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Abstract—Integrating mobile edge computing (MEC) with
small cell networks has been conceived as a promising solution
to provide pervasive computing services. However, the inter-
actions among small cells due to inter-cell interference, the
diverse application-specific requirements, as well as the highly
dynamic wireless environment make it challenging to design
an optimal computation offloading scheme. In this paper,
we focus on the joint design of computation offloading and
interference coordination for edge intelligence empowered
small cell networks. To this end, we propose a distributed
multi-agent deep reinforcement learning (DRL) scheme with
the objective of minimizing the overall energy consump-
tion while ensuring the latency requirements. Specifically,
we exploit the collaboration among small cell base station
(SBS) agents to adaptively adjust their strategies, considering
computation offloading, channel allocation, power control,
and computation resource allocation. Further, to decrease
the computation complexity and signaling overhead of the
training process, we design a federated DRL scheme which
only requires SBS agents to share their model parameters
instead of local training data. Numerical results demonstrate
that our proposed schemes can significantly reduce the
energy consumption and effectively guarantee the latency
requirements compared with the benchmark schemes.

Index Terms—Mobile edge computing, small cell networks,
multi-agent deep reinforcement learning, computation of-
floading, interference coordination

I. INTRODUCTION

RIVEN by the explosive growth of data traffic and
new quality of service (QoS) requirements of mobile
users, 5SG mobile networks have undergone a major shift
in network architecture with the inclusion of small cell
networks formed by the small cell base stations (SBSs) [1].
Meanwhile, the computation-intensive and delay-sensitive
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applications such as high definition video, 3-D visual-
ization and augmented reality, define a new information-
centric ubiquitous computing paradigm. However, it is
challenging for the user equipments (UEs) to support those
computation-intensive applications due to their limited
energy and computation capacity. Mobile edge computing
(MEC) emerges as a promising technology to tackle this
issue, which pushes cloud services from the core network
to the edge that is in close proximity to the end users [2].

Integrating MEC with small cell networks can enhance
the computation and storage capabilities at the network
edge. In this case, UEs can offload the computation tasks to
the MEC servers at the SBSs via wireless communications,
to overcome the limitations of their own computation ca-
pacity and available energy, thus supporting computation-
intensive and delay-sensitive applications. However, due
to the limited wireless resource and computation resource,
the SBS may not be able to provide edge computing for
all UEs in its coverage. Excessive offloading UEs can
cause congestion in the wireless communication and the
computation on MEC server, resulting in higher delay for
transmission and edge computing, thus reducing the system
revenue. More importantly, due to the inter-cell interfer-
ence caused by the aggressive spectrum reuse scheme,
the offloading performance of different cells is tightly
coupled with each other. To be specific, the achievable
transmission data rate for offloading in one cell depends
not only on its own wireless resource allocation scheme,
but also on the inter-cell interference from other cells,
which is in turn determined by their wireless resource
allocation schemes. Therefore, to reap the potential benefits
of MEC, efficient computation offloading and interference
coordination schemes are urgently needed for the multi-cell
and multi-user small cell networks.

We note considerable amount of work focusing on
computation offloading and resource allocation schemes
based on traditional optimization methods [3] - [9]. For
instance, the authors in [3] proposed a centralized com-
putation offloading management scheme for small cell
networks based on genetic algorithm and particle swarm
optimization. In [4], the authors proposed a potential game-
based offloading algorithm, wherein mobile devices are
players that make the computation offloading decisions to
minimize their own overhead. In [5], the authors proposed
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a two-tier greedy offloading scheme for ultra-dense net-
works aimed at minimizing computation overhead. The
authors in [6] proposed an adaptive service offloading
scheme to maximize the total revenue, while maintaining
total utility value of the network. The authors in [7]
proposes an edge learning-based offloading framework for
autonomous driving to minimize the inference error. In [8],
the authors proposed a Stackelberg game based offloading
and resource allocation scheme for aerial-assisted internet
of vehicles. In [9], the authors proposed a hierarchical
optimization framework to optimize bandwidth allocation,
offloading strategy, and relay selection sequentially, so
as to reduce the latency and energy consumption. The
traditional optimization methods used in literature often
require complete and accurate network information, which
is difficult to obtain in real networks due to highly dynamic
wireless networks. Especially, the centralized optimization
algorithms require global network information, imposing a
large signaling burden to practical networks. Furthermore,
the joint computation offloading and resource allocation
problems are often modeled as combinatorial optimization
problems with nonlinear constraints that are difficult to
optimize efficiently using traditional optimization methods.

