
Flexible 4G/5G Testbed Setup for Mobile Edge
Computing using OPENAIRINTERFACE and
OPEN SOURCE MANO

Thomas Dreibholz
Simula Metropolitan Centre for Digital Engineering
c/o OsloMet – storbyuniversitetet
Pilestredet 52, 0167 Oslo, Norway
dreibh@simula.no

Abstract Setting up a working 4G/5G mobile network development testbed can be
a highly complicated and error-prone task. In this paper, we therefore introduce our
open source Virtual Network Function (VNF) for an OPENAIRINTERFACE-based
Evolved Packet Core (EPC) for deployment with the Open Source Management and
Orchestration (OPEN SOURCE MANO, OSM) framework. By using our VNF as
basis, it will be easily possible to create own testbeds and extend them with further
functionality, particularly – but not limited to – Mobile Edge Computing (MEC)
setups. In a simple proof of concept, we demonstrate a basic transport protocol
performance evaluation in a deployed test network.

1 Introduction

Clearly, the fifth generation of mobile broadband networks (5G) is the next ma-
jor step in the evolution of mobile communications. In the very near future, 5G
networks will be the base of all kinds of advanced applications, from high-speed
mobile media streaming over low-latency vehicular communication and control of
Unmanned Aerial Vehicles (UAV) to energy-efficient Internet of Things (IoT) com-
munication and reliability-critical emergency networks. Currently, a significant ef-
fort by both, industry and academic research, is made to design and develop all
the components of 5G networks. However, the current Long-Term Evolution (LTE,
4G), which is the basis of the developing 5G standards, already has a high complex-
ity. Even setting up a small testbed setup already requires a significant amount of
software to be deployed, and expensive proprietary hardware to be purchased and
installed. Therefore, the goal of the OPENAIRINTERFACE consortium is the create
an open source software and hardware base to realise a full 4G setup. Based on this,
development towards 5G is made.

OPENAIRINTERFACE is a large consortium, with many very active members
– from industry and academia – contributing to the enhancements of its software.



Therefore, it clearly reflects the state-of-the-art in 5G development. Also, this makes
it a very good foundation to develop further extensions on. Particularly, this means to
combine it with extensions for Mobile Edge Computing (MEC) services: having an
own 4G/5G mobile network testbed setup, it is possible to develop, deploy and test
own MEC services for research and evaluation purposes. Since OPENAIRINTER-
FACE is free, open source and running on of-the-shelf hardware, it allows people
to get involved into MEC development without high investments into proprietary
equipment and software.

However, setting up OPENAIRINTERFACE [10] is not a simple and easy task.
Even the most basic 4G/5G testbed setup requires a significant complexity of de-
ploying, configuring and monitoring the underlying software components. Keeping
track with the ongoing fast development pace of OPENAIRINTERFACE makes this
even more difficult. Therefore, for simplifying and automating such testbed setups,
we have developed an open source Virtual Network Function (VNF) for an Evolved
Packet Core (EPC) based on OPENAIRINTERFACE. This EPC VNF can be deployed
easily by OPEN SOURCE MANO (OSM) in a cloud setup (e.g. based on OPEN-
STACK). Using our VNF as network basis, it is therefore straightforward to plug
it together with further functionalities for MEC, in order to build an advanced test
network for MEC-based services and applications. In this paper, we introduce our
VNF and show a basic proof-of-concept evaluation.

2 Software

Before we introduce our EPC VNF, we briefly explain the underlying software.
Since EPC, OPENAIRINTERFACE and OSM make heavy usage of abbreviations,
we will shortly introduce the basic ones here. This will particularly also be helpful
for the reader to understand the referenced detailed documentations.

2.1 OPENAIRINTERFACE (OAI)

Fig. 1 The OPENAIRINTERFACE Components



OPENAIRINTERFACE1 (OAI) is a non-profit consortium developing an open
source software and hardware solution to realise the EPC, access network and
user equipment of cellular networks. It provides software for the following com-
ponents [10]:

HSS: The Home Subscriber Server (HSS) is the central database containing the
information about users and their subscriptions. The HSS functionalities include
mobility management, session establishment, user authentication and access au-
thorisation. It provides its service to the MME via the S6a interface.

