
Global Constraints
in

Software Testing Applications

Arnaud Gotlieb
Certus Centre

Simula Research Laboratory
Norway

1/34

Software Validation and
Verification

Hosted by SIMULA

Established and
awarded SFI in Oct. 2011

duration: 8 years

The Certus Centre

www.certus-sfi.no

Cisco Systems Norway

ABB Robotics
Stavanger

Kongsberg Maritime

Norwegian Custom and excise

http://www.certus-sfi.no/

Agenda

I. Software Testing

II. Optimal Test Suite Reduction

III. Multi-objectives Test Suite Reduction

IV. Industrial Application

V. Conclusions and Perspectives

Software Testing

Informal
World

Logical and
Mathematical
World

Real World

Software
Under Test Results

Constraint
Model

Verdict: Pass or Fail

Oracle

Test cases

ExigencesUser Requirements

Spec / Model

Software Testing

Software test preparation is a cognitively complex task:

- Requires to understand both model and code to create interesting test cases ;
- Program’s input space is usually very large (sometimes unbounded) ;
- Complex software (e.g., implementing ODEs or PDEs) yields to complex bugs ;
- Test oracles are hard to define (non-testable programs) ;

Not easily amenable to automation:

- Automatic test data generation is undecideable in the general case!
- Exploring the input space yields to combinatorial explosion ;
- Fully automated oracles are usually not available ;

6

How software testing differs from other
program verification techniques?

 Static analysis finds simple faults (division-by-zero, overflows, …) at
compile-time, while software testing finds functional faults at run-time
(P returns 3 while 2 was expected)

 Program proving aims at formally proving mathematical invariants, while
software testing evaluates the program in its execution environment

 Model-checking explores paths of a model of the software under test for
checking temporal properties or finding counter-examples, while software
testing is based on program executions

7

 Automatic test case generation

Find test cases to exercise specific behaviors, to execute specific code locations, to
cover some test objectives (e.g., all-statements, all-k-paths)

 Test suite reduction, test suite prioritization, test execution scheduling

 Robustness and performence testing

 Testing complex code (e.g., floating-point and iterative computations)

Some Hot Research Topics in Software Testing

Our thesis: Global constraints can efficiently tackle these problems!
(High-level primitives with specialised filtering algorithms)

8

Optimal Test Suite Reduction

Optimal TSR: the core problem

F1

F2

F3

TC1

TC2

TC3

TC4

TC5

TC6

Optimal TSR: find a minimal subset of TC such that each F is covered at least once
(Practical importance but NP-hard problem!) – An instance of Minimum Set Cover

Optimal TSR

The nvalue global constraint

nvalue(n, v)
Where:

n is an FD_variable

v = (v1, …, vk) is a vector of FD_variables

n= 𝑐𝑎𝑟𝑑(𝑣𝑖 𝑖 𝑖𝑛 1. . 𝑘
)nvalue(n, v) holds iff

Introduced in [Pachet and Roy’99], first filtering algorithm in [Beldiceanu’01]
Solution existence for nvalue is NP-hard [Bessiere et al. ‘04]

11

Optimal TSR
F1 in {1, 2, 6}, F2 in {3, 4}, F3 in {2, 5}
nvalue(MaxNvalue, (F1, F2, F3)),
label(minimize(MaxNvalue))

/* branch-and-bound search among feasible solutions */

F1

F2

F3

TC1

TC2

TC3

TC4

TC5

TC6

Optimal TSR: CP model with nvalue (1)

12

The global_cardinality constraint

gcc(t, d, v)
Where

t = (t1, …, tN) is a vector of N variables, each tj in Minj .. Maxj

d = (d1, …., dk) is a vector of k values

v = (v1, …, vk) is a vector of k variables, each vi in Mini..Maxi

∀𝑖 𝑖𝑛 1. . 𝑘,
𝑣𝑖 = 𝑐𝑎𝑟𝑑(𝑡𝑗 = 𝑑𝑖 𝑗 𝑖𝑛 1. . 𝑁)

gcc(t, d, v) holds iff

Filtering algorithms for gcc are based on max flow computations in
a network flow [Regin AAAI’96]

13

Example

gcc((F1, F2, F3), (1,2,3,4,5,6), (V1,V2,V3,V4,V5,V6))
means that:

In a solution of TSR
TC1 covers exactly V1 requirements in (F1, F2, F3)
TC2 ‘’ V2 ‘’
TC3 ‘’ V3 ‘’
...

F1

F2

F3

TC1

TC2

TC3

TC4

TC5

TC6

Here, for example, V1 = 1, V2 = 2, V3 = 1, V4 = 0, V5 = 0, V6 = 0 is a feasible solution

Where F1, F2, F3, V1, V2, V3, ... denote finite-domain variables

F1 in {1, 2, 6}, F2 in {3, 4}, F3 in {2, 5}
V1 in {0, 1}, V2 in {0, 2}, V3 in {0, 1}, V4 in {0, 1}, V5 in {0, 1}, V6 in {0, 1}

But, not an optimal one! 14

Optimal TSR

F1 in {1, 2, 6}, F2 in {3, 4}, F3 in {2, 5}
gcc((F1, F2, F3), (1,2,3,4,5,6), (V1, V2, V3, V4, V5, V6)),
gcc((V1, V2, V3, V4, V5, V6), (0-_), (Max0Req-_)),
label(maximize(Max0Req))

/* search heuristics by enumerating the Vi first */

F1

F2

F3

TC1

TC2

TC3

TC4

TC5

TC6

Optimal TSR: CP model with two gcc (2)
[Gotlieb et al., 2014]

