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Abstract Today, a steadily increasing number of users are not just passively con-
suming Internet content, but also share and publish content. Users publish text, pho-
tos and videos. With the availability of 5G high-speed, low-latency mobile broad-
band networks, real-time video streaming will also be possible. We believe this will
become a very popular application in the coming years. But the more popular a
service is, the higher the need for resilience. In this paper, we introduce our work-
in-progress live video streaming platform for future mobile edge computing scenar-
ios, which makes use of MPTCP+IPv6 to support multi-homing for resilience and
multi-path transport for load balancing. As a proof of concept, we will show that the
platform is (1) compatible with IPv6, (2) utilizes load balancing when possible and
(3) provides robustness by network redundancy.'?
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1 Introduction

With the rapid development of the Internet, more and more real-time services are
deployed in the network, such as live video broadcast, video conferencing and other
key real-time businesses. These applications have stricter requirements for band-
width, latency and jitter. 5G networks, together with cloud infrastructure for mo-
bile edge computing (MEC), are a key enabler for such applications. But in addi-
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tion, there is also need for network and transport improvements: Today, IPv4 ad-
dresses are a scarce resource, compared with new applications like the Internet of
Things (IoT). IPv6 is therefore an important development step of the next genera-
tion Internet. With the rapid development of the IoT, various network services and
applications based on IPv4 will definitely migrate to IPv6 [26]. But the single-path
transmission patterns of TCP cannot handle multiple addresses per endpoint or ad-
dress changes, which are usual for [Pv6. Therefore, another milestone is Multi-Path
TCP (MPTCP) [16, 24], providing transport redundancy by multi-homing without
changing the existing network infrastructure. It also supports load balancing over
heterogeneous networks connections [15,17,27,30]. But MPTCP is not only useful
when an endpoint is connected to multiple Internet connections. [20, 22] measured
and compared the stability of IPv4 and IPv6 Internet paths. With IPv4/IPv6 dual-
stack endpoints, MPTCP may already provide additional redundancy by just using
non-congruent [Pv4 and IPv6 paths.

In this paper, we introduce our work in progress on a live video streaming service
based on MPTCP and IPv6, as a proof-of-concept for a resilient service in MEC. We
furthermore present initial evaluation results.

2 Overview of Relevant Technologies

The major limitation of IPv4 is its limited address space: with its 32-bit addresses, it
theoretically provides almost 4.3 billion (23?) unique Internet addresses, while only
around 3.7 billion addresses are usable host addresses. IPv6 [3] therefore extends
the address space to 128 bits, theoretically allowing around 340 undecillion (2!2%)
addresses. This allows for a very systematic assignment of subnets [26]. IPv6 fur-
thermore provides some improvements for more efficient handling of packets [2],
like an optimized header format.

TCP establishes a connection between two IPv4 or IPv6 addresses. Port numbers
are used to identify the connection, i.e. the 4-tuple (source address/port, destina-
tion address/port) uniquely identifies the connection. TCP neither supports multiple
address per endpoint nor address changes during connection lifetime. The MPTCP
extension [16] adds this multi-homing feature. Addresses are negotiated during con-
nection establishment. Furthermore, addresses may change during connection life-
time. MPTCP supports IPv4 and IPv6; boths protocols can be used simultaneously
in the same connection. Furthermore, MPTCP can utilize multiple subflows simul-
taneously (multi-path transport) and balance load among the paths.

MPTCP establishes so-called subflows, which look — for middlebox devices
like firewalls — like regular TCP flows. MPTCP therefore works in existing net-
works, with existing middlebox devices. That is, unlike for other protocols like the
Stream Control Transmission Protocol with Concurrent Multipath Transfer exten-
sion (CMT-SCTP, [5]), it is compatible with old networking devices. Only the two
endpoints of an MPTCP connection need MPTCP support. This ensures a smooth
deployment [1, 15, 18]. MPTCP provides the same Socket API interface [19,25] to
the Application Layer as standard TCP. That is, applications interact with MPTCP
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[Socket API Function|Functional Description |

inet_pton() Convert address string to address

inet_ntop() Convert address to address string
gethostbyname() |Translate name/address string to IP address(es) — deprecated!
gethostbyaddr()  |Translate IP address to name/address string — deprecated!

getaddrinfo() Translate name/address string to IP address(es)
freeaddrinfo() Free memory allocated by getaddrinfo()
getnameinfo() Translate IP address to name/address string

socket() Create socket
bind() Bind socket to address
listen() Put socket into listening mode (TCP, SCTP)
accept() Accept incoming connection (TCP, SCTP)
connect() Establish new connection
send() Send data (TCP, SCTP)
sendto() Send data (UDP)
recv() Receive data (TCP, SCTP)
recvfrom() Receive data (UDP)
close() Close socket

Table 1 Socket API Functions and IPv6 Communication

as they would do with TCP. In most cases, the application does not even have infor-
mation about an underlying MPTCP instead of TCP.