MME: The Mobility Management Entity (MME) handles the procedures of at-
taching and detaching as well as service requests of User Equipment (UE) and
eNodeBs. It communicates with eNodeBs over the S1-C interface, with SPGW-C
over the S11 interface, and with HSS over the S6a interface.

SPGW-C: The Control Plane of the Packet Data Network Gateway (SPGW-C)
provides the control part of a combined Serving Gateway (SGW) and Packet Data
Network Gateway (PGW). That is, OAI combines SGW and PGW, but uses Con-
trol and User Plane Separation (CUPS). The SPGW-C handles control requests
from the MME via the S11 interface, and communication with the SPGW-U via
the SXab interface.

SPGW-U: The User Plane of the Packet Data Network Gateway (SPGW-U) han-
dles the forwarding of user traffic between the Public Data Network (PDN) at
the SGi interface (i.e. usually the public Internet) and the eNodeB over the S1-
U interface. User traffic between eNodeB and SPGW-U is tunnelled via GPRS
Tunnelling Protocol (GTP). The setup of user traffic tunnels is controlled by the
SPGW-C over the SXab interface.

eNodeB: The Evolved Node B (eNodeB) realises a base station. For this purpose,
the eNodeB implementation of OAI supports a couple of Software-Defined Ra-
dio (SDR) hardwares (e.g. ETTUS USRP B210), connected to a computer via
USB 3.x port. Although the computation-intensive part is mostly done by the
Field-Programmable Gate Array (FPGA) in hardware, the software part – run-
ning on a standard Linux PC – is timing-critical. It therefore requires a low-
latency real-time kernel2. It is therefore strongly recommended to run the eN-
odeB on a dedicated PC.

The OAI components can be set up on one or more PCs and/or virtual machines.
However, OAI provides no management and orchestration software.

2.2 OPEN SOURCE MANO (OSM)

OPEN SOURCE MANO3 (OSM) is an open source Management and Orchestra-
tion (MANO) framework [14]. As an operator-led community, OSM is offering a

1 OPENAIRINTERFACE: https://www.openairinterface.org.
2 Linux kernel compiled with the option CONFIG PREEMPT RT.
3 OPEN SOURCE MANO: https://osm.etsi.org.



production-quality open source MANO stack that meets the requirements of com-
mercial Network Function Virtualisation (NFV) networks. NFV with OSM can be
split into three parts [14, Chapter 1]:

NFV Infrastructure (NFVI): NFVI denotes the part hosting virtual machines and
containers, as well as connecting them by Virtual Links (VLs). OSM is indepen-
dent of the underlying hosting mechanism. In many cases, hosting is realised by
OPENSTACK [11, 13], but other solutions like VMWARE are supported as well.

VNFs, NSs and Network Slices: The second part is the collection of VNFs and
their interconnection and composition into Network Services (NS). NS can fur-
ther be composed and shared to form network slices.

MANO: The last part is the management and orchestration system. It controls the
life-cycle of VNFs, NSs and network slices, including their configuration and
monitoring.

(a) VNFD (b) NSD

Fig. 2 Virtual Network Function Descriptor (VNFD) and Network Service Descriptor (NSD)

Realising and deploying a VNF as part of a NS is introduced in detail in [8]. We
therefore only briefly summarise it here:

VNFD: A VNF is created in form of a VNF Descriptor (VNFD). The VNFD con-
tains a definition of its Virtual Deployment Units (VDU), which correspond to
an own Virtual Machine (VM). Subfigure 2(a) illustrates an example: a VNFD
defines a VNF consisting of two VDUs. Connection Points (CP) define interfaces
(CPs of a VDU appear as network interfaces in a VM instance). CPs can be con-
nected by Virtual Links (VL). VDUs of the VNF are connected by using internal
CPs. In the example, the two VDUs are connected via a VL. This VL is refer-
enced by its VL Descriptor (VLD), which can be a name like e.g. “s6a”. CPs of
VDUs can also be connected to external CPs of the VNF. In the example shown
by Subfigure 2(a), the upper VDU has such a connection.

NSD: A NS Descriptor (NSD) connects VNFs with VLs. Furthermore, it has the
possibility to also define external NS CPs, e.g. for attaching them to physical
networks in the underlying NFVI. Subfigure 2(b) presents an example consisting
of three VNFs with interconnecting VLs and two external CPs. Note, that a VL
can connect multiple CPs (i.e. a “virtual switch”, not just a “virtual cable”).



