independent Equations Generated by XL 247

To finish, we need to compute bi, the number of rows in Hi. The rows of Hi are
indexed by m ·r(fe1

i1
fe2

i2
· · · fes

is
), where deg(m) ≤ Dm− i ·De and

∑s
j=1 ej = i+1.

The number of choices for m is
∑Dm−i·De

j=0

(
n
j

)
. The number of ways to make a

product of i+1 equations by picking equations from the total set of m equations
is the number of ways to throw i + 1 balls into m bins. This number is

(
m+i
i+1

)
by

[9]. We then get

bi =
(

m + i

i + 1

)Dm−i·De∑

j=0

(
n

j

)

,

and substituting this into (7) gives us the desired expression. �
We restrict our analysis to systems which only contain trivial dependencies. This
means that our formula is not correct for initial systems containing other types
of dependencies. One example of non-trivial dependencies are systems containing
nonlinear dependencies.

6 Linking Theorem 2 to Theorem/Conjecture from
Related Work

We are aware of three papers by Yang and Chen (one also with Courtois) [5],
[6] and [7] which, among other things, try to estimate the number of linearly
independent equations generated by the XL-method. Their result uses the no-
tation [tD]p(t), which represents the coefficient of the D’th-degree term in the
polynomial (or series) p(t). For an instance of the XL algorithm where the initial
equations all have degree k, let T be the number of monomials generated, and
let I be the number of linearly independent equations. For F2, their result from
[5] is as follows.

Theorem 3

T − I ≥ [tD]
(

1
1 − t

(
1 − t2

1 − t

)n( 1 − tk

1 − t2k

)m)

when D < Dreg, where Dreg is the degree of the first term with a negative
coefficient in the series.

In [5] there is a proof of the theorem for k = 2, but this proof has been shown
to be flawed. In [6] they write “As pointed out by C. Diem, the [5] proof is
inaccurate.... In any event, since it is also confirmed by many simulations we
will henceforth assume Theorem 3 holds in general...” In [7] they write “The [5]
proof was faulty...”

Theorem 3 seeks to give an upper bound on the number of linearly indepen-
dent equations we can get from XL. With the extra assumption in Theorem 2,
saying that the only linear dependencies occurring are the ones we can identify,
Theorem 3 could be stated with equality. Below we will find the link between
Theorems 2 and 3, showing that these two results indeed say the same things



248 S. Rønjom and H. Raddum

when assuming only trivial linear dependencies. However, we thing that it is
easier to use Theorem 2 as one can plug in the numbers for a particular system
and do the simple arithmetic to get the expected number of linearly independent
equations. To find the same thing using Theorem 3, one needs to expand a com-
plicated series to find the coefficient of a particular term. We start by computing
the D’th degree coefficient in the series from Theorem 3

Proposition 1

[tD]p(t) = [tD]
(

1
1 − t

(
1 − t2

1 − t

)n( 1 − tk

1 − t2k

)m)

=
�D

k 	∑

i=0

(−1)i

(
m + i − 1

i

)D−ik∑

j=0

(
n

j

)

.

Proof The first fraction in p(t) can be written as 1
1−t =

∑∞
l=0 tl. The second

fraction can be expressed as
(

1−t2

1−t

)n

= (1 + t)n =
∑n

j=0

(
n
j

)
tj . The third frac-

tion can be expressed as
(

1−tk

1−t2k

)m

= (1 − (−tk))−m. By [8], this is equal to
∑∞

i=0(−1)i
(

m+i−1
i

)
tik. Since we are only interested in [tD]p(t) where D ≤ n, we

can cut away terms of degree higher than D in the three sums to get

[tD]p(t) = [tD]

(
D∑

l=0

tl

)⎛

⎝
D∑

j=0

(
n

j

)

tj

⎞

⎠

⎛

⎝
�D

k 	∑

i=0

(−1)i

(
m + i − 1

i

)

tik

⎞

⎠ =

[tD]

⎛

⎝
D∑

l=0

tl
l∑

j=0

(
n

j

)
⎞

⎠

⎛

⎝
�D

k 	∑

i=0

(−1)i

(
m + i − 1

i

)

tik

⎞

⎠ .

