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Applications and low latency
● 5G enabled applications in grey

Source: https://eu.mouser.com/applications/challenges-of-5g/
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▪ Fibre
▪ Microwave links
▪ Mobile (LTE)



Digitization Drives Numerous Use Cases for the Offshore O&G Sector

15

Digital Oil Field Use Cases in Practice

Long-termNear-term

Predictive Maintenance

Drone
Cloud Way of Work

Permanent Monitoring

Auto Robotic Operations

UAV Inspection VR / AR Glasses

Remote Operations(1)

Fully Automated Drilling

Tampnet Enables a New Period of Technological Disruption

Source: Company information, Independent third party commercial adviser.

Note: (1) E.g. surveillance and sending sensor data. 

Objective

Reduce Offshore Personnel

Maximize Recovery / Production Rates

Streamline Health and Safety Requirements

Requires high bandwidth and low latency 

communication infrastructure

Section 2: Digitization in the Offshore Industry

Low-latency applications offshore

▪ Current
▪ Remote operation and control

▪ E.g. Ivar Aasen platform* 
▪ Remote control of Submarine (ROV)
▪ Remote communication with oil-worker 
▪ Video conferencing

▪ Potential
▪ Drone inspection 
▪ Remote oil-worker: Wearing sensors, video etc.
▪ VR/AR 

Offshorenews: 
https://offshorenews.com/
aker-bp-operates-ivar-aasen-from-trondheim-onshore/

https://offshorenews.com/aker-bp-operates-ivar-aasen-from-trondheim-onshore/
https://offshorenews.com/aker-bp-operates-ivar-aasen-from-trondheim-onshore/


What is LOW latency?

▪ Hundreds of millisecond: 
▪ Streaming of video, data-transfer etc. 

▪ Tens of millisecond: 
▪ Interactive control of UAV, video conferencing, Onshore control of Oil-platform 

▪ Microsecond: 
▪ Mobile fronthaul, automation



Latency and transmission technologies:
Alternatives for offshore
▪ Optical fibre

▪ 5 Microseconds/km
▪ 500 km = 5 ms Round Trip Time (RTT).

▪ Wireless links
▪ 3.6 microseconds/km
▪ 100 km = 0.7 ms RTT. 

▪ Satellite Geostationary (GEO)
▪ RTT Min. 400 ms. Typically 600 ms or more

▪ Satellite Low orbit (LEO)
▪ OneWeb's LEO Satellites: 400 Mbit/s, RTT latency of 32 ms in Initial Tests: Fully functioning 

global constellation in 2021
▪ Starlink (Space X): Earth-to-sat RTT latencies of around 25 to 35 ms (min.)

▪ SpaceX launched the first 60 satellites of the constellation in May 2019 into a 450 km orbit and 
expected up to six launches in 2019 at that time, with 720 satellites for continuous coverage in 2020.

RTT = Round Trip Time
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▪ Optical fibre

▪ 5 Microseconds/km
▪ 500 km = 5 ms RTT.

▪ Wireless links
▪ 3.6 microseconds/km
▪ 100 km = 0.7 ms RTT. 

▪ Satellite Geostationary (GEO)
▪ RTT Min. 400 ms. Typically 600 ms or more

▪ Satellite Low orbit (LEO)
▪ OneWeb's LEO Satellites: 400 Mbit/s, RTT latency of 32 ms in Initial Tests: Fully functioning 

global constellation in 2021
▪ Starlink (Space X): Earth-to-sat RTT latencies of around 25 to 35 ms (min.)

▪ SpaceX launched the first 60 satellites of the constellation in May 2019 into a 450 km orbit and 
expected up to six launches in 2019 at that time, with 720 satellites for continuous coverage in 2020.