Instantiating an NSD in OSM, creating a new NS, triggers the setup of VMs
in the underlying NFVI (e.g. in OPENSTACK). Furthermore, the interconnecting
virtual links are realised by creating virtual networks, switches, links, etc.. This is
denoted as “day-0 configuration”. The VM instances run the operating system im-
age defined as part of the corresponding VDU (e.g. a specific “UBUNTU 18.04”
image). In most cases, however, the image does not contain the full installation for
the VDU. Therefore, the VDU definition as part of the VNFD allows customised
configuration by using a JUJU4 Charm. A JUJU Charm is a container running on the
OSM machine. It maintains an SSH connection to its VM in order to configure and
monitor it. This SSH connection is made over a designated management network
(i.e. the VNFDs and NSD need corresponding CP and VL definitions). Particu-
larly, a Charm allows executing commands on the VM, e.g. to install and configure
software (“day-1 configuration”), as well as to later maintain and update the setup
(“day-2 configuration”).

3 The SimulaMet OAI EPC

In the following, we describe our EPC VNF, denoted as SimulaMet OAI EPC, its
configuration with JUJU, and its usage as part of an NS.

3.1 Virtual Network Function

Fig. 3 The SimulaMet EPC VNFD

The VNFD of the SimulaMet OAI EPC VNF is illustrated in Figure 3. Clearly, it
consists of a VDU for each of the four OAI EPC parts introduced in Subsection 2.1
and Figure 1: HSS, MME, SPGW-C and SPGW-U. The interfaces S6a, S11 and
SXab are realised by VLs. S1-C, S1-U and SGI are attached to external CPs. In

4 JUJU: https://jaas.ai.



an NSD, they can be attached to e.g. physical interfaces or VLs connecting them
to other VNFs (e.g. to add MEC components). Our VNF uses an UBUNTU 18.04
“Bionic Beaver” operating system image; the interface names ens3, . . . , ens6 are
the interface names in the virtualised Linux systems.

3.2 Configuration with JUJU Charms
Table 1 Basic Parameters for the SimulaMet EPC VNF

Parameter Description Example

network realm Network realm simula.nornet
network op Network Operator Code OP 1006020f0a478bf6b699f15c062e42b3
network k Network Subscriber Key K 449c4b91aeacd0ace182cf3a5a72bfa1
network mcc Network MCC 242
network mnc Network MNC 88
network imsi first First IMSI 242881234500000
network msisdn first First MSISDN 24288880000000
network users Number of users 1024
network ipv4 dns1 Primary DNS address 8.8.8.8
network ipv4 dns2 Secondary DNS address 8.8.4.4

hss git repository HSS GIT repository https://github.com/OPENAIRINTERFACE/openair-cn.git

hss git commit HSS GIT commit 2019.w45
hss S6a address HSS S6a address 172.16.6.129

mme git repository MME GIT repository https://github.com/OPENAIRINTERFACE/openair-cn.git

mme git commit MME GIT commit 2019.w45
mme S1C ipv4 interface MME S1-C interface 192.168.247.102/24
mme S1C ipv4 gateway MME S1-C gateway 0.0.0.0
mme S11 ipv4 interface MME S11 interface 172.16.1.102/24
mme S6a address MME S6a address 172.16.6.2

spgwc git repository SPGW-C GIT repository https://github.com/OPENAIRINTERFACE/openair-cn-cups.git

spgwc git commit SPGW-C GIT commit 2019.w47
spgwc S11 ipv4 interface SPGW-C S11 interface 172.16.1.104/24

spgwu git repository SPGW-U GIT repository https://github.com/OPENAIRINTERFACE/openair-cn-cups.git

spgwu git commit SPGW-U GIT commit 2019.w47
spgwu S1U ipv4 interface SPGW-C S1-U interface 192.168.248.159/24
spgwu S1U ipv4 gateway SPGW-C S1-U gateway 0.0.0.0
spgwu SGi ipv4 interface SPGW-C SGi interface 10.254.1.203/24
spgwu SGi ipv4 gateway SPGW-C SGi gateway 10.254.1.1

Instantiating our VNF requires to define an NSD (in the simplest case: just con-
sisting of the VNF and attaching it to physical interfaces and a management net-
work for the JUJU Charms) and provide the parameters listed in Table 1. In par-
ticular, these parameters provide the information about the mobile network to be
created, i.e. realm, Mobile Country Code (MCC), Mobile Network Code (MNC),
Operator Code (OP), Subscriber Key (K), as well as the first user’s International
Mobile Subscriber Identity (IMSI) and Mobile Station International Subscriber Di-
rectory Number (MSISDN). IMSI and MSISDN are incremented for further users.
The JUJU Charms of the VNF will create the given number of users and subscrip-



tions according to these details; simcards for the new mobile network have to match
these settings. Further parameters include the addressing of the components and the
addresses of the Domain Name Servers (DNS) to be used.