Edge intelligence [10] is a promising paradigm that
incorporates artificial intelligence (Al) into edge networks
to enable various intelligent services, such as autonomous
driving [11], industrial internet of things [12], and UAV-
enabled aerial surveillance [13]. Edge intelligent servers
can leverage the powerful learning and reasoning ability of
Al to extract valuable knowledge and make adaptive deci-
sions, hence offering distributed and low-latency services
to end users. Deep Reinforcement Learning (DRL) is an
emerging technique to address the problems with stochastic
and uncertain feature in complex dynamic systems [14]
[15]. DRL has been widely applied for optimizing com-
putation offloading in mobile networks. For instance, the
authors in [16] proposed a deep Q-learning based task
offloading scheme for optimizing edge server selection and
transmission mode selection, to maximize task offloading
utility. In [17], the authors considered a single-MEC server
network, and proposed a Deep-Q Network (DQN) based
task offloading and bandwidth allocation algorithm to mini-
mize overall offloading cost. In [18], the authors proposed a
Double Deep Q-Network (DDQN) based backscatter-aided
hybrid data offloading scheme to reduce power consump-
tion in data transmission. The authors in [19] considered an
end-edge-cloud orchestrated network, and proposed a Deep
Deterministic Policy Gradient (DDPG) based offloading
decision and computation resource allocation scheme to
minimize system energy consumption. In [20], the authors
proposed a DQN based computation and network resource
allocation algorithm to reduce service time and balance
resource utilization. In [21], the authors proposed an Asyn-
chronous Actor-Critic (AAC) based algorithm to solve the
computation offloading and resource allocation problem in
a digital twin network.

The works discussed above focus on centralized intelli-

res IEEE permission. See http://www.ieee.or.

gent approaches, which model the sophisticated global op-
timization problem as a single-agent reinforcement learning
problem, thus requiring a central agent to collect the
global state information of the environment to make the
global decisions for entire system. Scalability is therefore
a major issue. However, for an edge intelligence enabled
small cell network, it involves interaction between multiple
decentralized agents, wherein each SBS is an autonomous
agent, able to make its decision individually based on its
local observation of the environment. In such multi-agent
environment, it’s of critical importance to design a decen-
tralized intelligent algorithm to coordinate the actions of
the SBS agents to improve the overall performance of the
system. Multi-agent reinforcement learning (MARL) [22]
is a promising distributed machine learning approach,
particularly suitable for the multi-agent network scenarios
where each agent only has local information about the
global environment. In the literature, MARL has been
employed to address different network problems, such as
dynamic power allocation in wireless networks [23], spec-
trum allocation for D2D underlay communications [24],
and resource allocation for UAV networks [25].

In this paper, we focus on distributed intelligent compu-
tation offloading and interference coordination scheme for
small cell networks. In particular, we investigate the joint
optimization of computation offloading, channel allocation,
power control, and computation resource allocation for
multi-user and multi-cell networks based on MARL. The
key contributions of our work are summarized as follows:

* We formulate a joint computation offloading and inter-
ference coordination problem for an edge intelligence
enabled small cell network as a multi-agent DRL
problem to minimize the system energy consumption
taking stringent delay constraints into account.

* We propose a distributed multi-agent DRL-based
computation offloading and resource allocation algo-
rithm, wherein the SBS agents independently take
actions based on their local observations, but refine
their strategies through collaborative exploration of
the environment, so as to coordinate the inter-cell
interference and improve the overall system perfor-
mance.

* To decrease the computing complexity and signal-
ing overhead of the training process, we propose
a federated DRL-based computation offloading and
resource allocation algorithm, which only requires
SBS agents to share their model parameters instead
of local training data.

The remainder of this paper is organized as follows.
The system model of the edge intelligence enabled small
cell network is presented in Section II. The proposed
multi-agent DRL and federated DRL based computation
offloading and resource allocation schemes are introduced
in Section III and Section IV, respectively. Numerical
results are presented in Section V. Finally, the paper is
concluded in Section VI.
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II. SYSTEM MODEL

In this section, we first introduce the edge intelligence
enabled small cell network model, then present the com-
munication model and the computation model in detail.