Enables remote control and remote worker

RTT = Round Trip Time
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Potential use of fronthaul offshore

▪ Oil and gas platforms are massive steel and concrete 
constructions
▪ May need a few antennas for high-capacity outdoor coverage

▪ Indoor coverage may call for many antennas 

▪ Centralized RAN and fronthaul may be a solution



Delay requirements in fronthaul networks

▪ Delay requirements depends on fronthaul functional split
▪ Low functionality in Remote Radio Head -> strict delay requirements

▪ CPRI fronthaul
▪ 100 μs maximum one-way delay (~20 km fibre)

▪ Automatic Retransmit reQuest protocol (HARQ)

▪ eCPRI
▪ Ethernet based fronthaul, split option “D” and “E”

▪ 100 μs maximum one-way delay

▪ IEEE 802.1cm specifies Ethernet transport based 
fronthaul  



End-to-end delay and Packet Delay Variation 
(PDV) in Ethernet fronthaul networks



End-to-end delay = Aggregation + switching + transmission + buffering

Minimum buffering delay = PDV 

End-to-end delay and Packet Delay Variation 
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End-to-end delay = Aggregation + switching + transmission + buffering

Minimum buffering delay = PDV 

MAX 100 μs 

End-to-end delay and Packet Delay Variation 
(PDV) in Ethernet fronthaul networks



Low and deterministic delay mechanisms

Synchronous Asynchronous
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Priority: IHON Time-window

Multiplexing: N.A.

Priority: Strict priority
Pre-emption (IEEE 802.1Qbu)

Multiplexing:
- IHON Time-window
- Asynchronous traffic shaping 

(IEEE 802.1Qcr)

Priority: (IHON Time-window)

Multiplexing: IHON container

Priority: (Strict priority)

Multiplexing: 
Scheduled traffic (IEEE 802.1Qbv)



Strict priority, preemption, IHON
Strict priority Preemption

IHON Time-window priority

Inputs

Latency = PDV = Size of Low pri. 

Output
High Pri

Low Pri

Output
High Pri

Low Pri

Latency = PDV = 155 Byte

Low Pri. fragments

Inputs

Output
High Pri

(GST)

Low Pri

(SM)
Latency = Size of Low pri.

PDV = 0

Inputs

Specific Bridge support demanded
for fragment transmission.



IEEE Enhancement for scheduled traffic (IEEE 802.1Qbv) 
(Aggregation in time-slots)

▪ Packets from queues are scheduled in time-slots

▪ Synchronization needed across the network



▪ Packets from queues are scheduled as bursts in time-slots

▪ Synchronization needed across the network

▪ PDV (due to bursting) = Duration of time-slot, Delay = cycle time 

Bursts in Time-slots

Output

Input 

Queues

IEEE Enhancement for scheduled traffic (IEEE 802.1Qbv) 
(Aggregation in time-slots)



▪ Packets from queues are scheduled in time-slots with gaps between packets preserved

▪ Synchronization through embedded synch. packet or separate across the network 

▪ No PDV

Preserved gaps between packets in Time-slots

Output

Input 

Queues

IHON fixed latency aggregation: Preserving gaps between 
packets in time-slots



Bounded Delay Transport (BDT) (Time-window)
▪ Asynchronous “flexible time-slotted (TS)” aggregation example: 10 Gb/s fronthaul streams into 100 Gb/s 

link

▪ Each 10 Gb/s fronthaul stream aggregated in dedicated TS in 100 Gb/s link.  

22. september 2019Page 24

▪ Aggregation Delay is bounded for F x FH 
streams being aggregated

▪ Aggregation cycle time 
N_TSxTS_Size@100Gbps

▪ Maximum Store-and-forward delay 
MTU@10G

▪ Delay added to bypass link:

▪ 𝛿𝑏 =
𝑇𝑆_𝑠𝑖𝑧𝑒

100𝐺𝑏𝑝𝑠

▪ Asynchronous: Available time-slot does 
not occur deterministic

▪ But still within a cycle-time

▪ Peak PDV is bounded 

▪ Aggregation cycle time 

R. Veisllari et. al, OFC 2019 Paper W4H2 



BDT Experimental Work
▪ 2 node path: Fronthaul F1 traffic aggregation at N1 as BDT

▪ Verifying that BDT streams are isolated from each-other 

▪ Fixed delay after aggregation

R. Veisllari et. al, OFC 2019 Paper W4H2 
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Summary and conclusion

▪ How low delay needed depend on the application

▪ Long-haul low delay is 10s of ms

▪ Route optimization selecting shortest path

▪ Fronthaul is ~ 100 microseconds 

▪ Require optimized packet switching techniques

▪ Minimize complexity in deployment