OAI is under heavy development, and working with branches and forks of the
OAI sources is an essential part of development and tests with OAI. Therefore, the
JUJU Charms of our VNF not just deploy pre-built variants of HSS, MME, SPGW-
C and SPGW-U. Instead, the parametrisation allows to specify the corresponding
GIT repository and tag for each of the four components. During day-1 configu-
ration, each component is therefore directly compiled from its sources inside the
corresponding VDU. For this purpose, the operating system image already has de-
velopment packages, e.g. compilers, libraries, etc., preinstalled. A script is provided
to create this image from scratch, by downloading and automatically installing a
preseeded UBUNTU Linux. Since the VDUs need Internet access for the build (e.g.
to fetch the sources and dependencies), it is necessary to allow Internet access over
the management network.

While the management network provides Internet access for package and source
downloads during day-1 and day-2 configuration, it is not desirable that the PDN
access of the mobile network goes over the management network as well. Therefore,
the SPGW-U Charm also deploys a routing rule setup for the SPGW-U VDU: the
OAI SPGW-U configures a dummy device pdn. Network/port address translation
is then used for forwarding all PDN traffic via the public IPv4 address of the SGi
interface ens6. Our SPGW-U Charm configures a new routing rule for all traffic
from pdn: all user traffic is routed via the SGi interface ens6 to the PDN, without
routes for the internal networks. So, UE is only able to access the SGi network and
the PDN, but unable to interfere with the internal networks.

As last step of the day-1 configuration, the JUJU Charm of each component sets
up a SYSTEMD unit configuration for the corresponding service. This service is then
automatically started, i.e. once the NS is fully configured, all components should be
running, and the new mobile network is ready for attaching eNodeBs.

The SimulaMet OAI EPC VNFD sources, together with example NSDs, build
tool-chain and test scripts, operating system image build script as well as docu-
mentation is available as open source in form of a public GIT repository under
https://github.com/simula/5gvinni-oai-ns.

4 Testbed Setup

For our proof-of-concept evaluation, we deployed an OPENSTACK setup [12] based
on OPENSTACK “Stein” on UBUNTU 19.04 “Disco Dingo”. A management network
with Internet access was configured, in addition to a further network with Internet
access for the PDN. Furthermore, we deployed the latest OSM version “Release
SEVEN” on UBUNTU 18.04 “Bionic Beaver”. Another dedicated UBUNTU 18.04



server running in a network of our site provided a peer instance for the NET-
PERFMETER5 [1, Section 6.3] [2,4] transport protocol performance evaluation tool.

Our VNF was then instantiated by OSM into OPENSTACK, with the SGi inter-
face configured into our OPENSTACK PDN network, as well as S1-U and S1-C
connected to the eNodeB networks. The VNF instance used the “2019.w45” tags
of the HSS and MME sources6, as well as the “2019.w47” tags of the SPGW-
U and SPGW-C sources7. Furthermore, we deployed an OAI eNodeB using tag
“2019.w44” of the eNodeB sources8 on a dedicated UBUNTU 18.04 “Bionic Beaver”
laptop with ETTUS USRP B210 SDR board attached over USB 3.0. As UE, we used
an UBUNTU 20.04 “Focal Fossa” laptop with HUAWEI E392 USB modem.

For our experiment, we examined three different scenarios: (1) download from
server to UE, (2) upload from UE to server, and (3) bidirectional communication be-
tween UE and server. We tested TCP and SCTP [1, Chapter 3] as transport protocols.
For SCTP, we used messages of 1400 bytes (i.e. resulting in one packet per message
without need for segmentation). The parameters for send and receiver buffer sizes,
as well as the congestion control had been left at the Linux kernels’ default settings.
Explicit Congestion Notification (ECN) [6] support had been enabled. The duration
of each transmission run was 20 s. All runs had been repeated at least 10 times; the
results show average values together with their 95% confidence intervals.