A. Edge Intelligence Enabled Small Cell Network

We consider an edge intelligence enabled small cell
network, consisting of M randomly distributed SBSs and
N randomly distributed UEs, as shown in Fig.1. Both
SBSs and UEs are equipped with a single antenna. The
SBSs are equipped with MEC servers and capable of
providing artificial intelligence enhanced decision capa-
bilities at the network edge. Denote the set of SBSs as
M ={0,1,2,..., M} and the set of UEs served by SBS
me M as N, = {1,2,..., N, } with N,,, " N,,,» = 0 for
m#m/,and >, | Ny, |= N.

MEC
Server

Fig. 1. Edge intelligence enabled small cell network

Each UE has a computation intensive task to complete.
The computation task of UE n in cell m can be described
as Taski™ = {dg,m)7w£bm),ﬁ§m)}, where d™ denotes
the size of the computation task, and wf(lm) represents the
total computation capability (i.e., CPU cycles) required to
complete the computation task, and T,(Lm) is the maximum
latency that can be tolerated by the UE. To complete
the computation task, the UEs can compute locally, or
offload the computation task to the corresponding serving
SBSs. Differentiated from the binary offloading scheme in
[3] and [4], we consider the partial offloading scheme to
improve the granularity of offloading, wherein a part of a
computation task can be executed locally at the UE, and the
remaining part is executed remotely at the MEC server of
the serving SBS at the same time, i.e., the local computing
and edge computing respectively.

When a UE decides to offload, the offloaded part of its
task will be transmitted to the MEC server of its serving
SBS through wireless uplink. Then the MEC server of the
serving SBS executes the computation task for the UE,
and the serving SBS sends the computation results back to
the UE through wireless downlink. As in [3] and [19], we
focus on the first two phases, involving a communication
model and a computation model, which will be presented
in detail in the following subsections.
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B. Communication Model

Define ol € [0,1] as the offloading ratio of UE n
in cell m. Accordingly, for a computation task with size
of d™, the part with size o™ d™ s executed at the
edge server, and the other part with size (1 — aﬁg’”))dﬁ”)
is executed locally. Especially, aﬁf”) = 0 represents that
the UE decides to complete the whole computation task
locally by itself, and a%m) = 1 means that the UE decides
to offload the whole computation task to the MEC server
of its serving SBS. When 0 < aﬁ[”) < 1, a part of the
computation task with size ai™ d{™ will be offloaded to
its serving SBS through wireless uplink.

Let K denote the number of orthogonal channels in the
system, and SBSs reuse the full spectrum of the system.
In this case, there exists co-channel interference among
different small cells. In each small cell, the orthogonal
frequency-division multiple access scheme is adopted, so
that there is no intra-cell interference. Define bfﬂ) € {0,1}
as the channel allocation indicator for SBS ’m, where
bf:;) = 1 represents that SBS m allocates channel k to

UE n, and otherwise b;nz) = 0. Considering the orthogonal
frequency-division mult)iple access scheme adopted in each
small cell, each channel can be assigned to at most one UE.
Thus the channel allocation decisions of the SBSs must
satisfy the constraint ) - bi:;c) <LVkeK,me M.
Furthermore, we assume that each UE can be allocated at
most one channel when offloading computation task to the
serving SBS, that is }_, bg:';c) <1,Vn € N,,,m € M.
Define p{™ € [O,Pﬁm)’mm] as the transmit power of
UE n in cell m, where PT(Lm)’mw 1S the maximum transmit
power of the UE. Hence, when UE n in cell m offloads
the computation task to its serving SBS via channel k, the
achievable uplink data rate on channel & for UE n is given

by
(m) ()
M) (1

(m)
Ty = Blogy | 1+ —
* ( NoB + 1™

where B is the bandwidth of each channel. hi:;c) is the
channel gain on channel k for the signal link from UE
n to its serving SBS m. Ny is the spectrum density
of the additive white Gaussian noise (AWGN). [ ,gm) =

Dot m Dt N pUm)glm) i the received interference
" ’ (m)

on channel k& for SBS m, where I k is the channel gain
on channel k for the interfering link from UE n’ to SBS
m. Therefore, the achievable uplink data rate of UE n in
cell m is given by

Ui =3 b )
keK

According to (1) and (2), the achievable uplink data
rate of a UE for offloading depends not only on the
allocated channel and its own transmit power, but also on
the inter-cell interference from the offloading UEs in other
cells. From the perspective of system optimization, the
coordination among different small cells for computation
offloading, channel allocation, and power control is vital to
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alleviating the inter-cell interference and hence improving
the offloading performance.