3 Using Software with IPv6 and MPTCP

In the following, we introduce how to adapt systems with IPv6 and MPTCP support.

3.1 Making Software Compatible with IPv6

Network and Transport Layer protocols are used in applications by the operating
system’s Socket API [19, 25]. The basic functions of the Socket API are summa-
rized in Table 1. These functions can be grouped into address handling and protocol
handling. In the first group, the function

int inet_pton(int family, const charx src, voidx dst)

converts the string src to the IP address dst. dst is addr_in for IPv4, or addr_in6
for IPv6; the type depends on the family parameter setting: AF_INET (IPv4) or
AF_INET6 (IPv6). The reverse direction is provided by

const charx inet_ntop(int family, const veidx src,
charx dst, socklen_t size)
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Listing 1 The addrinfo Structure

struct addrinfo {

int ai_flags;

int ai_family ;
int ai_socktype;
int ai_protocol;
socklen_t ai_addrlen;
struct sockaddrx ai_addr;
char* ai_canonname ;

struct addrinfox ai_next;

It converts the IP address src to the string dst, with a maximum length of size.
Note, both functions only handle addr_in and addr_in6 — not sockaddr_in and sock-
addr_in6. The application therefore has to assemble the latter structures by itself!
Similar to converting strings and addresses, it is also possible to resolve DNS
names and reverse-lookup DNS names for IP addresses. This is provided by the
functions gethostbyname() (DNS name resolution, like e.g. www.nntb.no) and geth-
ostbyaddr() (DNS reverse lookup). Originally, these functions have only been de-
fined for IPv4. Most operating systems, however, provide extended IPv6-capable
functions as well. This makes platform-specific code in multi-platform applications
necessary. Furthermore, gethostbyname() and gethostbyaddr() are not thread-safe,
creating further platform-specific variants. Therefore, the usage of these functions
is now deprecated. gethostbyname() and gethostbyaddr() have been replaced by new
functions, which also handle the address/string conversion provided by inet_pton()
and inet_ntop(), in a platform-independent way.

The getaddrinfo() function provides the translation of an address or DNS name —
as well as a port number or service name — into IP addresses, e.g. sockaddr_in (IPv4)
or sockaddr_in6 (IPv6) [19,25] as necessary:

int getaddrinfo (const charsx host ,
const charx serv ,
const struct addrinfox hints ,
struct addrinfo*x res)

That is, getaddrinfo() takes an address or DNS name string as host parameter,
a port number string or service name as serv parameter, an addrinfo structure as
hints parameter, as well as a pointer res to store the result (in form of an addrinfo
structure allocated by getaddrinfo()). The corresponding structure addrinfo is shown
in Listing 1. The hints structure can provide some specific information for the
address structure to be created, particularly the ai_family (AF_INET or AF_INET6 —
but in most cases AF_UNSPEC to support any IP protocol). Furthermore two flags in
ai_flags can enforce the usage of IP address only (A NUMERICHOST, i.e. no DNS
name allowed) and port number only (AL NUMERICSERY, i.e. no service name
allowed). We will later make this clearer with examples. The resulting addrinfo
structure contains the address in ai_addr (i.e. sockaddr_in for IPv4 or sockaddr_in6
for IPv6) and its length in ai_addrlen. If there are multiple addresses (e.g. an IPv6
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Listing 2 An Example for getaddrinfo() with Address String and Port

const charx addressString = 72001:700:4100:2::179”;
const charx portString = 74437

struct addrinfo hints;

memset(&hints , 0, sizeof(hints));

hints . ai_family = AF_UNSPEC;
hints . ai_socktype = SOCK_STREAM;
hints . ai_flags = AILNUMERICHOST | ALNUMERICSERV ;

struct addrinfox result = NULL;
if (getaddrinfo(addressString , portString ,
(const struct addrinfox)&hints , &result) == 0) {
// success; address is in result—>ai_addr!
freeaddrinfo (result);

and an IPv4 address), addrinfo structures may be chained using a pointer to the
next addrinfo structure in ai_next. Since getaddrinfo() allocates storage space for
the resulting addrinfo structure(s), it is necessary to free them. This is realized by
calling

void freeaddrinfo (struct addrinfox res)
The reverse direction, i.e. address to string or DNS name, is provided by:

int getnameinfo(const struct sockaddr* addr, socklen_t addrlen,

charx* host, socklen_t hostlen ,
charx serv, socklen_t servlen,
int flags)