5 Results

11.3

0.3

Download

S
C

T
P

T
C

P

0
5

1
0

Transport Protocol

P
a
y
lo

a
d
 T

h
ro

u
g
h
p
u
t 
[M

b
it
/s

]

SCTP

TCP

(a) “Download”: Reception Rate at UE

3.9
4.5

Upload

S
C

T
P

T
C

P

0
2

4

Transport Protocol

P
a
y
lo

a
d
 T

h
ro

u
g
h
p
u
t 
[M

b
it
/s

]

SCTP

TCP

(b) “Upload”: Reception Rate at Server

Fig. 4 Application Payload Throughput for Reception in the “Download” and “Upload” Scenarios

Figure 4 presents the application payload reception rate results for the “Down-
load” scenario (at the UE, Subfigure 4(a)) and the “Upload” scenario (at the server,
Subfigure 4(b)) for both transport protocols in Mbit/s. For using SCTP, the results
are as expected in both directions, with around 11.3 Mbit/s for download to the UE,
and 3.9 Mbit/s for upload to the server.

For TCP, we would have expected slightly higher results, since the mobile net-
work should not interfere with higher-level protocols. However, the download speed

5 NETPERFMETER: https://www.uni-due.de/∼be0001/netperfmeter/.
6 OAI HSS and MME: https://github.com/OPENAIRINTERFACE/openair-cn.git.
7 OAI SPGW-U and SPGW-C: https://github.com/OPENAIRINTERFACE/openair-cn-cups.git.
8 OAI eNodeB: https://gitlab.eurecom.fr/oai/openairinterface5g.git.



with TCP just reaches around 0.3 Mbit/s, while the upload speed reaches 4.5 Mbit/s.
Since the overhead for TCP is smaller than for SCTP (TCP can utilise the full MTU
size, while SCTP messages of 1400 bytes generate one packet per message), the
higher TCP upload rate is as expected. As part of ongoing work, we are currently
investigating the reason for this significant download speed difference, in order to
identify performance problems and/or bugs in OAI.

0.5

0.1

Bidirectional

S
C

T
P

T
C

P

0
.0

0
.2

0
.4

0
.6

Transport Protocol

P
a
y
lo

a
d
 T

h
ro

u
g
h
p
u
t 
[M

b
it
/s

]

SCTP

TCP

(a) “Bidirectional”: Reception Rate at UE

3.5
4

Bidirectional

S
C

T
P

T
C

P

0
1

2
3

4
5

Transport Protocol

P
a
y
lo

a
d
 T

h
ro

u
g
h
p
u
t 
[M

b
it
/s

]

SCTP

TCP

(b) “Bidirectional”: Reception Rate at Serv.

Fig. 5 Application Payload Throughput for Reception in the “Bidirectional” Scenario

The results for the “Bidirectional” scenario are presented in Figure 5, with the
application payload reception rate at the UE in Subfigure 5(a) and at the server in
Subfigure 5(b). As expected for the server side, the SCTP reception rate is slightly
lower than in the unidirectional “Upload” scenario: SCTP’s selective acknowledge-
ments [1, Chapter 3] for received chunks cause additional overhead. The reception
rate at the UE side is significantly lower than for the unidirectional “Download”
scenario for both, SCTP (ca. 0.5 Mbit/s vs. 11.3 Mbit/s) and TCP (ca. 0.1 Mbit/s
vs. 0.3 Mbit/s). Particularly the performance drop for SCTP cannot be explained by
additional overhead for the acknowledgements. As part of ongoing work, it is there-
fore necessary to further investigate the OAI software, in order to identify and solve
performance problems and/or bugs.

In summary, we have shown that our setup is working, with some likely bugs
and performance issues in the experimental OAI software used. However, since the
goal of our VNF is to easily instantiate mobile network testbeds with different ver-
sions and variants of the underlying software, our system can be very helpful in
supporting the OAI developers to identify problems as well as to evaluate bugfixes
and enhancements, in order to provide the users an easy-to-use deployment base for
their ongoing research and development work on 5G systems.

