

Table of Contents

- Introduction and Our Goal
- Basic Testbed Setup
- · The SimulaMet EPC VNF
- Managing Builds
- · Live Demo

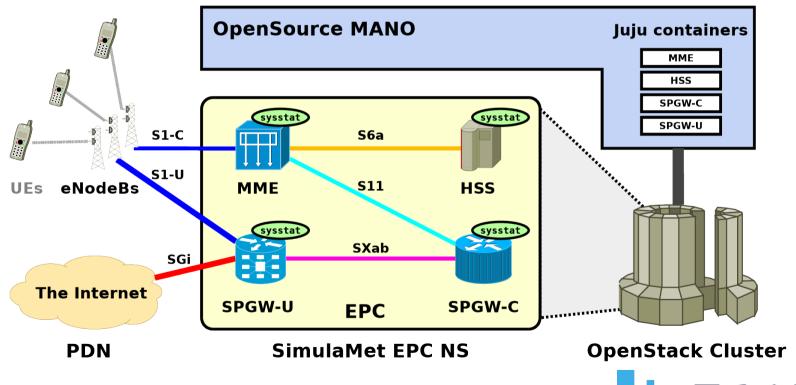
3 December 2020

Setting Up a 4G/5G Testbed

Hardware:

- User Equipment (modems, smartphones, etc.)
- Programmable sim cards
- Software-Defined Radio boards

- For the rest (eNodeBs, EPC):
 - OpenAirInterface Open Source software
 - Running on regular Linux PCs
 - But: difficult to install and maintain!



Our Goal: An OpenAirInterface VNF

- Main purpose: testbed setups for research and development
- OAI EPC as VNF
 - Easy to use, EPC should (hopefully) work "out of the box"
 - Build of OAI software inside VMs, according to specified Git repositories and commits
 - \Rightarrow get exactly the desired installation (e.g. using Mosaic5G branches)
- NSs using the VNF and possibly other VNFs
 - Example 1: add Mobile Edge Computing services to EPC
 - Example 2: use FlexRAN for network slicing
 - ...

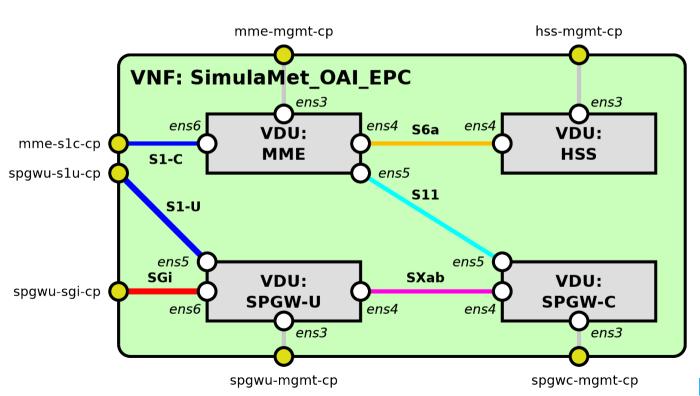
Basic Testbed Setup

5

What is needed for the VNF?

- Base VDU image
- The VNF itself
- Juju Charms to configure the components
- Management of the build process

Base VDU Image


- VDU image goals:
 - Full-featured base VDU image, including development and debug tools
 - Different versions of Ubuntu LTS (Xenial, Bionic, Focal)
 - Up-to-date (i.e. all updates installed)
- Packer scripting:
 - Fully automatic installation using Packer
 - Preseeding (Ubuntu < 20.04); Subiquity (Ubuntu ≥ 20.04)
 - Additional PPA, keyboard layout setup, EFI boot, etc.
 - All updates installed
 - => Fresh, state-of-the art installation (avoids issues with "old" installations)
 - Details: https://github.com/simula/nornet-vmimage-builder-scripts

The SimulaMet EPC VNF

HSS: Home Subscriber Server MME: Mobile Management Entity SPGW-C:

Control Plane of the

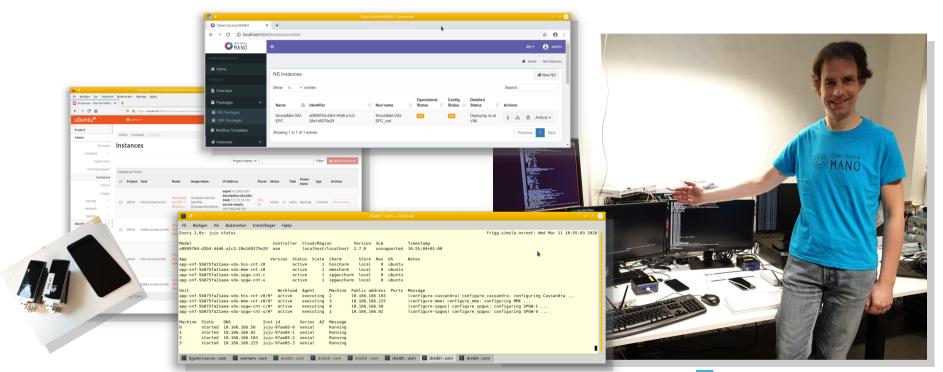
Packet Data Network Gateway SPGW-U:

User Plane of the

Packet Data Network Gateway

VNF Parameters Example

===== HSS ============ hss git repository: 'https://github.com/simula/openairinterface-openair-hss.git' hss git commit: 'dreibh/cassandra-build-fix-22oct2020' hss S6a address: '172.16.6.129' Git repository network realm: 'simula.nornet' network k: '449C4B91AEACD0ACE182CF3A5A72BFA1' network op: '1006020F0A478BF6B699F15C062E42B3' network imsi first: '242881234500000' network msisdn first: '24288880000000' network users: '1024' mme git repository: 'https://github.com/simula/mosaic5g-openair-cn.git' Git commit mme git commit: 'dreibh/mosaic5g ◀ (or tag or branch) mme S1C ipv4 interface: '192.168.247.102/24' mme S1C ipv4 gateway: '0.0.0.0' mme S1C ipv6 interface: " mme S1C ipv6 gateway: " Tailor-Made EPC mme S11 ipv4 interface: '172.16.1.102/24' mme S6a address: '172.16.6.2' Setup according to network mcc: '242' network mnc: '88' Your needs!


Managing VNFD/NSD Builds

- Multiple manual steps to generate and deploy VNFs and NSs
 - Strictly verify all YAML files with yamllint (very useful, to avoid problems and surprises!)
 - Copy Charm files to VNFDs and build Charms (charm build ...)
 - Including our library "VDUHelper"
 - Verify descriptor(s) and generate VNFD package(s) (validate_descriptor.py, generate_descriptor_pkg.sh)
 - Verify descriptor(s) and generate NSD package(s)
- Initial approach: write a Makefile
- Better approach:
 - Git for source management \Rightarrow information about all relevant source files
 - Let CMake write Makefiles and take care of dependencies!

Live Demo

Sources

- Get the sources here: https://github.com/simula/5gvinni-oai-ns
 - Open Source, GPL-licensed
 - README: how to set up a testbed
 - vmimage-builder-scripts/ (submodule):
 VDU preseeded image build script
 - juju/: The Juju Charms used by the VNF
 - SimulaMet-OAI-EPC_vnfd/: VNF descriptor
 - SimulaMet-OAI-EPC_nsd/: NS descriptor for simple example