It takes a sockaddr_in (IPv4) or sockaddr_in6 (IPv6) structure in addr, its length in
addrlen and flags in £1ags. The result is written to buffers provided by host
for address string/hostname (with maximum length hostlen) and host for port
number string/service name (with maximum length servlen). Similar to getad-
drinfo(), the flag NI NUMERICHOST turns off DNS reverse lookup (the result will
be an address string); NI NUMERICSERYV turns off service name lookup (the result
will be a port number string). We will make this clearer with examples below.

The Socket API functions to create, bind and connect sockets, as well as to write
to and receive from addresses, are using sockaddr_in (for IPv4) and sockaddr_in6
(for IPv6). Since these basics are part of various publications, like e.g. [25], we do
not go into details here. To write protocol-independent code, it is therefore useful to
let getaddrinfo() create all protocol-specific information and let getnameinfo() make
this information human-readable again. Ideally, the application itself does not have
to contain any [P-protocol-specific code.

In order to make the explanations above clearer, Listing 2 shows an example to
translate an IPv6 address string and a port number string to the corresponding sock-
addr_in6 structure. getaddrinfo() obtains this information, in form of an addrinfo
structure (see Listing 1), pointing to the actual sockaddr_in6 structure in ai_addr.

Working with Internet applications, some servers are already using IPv6, while
some others still use IPv4. It is therefore convenient to use DNS names instead
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Listing 3 An Example for getaddrinfo() with DNS Name and Service String

const charx nameString
const charx serviceString
struct addrinfo hints;
memset(&hints , 0, sizeof(hints));

hints . ai_family = AF_UNSPEC;

hints . ai_socktype = SOCK_STREAM;

struct addrinfox result = NULL;

if (getaddrinfo (nameString , serviceString ,

“www. nntb .no”;
“https”;

(const struct addrinfo*)&hints , &result) == 0) {
for (const struct addrinfox ai = result;
ai != NULL; ai = ai—ai_next) {

// Iterate over all addresses returned

freeaddrinfo (result);

Listing 4 An Example for getnameinfo()

const struct sockaddrx address = result—>ai_addr;
const socklen_t addressLength = result—>ai_addrlen;
char addressString [NLMAXHOST ] ;

char portString [NILMAXSERV ];

if (getnameinfo (address , addressLength ,
(charx)&addressString , sizeof(addressString),
(charx)&portString , sizeof (portString),
NINUMERICHOST | NILNUMERICSERV) == 0) {
printf (”Address: %s,_Port: %s\n”, addressString , portString);

of addresses. The example in Listing 3 therefore shows how to use getaddrinfo()
with DNS name (“www.nntb.no”) and service name (“https”) instead. Calling getad-
drinfo() is similar to Listing 2, except for not setting the AL NUMERICHOST and
AI_NUMERICSERYV flags (since we want to use DNS and service lookup now).
Since hosts may have multiple addresses in the DNS, the example also iterates over
all returned addresses chained by the ai_next pointer of the addrinfo structures. All
sockaddr_in and sockaddr_in6 will contain the port number of service “https” (which
is 443 —resolved from /etc/services).

Finally, Listing 4 presents the usage of getnameinfo() to translate an address
(here: as result from getaddrinfo()) to a string, including the port number. Obviously,
not setting the flags NI_NUMERICHOST and NI_.NUMERICSERV would try to
reverse-lookup the DNS name and convert the port number to a service name.
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3.2 Configuration for MPTCP

In order to use MPTCP on a Linux system, it is necessary to install an MPTCP-
capable kernel [29]. Currently, the mainline Linux kernel does not provide MPTCP,
s0 it is necessary to build a custom one based on the MPTCP developers’ patch?.