We are looking for the coefficient of the D’th degree term, so we need only
multiply the two sums together with the constraint l = D− ik. Taking away the
sum over l, substituting D − ik for l in the rest of the first sum and multiplying
together we get the desired expression for the D’th degree coefficient. �
The number D is the maximum degree of a monomial when running the XL
algorithm. Relating this to our notation we have D = De +Dm and k = De. We
then get the following result.

Corollary 1. Let D = De + Dm and k = De, then

T − I = [tD]
(

1
1 − t

(
1 − t2

1 − t

)n( 1 − tk

1 − t2k

)m)

is equivalent to

I =
�Dm

De
	

∑

i=0

(−1)i

(
m + i

i + 1

)Dm−ik∑

j=0

(
n

j

)

.



On the Number of Linearly Independent Equations Generated by XL 249

Proof. Rearranging the first expression, using the proposition and substituting
for D and k we get

I = T −
�Dm

De
	+1

∑

i=0

(−1)i

(
m + i − 1

i

)Dm−(i−1)De∑

j=0

(
n

j

)

.

The T can be expressed as T =
∑De+Dm

j=0

(
n
j

)
, which is the term for i = 0 in the

sum. Canceling these terms we are left with

I = −
�Dm

De
	+1

∑

i=1

(−1)i

(
m + i − 1

i

)Dm−(i−1)De∑

j=0

(
n

j

)

.

We can let the sum start at i = 0 by subtracting 1 from the upper limit for i
and increasing each i in the rest of the expression by 1. Compensating for the
minus sign in front of the sum we get

I =
�Dm

De
	

∑

i=0

(−1)i

(
m + i

i + 1

)Dm−iDe∑

j=0

(
n

j

)

. �

The corollary shows that Theorems 3 and 2 are basically the same result. With
the proof of Theorem 2 we have also proved Theorem 3 with equality when as-
suming that only trivial linear dependencies occur. Many computer experiments
on random systems (with no restrictions on the dependencies), counting the
number of linearly independent equations have been done, both by us and the
authors of Theorem 3. In these experiments it has never occurred that Theorem 3
fails, so we believe that the result is correct and end this section with the fol-
lowing conjecture.

Conjecture 1. Let I be the number of linearly independent polynomials in n
variables generated by step 1 of the XL algorithm, where all m initial equations
have degree De and we multiply with all monomials up to degree Dm. Then

I ≤
�Dm

De
	

∑

i=0

(−1)i

(
m + i

i + 1

)Dm−ik∑

j=0

(
n

j

)

.

7 Conclusions

The work in this paper comes from the field of cryptography, in particular al-
gebraic attacks on symmetric key ciphers. The complexity of such attacks has
been hard to estimate, but this paper shows the XL-algorithm generates a lot
of linearly dependent equations and is not as efficient as initially hoped.

Using the formula in Theorem 2, we can predict the smallest D for which the
XL algorithm will work over F2. The formula is easier to use than that of Yang
and Chen, since no multiplication of polynomials or series is involved, but only
simple arithmetic.



250 S. Rønjom and H. Raddum

References

1. Courtois, N., Pieprzyk, J.: Cryptanalysis of Block Ciphers with Overdefined Sys-
tems of Equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp.
267–287. Springer, Heidelberg (2002)

2. Courtois, N.: Higher Order Correlation Attacks,XL Algorithm and Cryptanalysis
of Toyocrypt. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp.
182–199. Springer, Heidelberg (2003)

3. Courtois, N.: Fast Algebraic Attacks on Stream Ciphers with Linear Feedback. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 176–194. Springer, Heidelberg
(2003)

4. Courtois, N., Meier, W.: Algebraic Attacks on Stream Ciphers with Linear Feed-
back. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 345–359.
Springer, Heidelberg (2003)