Optimal TSR

F1 in {1, 2, 6}, F2 in {3, 4}, F3 in {2, 5}
gcc((F1, F2, F3), (1,2,3,4,5,6), (V1, V2, V3, V4, V5, V6)),
nvalue(MaxNvalue, (F1, F2, F3),
label(minimize(MaxNvalue))

/* + presolve + labelling heuristics based on max */

F1

F2

F3

TC1

TC2

TC3

TC4

TC5

TC6

3. Optimal TSR: CP model Mixt (3)
[joint work with A. Pétillon and M. Carlsson]

Model comparison on random instances
(Reduced Test Suite percentage in 30sec of search)

Model comparison on random instances
(CPU time to find a global optimum)

Optimal TSR: existing approaches

Minimize 𝑖=1..6 𝑥𝑖
(minimize the number of test cases)

subject to
𝑥1 + 𝑥2 + 𝑥6 ≥ 1
𝑥3 + 𝑥4 ≥ 1
𝑥2 + 𝑥5 ≥ 1

(cover every req. at least once)

- Exact method: ILP formulation [Hsu Orso ICSE 2009] –
MINTS/CPLEX, MINTS/MiniSAT

- Approximation algorithms (greedy) –

R = Set of reqs, Current = Ø
while(Current ǂ R)

Select a test case that covers the most uncovered reqs ;
Add covered reqs to Current ;

return Current 19

Comparison with other approaches
(Reduced Test Suite percentage in 60 sec)

Introducing model presolve

F1 in {1, 2, 6} F1 = 2 as cov(TC1) = cov(TC6) cov(TC2)
withdraw TC1 and TC6

F1

F2

F3

TC1

TC2

TC3

TC4

TC5

TC6

F3 is covered withdraw TC5

F2 in {3,4} e.g., F2 = 3, withdraw TC4

We proposed an iterative algorithm to apply these
preprocessing rules to simplify the problem

21

Presolve: Experimental results (1)

Presolve: Experimental results (2)

Multi-objectives Test Suite Reduction

Optimal TSR: the core problem

F1

F2

F3

TC1

TC4

TC5

TC6

Requirements coverage
is always a prerequiste
but other criteria than
the size of the test
suite are also sought:

Optimal TSR

Execution time!

TC2

TC3

1 min

5 min

3 min

3 min

1 min

1 min

Optimal TSR: the core problem

F1

F2

F3

TC1

TC4

TC5

TC6

Requirements coverage
is always a prerequiste
but other criteria than
the size of the test
suite are also sought:

Fault revealing capabilities!

TC2

TC3

High priority

Low priority

High priority

Low priority

Low priority

Low priority

Proposed approaches

1. Actual multi-objectives optimization with search-based algorithms
(Pareto Front) [Wang et al., 2013, 2014]

Aggregated cost function using RW-algo, URW-algo, and many others
Based on computed values

2. Cost-based single-objective constrained optimization

Based on a CP model with global constraints

No constraint model!

Constrained optimization model!

27

Flower/C: An extension of Flower with costs

R1,..,Rn: Requirements
t1,..,tm: Test cases - Each test case ti is associated a unitary cost ci

O1,..,Om: Occurrences variables

Minimize TotalCost
s.t

gcc((R1, …, Rn), (t1, …, tm), (O1, …, Om))
for i=1 to m do Bi = (Oi > 0)
scalar_product((B1, …, Bm), (c1, …, cm), TotalCost)

where scalar_product encodes B1*c1 + .. + Bm*cm = TotalCost

On-going experimental evaluation!

28

Industrial Application

The CISCO’s Video Conferencing Systems
Product Line

30

Optimized
(reduced/
prioritized)
test suite

TITAN

Unoptimized
test suite

Diagnostic views, feature coverage

Variability model to
describe a software
product line

31

Conclusions

• Global constraints can efficiently and effectively tackle difficult software testing
problems – experimental results and initial industrial case studies

• So far, only a few subset of existing global constraints have been explored for that
purpose (e.g., nvalue, gcc, element, all_different,…)

• Some software testing problems require the creation of dedicated global
constraints to facilitate disjunctive reasoning, case-based reasoning or probabilistic
reasoning

 there is room for Research & Innovation (H2020) in that area!

32

Perspectives

 More industrial case studies for demonstrating the potential of global
constraints for software testing applications
- ABB Robotics [Mossige et al., 2014, 2015]
- THALES

TITAN in the commercial preparation phase

 Test Case Execution Scheduling with CUMULATIVE

33

[Mossige et al., 2015] M. Mossige, A. Gotlieb, and H. Meling.
Testing robot controllers using constraint programming and continuous integration.
Information and Software Technology, 57:169-185, Jan. 2015.

[Wang et al., 2014] S. Wang, S. Ali, and A. Gotlieb.
Cost-effective test suite minimization in product lines using search techniques.
Journal of Systems and Software, 2014. In Press - avail. on line 27 Aug. 2014.

[Gotlieb et al., 2014] A. Gotlieb and D. Marijan.
Flower: Optimal test suite reduction as a network maximum flow.
In Proc. of Int. Symp. on Soft. Testing and Analysis (ISSTA'14), San José, CA, USA, Jul. 2014.

[Mossige et al., 2014] Morten Mossige, Arnaud Gotlieb, and Hein Meling.
Using CP in automatic test generation for ABB robotics' paint control system.
In Principles and Practice of Constraint Programming (CP'14) –
Application track, Awarded best application paper, Lyon, France, Sep. 2014.

[Wang et al., 2013] S. Wang, S. Ali, and A. Gotlieb.
Minimizing test suites in software product lines using weight-based genetic algorithms.
In Genetic and Evolutionary Computation Conference (GECCO'13), Amsterdam, Jul. 2013.

References
(cited in the slides)