C. Computation Model

Given the offloading ratio a%m) of UE n in cell m, for

the total computation capability requirement w,(lm), the part
™ w{™ s executed throu(gh the edge computing, and
the other part (1 — ol ))wnm) is executed by the local
computing.

1) Local Computing: Assume that the computation ca-
pacity (i.e., CPU frequency) of each UE is fixed, but may
vary over the UEs. Denote the CPU frequency of UE n in
cell m as C™. Thus, given the offloading ratio a\™ . the
delay for local computing can be given by

LocT(™ = (1 — alm™)w(™ /cim), 3)

Furthermore, given the energy consumption coefficient
£,("™) for per CPU cycle of UE n in cell m, the energy
consumption for local computing is given by

LocE(™ = (1 — o, ™)w™e, (™) (4)

2) Edge Computing: According to the communication
model presented in section II-B, given the offloading ratio
indicator oz,(lm) of UE n in cell m, the delay and energy
consumption for transmission to SBS m are respectively
given by

Of T = afdi™ U™ 5)
and
OfFEL™ = piafmdi™ [Ugm).(6)

Denote the computation capacity of the MEC server at
SBS m as C"™), which is finite and fixed, but may vary
over the SBSs. For UE n € N,,, offloading to SBS m, de-
fine f,(Lm) € (0,1] as the computation resource assignment
ratio for UE n. Considering the finite computation capacity
of the MEC server, the computation resource assigned to
the UEs cannot exceed the total available computation
resource in the MEC server, that is Zne N, f,(Lm) <1,
VYm € M. Accordingly, the delay of UE n for edge
computing can be expressed as

Of fTimex = o (m)y(m) / glm) Gm), (7)

Furthermore, given the energy consumption coefficient
g(m) per CPU cycle of the MEC servers at SBS m, the
energy consumption of UE n for edge computing is given
by

Ofngn),ex — a;m)w;m)é(m). 8)

Therefore, the delay and energy consumption of UE
n for offloading the task to the serving SBS can be
respectively written as

OffTT(Lm) — OffT}Lm),tr + Off-TT(Lm),ew 9)
and

OfFE™ = Of fE™" + Of fEL™ <. (10)
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III. MULTI-AGENT DRL FOR COMPUTATION
OFFLOADING AND RESOURCE ALLOCATION

According to the communication model and computation
model presented in section II-B and section II-C, the
offloading performance of different small cells is coupled
with each other due to the inter-cell interference. Consider-
ing the limited communication and computation resources
in each small cell, how to coordinate the computation of-
floading and resource allocation schemes of the small cells
to improve the overall performance of the system remains
challenging. Consequently, the problem of interest is to
jointly optimize the computation offloading decision, chan-
nel allocation, power control, and computation resource
allocation of the multiple small cells, with the objective of
minimizing the total energy consumption while satisfying
the latency requirements of the computation tasks. We
consider a fully synchronized time slotted system, with
each time slot as a scheduling period. The computation
offloading and resource allocation problem in slot ¢ is
formulated as follows:

Poixm,bfi]l,lg[t],f[t];ZnXLOCE’S t]+Of fE" )[t])
s.t.

Cl:max{LocT ™ [t], Off T\™ [t]} < T™ , Vm, n
C2: a!™t] € [0,1], Vn,m

C3: b [t] € {0,1}, Vn,m, k

c4: Y bV <1, va,m (11
kex
cs: > b <1, Vhm
77fe-/\/m
ce: p\M[t] € [0, B ™), Ym,n
C7: £ € (0,1], Y fI[H] <1, ¥m
neN,
where aff] = {a{™[f}, bl = {31} plt] =

{pU™ ]}, and £[t] = {£{™ [t]}. With the partial offload-
ing scheme, the delay of completing a computation task
depends on the longer one between the time for local
computing and edge computing. Therefore, constraint C1
is considered to ensure the latency requirements of the
computation tasks. Constraint C2 states that the fractional
offloading scheme is supported in this work. Constraints
C3-C5 represent that each UE can be allocated with at most
one channel, and each channel in each cell can be assigned
to at most one UE. Constraint C6 represents the transmit
power constraint of each UE. Constraint C7 means that the
amount of the computation resource allocated to all UEs
cannot exceed the total available computation resource in
the MEC server in each cell.