5. Yang, B.-Y., Chen, J.-M.: Theoretical Analysis of XL over Small Fields. In: Wang,
H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 277–
288. Springer, Heidelberg (2004)

6. Yang, B.-Y., Chen, J.-M., Courtois, N.: On Asymptotic Security Estimates in
XL and Gröbner Bases-Related Algebraic Cryptanalysis. In: López, J., Qing, S.,
Okamoto, E. (eds.) ICICS 2004. LNCS, vol. 3269, pp. 401–413. Springer, Heidel-
berg (2004)

7. Yang, B.-Y., Chen, J.-M.: All in the XL Family: Theory and Practice. In: Park,
C.-s., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 67–86. Springer, Heidelberg
(2005)

8. Anderson, I.: A First Course in Combinatorial Mathematics, Theorem 2.6, 2nd
edn., p. 16. Oxford University Press, Oxford (1989)

9. van Lint, J.H., Wilson, R.M.: A Course in Combinatorics, Theorem 13.1, 2nd edn.,
p. 119. Cambridge University Press, Cambridge (2001)

10. Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient Algorithms for Solving
Overdefined Systems of Multivariate Polynomial Equations. In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000)

11. Courtois, N., Patarin, J.: About the XL Algorithm over GF(2). In: Joye, M. (ed.)
CT-RSA 2003. LNCS, vol. 2612, pp. 141–157. Springer, Heidelberg (2003)

12. Ars, G., Faugre, J.C., Imai, H., Kawazoe, M., Sugita, M.: Comparison Between
XL and Gröbner Basis Algorithms. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS,
vol. 3329, pp. 338–353. Springer, Heidelberg (2004)

13. Moh, T.: On The Method of “XL” And Its Inefficiency to TTM, IACR eprint server
(2001), http://eprint.iacr.org/2001/047

14. Kipnis, A., Shamir, A.: Cryptanalysis of the HFE Public Key Cryptosystem by
Relinearization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 19–30.
Springer, Heidelberg (1999)

15. Macaulay, F.S.: On some formula in elimination. In: Proceedings of London Math-
ematical Society, pp. 3–27 (1902)

16. Bardet, M., Faugre, J.C., Salvy, B.: Complexity of Gröbner basis computation for
Semi-regular Overdetermined sequences over F2, with solutions in F2 Rapport de
recherche de l’INRIA, No. 5049 (2003)

17. Lazard, D.: Gröbner-Bases, Gaussian Elimination and Resolution of Systems of
Algebraic Equations. In: van Hulzen, J.A. (ed.) EUROCAL 1983. LNCS, vol. 162,
pp. 146–156. Springer, Heidelberg (1983)

http://eprint.iacr.org/2001/047


On the Number of Linearly Independent Equations Generated by XL 251

18. Lazard, D.: Rèsolution des systémes d’équations algébriques. Theoretical Computer
Science 15(1) (1981)

19. Rønjom, S., Helleseth, T.: The Linear Vector Space Spanned by the Nonlinear
Filter Generator. In: Golomb, S.W., Gong, G., Helleseth, T., Song, H.-Y. (eds.)
SSC 2007. LNCS, vol. 4893, pp. 169–183. Springer, Heidelberg (2007)

20. Rønjom, S., Gong, G., Helleseth, T.: On attacks on filtering generators using linear
subspace structures. In: Golomb, S.W., Gong, G., Helleseth, T., Song, H.-Y. (eds.)
SSC 2007. LNCS, vol. 4893, pp. 204–217. Springer, Heidelberg (2007)


	On the Number of Linearly Independent Equations Generated by XL
	Introduction
	Preliminaries
	The XL Algorithm
	Restrictions on F

	Equation Systems from LFSR-Based Stream Ciphers 
	Preliminary Observations
	The Number of Linearly Independent Equations in XL
	Linking Theorem 2 to Theorem/Conjecture from Related Work
	Conclusions



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