In addition to using a kernel with MPTCP, it is furthermore necessary to extend
the routing configuration. Usually, all outgoing packets to an Internet destination
take a configured default route. This is, on a system being connected to two differ-
ent networks, all packets take the default route over one of the networks (the one
with the lowest metric). The other one is not used, unless the primary one becomes
unavailable. This is not desirable for MPTCP, which should use both networks for
load balancing with multi-path transport. It is therefore necessary to configure mul-
tiple IP routing tables and select one of these tables for a routed packet based on its
source address.

To give an example, let a system have two IPv6 addresses A (in Network 1, via
interface NIC1) and B (in Network 2, via interface NIC2). Let both networks be
/64 networks for simplicity. Network 1 has router G1 as default gateway, Network 2
has router G2 as default gateway. Therefore, two routing tables (1000 and 2000 for
Network 1 and Network 2) are configured:

ip —6 rule add from $A table 1000
ip —6 rule add from $B table 2000
ip —6 route add $A/64 scope link dev $NIC1 table 1000
ip —6 route add default via $Gl dev $NICl1 table 1000
ip —6 route add $B/64 scope link dev $NIC2 table 2000
ip —6 route add default via $G2 dev $NIC2 table 2000

The first two lines configure the IP routing rules. If a packet is from source ad-
dress A, routing table 1000 is used. If it is from B, routing table 2000 is used. The fol-
lowing lines configure local network and default route for both tables. Now, MPTCP
is able to send via both networks — by just using different source addresses.

4 Our Live Video Streaming System

For our live video system, we choose to use the Real-Time Messaging Proto-
col (RTMP) [23] over TCP. For this protocol, there is already a widely used Open
Source implementation available: SRS*. Particularly, SRS supports the structure of
components we need:

e Push: the source of the live video. This could e.g. be a mobile user, filming with
his phone camera.

e Server: a server taking the video from the Push user, possibly adapting it and
distributing streams to viewers. In particular, this can be a cloud service in an

3 MPTCP Git repository: https://github.com/multipath-tcp/mptcp.
4 SRS Git repository: https:/github.com/ossrs.
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Fig. 1 The Structure of the Streaming Platform

MEC setup, to provide low-latency processing, so that viewers get an (almost)
live stream.
e Client: a viewer, receiving the media stream from the server.

However, SRS was solely based on TCP over IPv4, i.e. without support for IPv6.
As part of the work for this paper, we added IPv6 support as well. The changes
for this support have been submitted as pull request’ to the upstream project. It
has already been merged into the upstream SRS sources, i.e. IPv6 support is now
available for all SRS users. Basically, the idea of the changes for SRS was to replace
all IPv4-specific code by IP-protocol-independent code based on getaddrinfo() and
getnameinfo() (see Section 3). That is, getaddrinfo() is now used to convert address
strings (see Listing 2) or resolve host names (see Listing 3) to either sockaddr_in
(IPv4) or sockaddr_in6 (IPv6). Then, the application code can create sockets of the
right family (AF_INET or AF_INET6 — returned by getaddrinfo() in ai_family of
the addrinfo structure; see Listing 1). In the reverse direction, socket addresses are
translated into strings by getnameinfo() (see Lising 4). By making the code IP-
protocol-independent, we added IPv6 support. This not only simplified the original
code, but also made it more portable as well.

We furthermore adapted bwm—ng6, a tool to record the data statistics of network
interfaces, with an improved accuracy of the recorded information. This change had
also been provided as pull request’ and been merged by the upstream project.

Finally, for the video display at the client, we use ffplay. It is a playback
component of the well-known FEMPEG® tools.

S Proof of Concept Evaluation

To evaluate the live broadcast system with SRS over MPTCP, we have set up the
scenario as shown in Figure 1: it consists of RTMP Push, Server and Client. In
the Push-Server network, as well as in the Server-Client network, each device is

3 IPv6 support for SRS: https://github.com/ossrs/srs/pull/988 (pull request).

6 bwm-ng Git repository: https://github.com/vgropp/bwm-ng.