6 Conclusions and Future Work

Setting up a mobile network development testbed can be a highly complicated
and error-prone task. In this paper, we have therefore introduced our open source
VNF for an OPENAIRINTERFACE-based EPC for deployment with OPEN SOURCE
MANO (OSM). By using our VNF as basis, it will be easily possible to create own



testbeds and extend them with further functionality, particularly – but not limited
to – MEC setups. In a simple proof of concept, we demonstrated a basic transport
protocol performance evaluation in a deployed test network.

As part of future work, we are going to extend our VNF by more advanced fea-
tures of OPENAIRINTERFACE, particularly with support for network slicing and
scaling. Furthermore, we intend to add some example MEC NSs, like e.g. the video
streaming service proposed in [9]. Furthermore, we would also like to extend the
underlying OSM NFV infrastructure support with multi-cloud features [5, 7], i.e.
to utilise different cloud setups, with support of the MELODIC multi-cloud frame-
work [3].

References

1. Dreibholz, T.: Evaluation and Optimisation of Multi-Path Transport using the Stream Con-
trol Transmission Protocol. Habilitation treatise, University of Duisburg-Essen, Faculty of
Economics, Institute for Computer Science and Business Information Systems (2012)

2. Dreibholz, T.: NetPerfMeter: A Network Performance Metering Tool. Multipath TCP Blog
(2015)

3. Dreibholz, T.: MELODIC at Hainan University: An Introduction to the MELODIC Project.
Keynote Talk at Hainan University, College of Information Science and Technology (CIST)
(2019)

4. Dreibholz, T., Becke, M., Adhari, H., Rathgeb, E.P.: Evaluation of A New Multipath Conges-
tion Control Scheme using the NetPerfMeter Tool-Chain. In: Proceedings of the 19th IEEE
International Conference on Software, Telecommunications and Computer Networks (Soft-
COM), pp. 1–6. Hvar, Dalmacija/Croatia (2011). ISBN 978-953-290-027-9

5. Dreibholz, T., Mazumdar, S., Zahid, F., Taherkordi, A., Gran, E.G.: Mobile Edge as Part of
the Multi-Cloud Ecosystem: A Performance Study. In: Proceedings of the 27th Euromicro
International Conference on Parallel, Distributed and Network-Based Processing (PDP), pp.
59–66. Pavia, Lombardia/Italy (2019). DOI 10.1109/EMPDP.2019.8671599. ISBN 978-1-
7281-1644-0

6. Fairhurst, G., Welzl, M.: The Benefits of using Explicit Congestion Notification (ECN). Inter-
net Draft draft-ietf-aqm-ecn-benefits-08, IETF (2015)

7. Hong, J., Dreibholz, T., Schenkel, J.A., Hu, J.A.: An Overview of Multi-Cloud Computing.
In: Proceedings of the 1st International Workshop on Recent Advances for Multi-Clouds and
Mobile Edge Computing (M2EC) in conjunction with the 33rd International Conference on
Advanced Information Networking and Applications (AINA), pp. 1055–1068. Matsue, Shi-
mane/Japan (2019). DOI 10.1007/978-3-030-15035-8 103. ISBN 978-3-030-15034-1

8. Lavado, G.: OSM VNF Onboarding Guidelines. White paper, ETSI (2019)
9. Luo, Y., Zhou, X., Dreibholz, T., Kuang, H.: A Real-Time Video Streaming System over

IPv6+MPTCP Technology. In: Proceedings of the 1st International Workshop on Recent
Advances for Multi-Clouds and Mobile Edge Computing (M2EC) in conjunction with the 33rd
International Conference on Advanced Information Networking and Applications (AINA),
pp. 1007–1019. Matsue, Shimane/Japan (2019). DOI 10.1007/978-3-030-15035-8 99. ISBN
978-3-030-15034-1

10. OpenAirInterface: OpenAirInterface Software Installation Support (2019)
11. OpenStack: OpenStack Architecture Design Guide (2019)
12. OpenStack: OpenStack Installation Guide (2019)
13. OpenStack: OpenStack Operations Guide (2019)
14. Reid, A., González, A., Armengol, A.E., de Blas, G.G., Xie, M., Grønsund, P., Willis, P.,

Eardley, P., Salguero, F.J.R.: OSM Scope, Functionality, Operation and Integration Guidelines.
White paper, ETSI (2019)