7 CSV file output improvement: https://github.com/vgropp/bwm-ng/pull/20 (pull request).
8 FFMPEG: https://www.ffmpeg.org.
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Fig. 2 Testing Scenario Sequence Diagram

equipped with two network interface cards (NIC). Each NIC can be configured with
an IPv4 or IPv6 address. Between Push and Server, as well as between Server and
Client, MPTCP can therefore establish 4 subflows. We consider NICs correspond-
ing to different Internet service providers (ISP), i.e. all NIC1s correspond to ISP1
and all NIC2s correspond to ISP2. Then, the setup corresponds to a 2-ISP mobile
edge setup, with the Push device e.g. a user sending a live video stream, the Server
device a media server in a (mobile edge) computing centre and the Client device
another user watching the live video. The video is observed by a human user, to
check for disruptions and quality problems. To assess the performance of our setup,
we apply the testing sequence as shown in Figure 2. It consists of 4 phases: (1) load
balancing with all interfaces up; (2) ISP2 is down (all traffic for NIC2 of all devices
is blocked); (3) ISP1 goes down, at the same time ISP2 comes up (all traffic of the
NICl1s blocked); (4) load balancing with all interfaces up again. With these phases,
we want to mimic simple handover and multi-ISP load balancing in a multi-homed
mobile edge scenario. In the following measurement, each phase lasts 25s. For each
NIC, the outgoing and incoming amount of data is recorded by using bwm-ng. On
the Client device, f fplay is used to display the streamed video.

Figure 3 presents the IPv6 results for the Push side (outgoing data rate) and Client
side (incoming data rate). In the first 25 s, load balancing is performed by MPTCP.
As intended, MPTCP distributes the traffic to both networks. The outage of ISPs
at t=25 s (by blocking all NIC1s) is properly handled by using the other network.
The data rate there increases, since the video quality remains unchanged. At =50 s,
the ISPs change (ISP1 down, ISP2 up again). Particularly at the Client side, it is
shown that it takes a moment for the system to detect the working ISP2 network and
to move all traffic to the NIC2s. Once MPTCP detects that the NIC2s can be used,
instead of the NICls, the RTMP system can quickly fill up the client’s playback
buffer (see the data rate peak). The video client at the Client device uses a buffer
of 64 MiB, i.e. this playback buffer is able to cover the time needed by MPTCP for
changing the networks. The human user did not notice a disruption of his video. At
t=75 s, the blocking of the NICl1s is ended. The system went back to load balancing
as in the first phase.

In summary, we can show that (1) MPTCP+IPv6 can provide load balancing
in multi-ISP real-time streaming setups; (2) MPTCP+IPv6 can support seamless
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Fig. 3 Outgoing Per-Interface Data Rate with IPv6

handover in failure scenarios; (3) There is good compatibility among IPv6 in the
Network Layer, MPTCP in the Transport Layer and RTMP in the Application
Layer. The configuration therefore seems to be a reasonable choice for live real-
time streaming with mobile edge computing.

6 Conclusions and Future Work

This paper introduced our live broadcast platform based on RTMP, MPTCP and
IPv6. As a proof of concept, we showed that the system is able to handle typical
load balancing, robustness and handover situations of multi-ISP scenarios.

As ongoing work on video transport over MPTCP with IPv6, we are now going to
test and evaluate our setup in realistic, larger-scale Internet setups by using the NOR-
NET CORE testbed [6,7,9,21]. The NORNET CORE testbed consists of test nodes
being located at different sites in multiple countries. Test applications can experi-
ence the same quality of service (QoS) as “normal” Internet users. The NORNET
CORE setup allows tests under realistic Internet conditions. We particularly plan
to also combine it with MELODIC (Multi-Cloud Execution-Ware for Large-scale
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Optimised Data-Intensive Computing) [10, 13], to support the cloud infrastructure
for mobile edge computing. MELODIC is a middleware for application deployment
in multi-cloud setups. Our idea is therefore to use MELODIC to provide a scal-
able Server-side setup in the MEC cloud (e.g. for video transcoding, caching and
editing). The resources can then be instantiated on demand and multi-cloud support
provides cost-effective deployment without vendor lock-in.

Furthermore, we want to apply NEAT (New, Evolutive API and Transport-Layer
architecture for the Internet) technology [8, 11,28]. The goal is to allow network
and transport “services” provided to applications — such as reliability, low-delay
communication or security — to be dynamically tailored based on application de-
mands, current network conditions, hardware capabilities or local policies. For ex-
ample, NEAT may choose to use advanced technologies like multi-path transport
with MPTCP and IPv6 where available, but fall back to regular TCP in legacy net-
works.

Finally, with the application of Reliable Server Pooling (RSerPool) [4, 12, 14], it
would also be possible to achieve high-availability by redundant Server-instances.
RSerPool could then also be used to balance sessions between several Server-
instances.
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