The global optimization problem PO in (11) is a
mixed integer non-linear programming problem (MINLP),
wherein the channel allocation indicator bg:}? [t] is binary
variable, while the offloading ratio o™ [t], the transmit

power p%m) [t], and the computation resource assignment
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ratio "™ [t] are real positive numbers. In addition, the
problem PO is non-convex due to the inter-cell interference
terms in the achievable data rate in (1), and combinatorial
due to the binary variable, such that it can not be solved
directly even for a small-scale network. In the practical
small cell networks, the number of UEs and SBSs are
increasing over time, resulting in the significant increase on
the complexity of our problem. DRL has been recognized
as an efficient method to find an optimal policy in complex
dynamic systems. Therefore, we attempt to exploit DRL
to tackle the challenge of solving the global optimization
problem in this work.

A. Multi-Agent Environment Modeling

In the edge intelligence enabled small cell network
illustrated in Fig.1, the SBS of each small cell decides
the computation offloading and resource allocation scheme
for the UEs it serves according to its local environment
and user demands in each time slot. Due to the inter-cell
interference, the decisions of different SBSs affect each
other, resulting in tight coupling of the performance of
different small cells. Therefore, it can be modelled as a
multi-agent reinforcement learning problem, where each
SBS acts as an agent and interacts with the environment
to gain experiences to improve its policy of computation
offloading and resource allocation.

In such multi-agent environment, the SBS agents inde-
pendently update their policies as learning progresses. It’s
noteworthy to mention that if two or more agents update
simultaneously, the environment appears non-stationary
from the perspective of any individual agent, resulting in
instability in the training process. As in [23], [24], and
[25], the considered multi-agent reinforcement learning
problem can be modelled as a partially observable Markov
game [26], which is the generalization of the Markov
decision processes to the multi-agent case. Specifically, at
each time ¢, given the current environment state S[¢], each
SBS agent m receives an observation s,,[t] = O(S[t],m)
of the environment with the observation function O,
and then takes an action a,,[t], forming a joint action
alt] = {ai[t],...,anm[t]} of all agents. Thereafter, the
agent receives the immediate reward R,,[t] based on the
joint action a[t], and the environment evolves to the next
state S[t + 1]. The new observation s,,[t + 1] is then
received by the SBS agent m with a transition probability
of p(sm[t + 1]|smt], a1[t], ..., anr[t]). In our system, the
state space, the action space, and the reward function are
defined as follows.

1) State Space: The environment state S[t] may include
the global channel condition and the behaviours of all
SBS agents. In real networks, it is not practical to assume
that each SBS agent has knowledge about the global
environment state. Instead, each SBS can acquire partial
knowledge of the environment through an observation
function. The state observed by SBS agent m at time ¢ for
characterizing the environment contains the local instant
channel gains of its own signal links on each channel, the

res IEEE permission. See http://www.ieee.org/publications_standards/

received interference power at SBS m on each channel,
as well as the task profiles of the UEs in its coverage.
Accordingly, the local observation of SBS agent m can be
summarized as $,,[t] = {h;,[t], I»[t], Task,,[t]}, where

o by [t] = {7V BRI s TR T s
(m)

hin, r[t]]} represents the instant channel gains of
the signal links between UE n € A,,, and SBS m on
channel k£ € IC, which can be accurately estimated by
SBS m.

« Io0t] = (1[4, ..., 17[t]] represents the received
interference power at SBS m, which can be measured
separately on each channel k£ € K at SBS agent m.

» Task,,[t] = [Taskgm) [t], ...,Task(ﬁil[t}] represents

\
the task profiles of the UEs served by SBS m.

2) Action Space: At each time t, SBS agent m takes
an action a,, [t] according to the current local observation
Sm[t] based on its decision policy. The computation of-
floading and resource allocation design of SBS m comes
down to the computation offloading decision, channel al-
location, uplink power control, and computation resource
allocation for the UEs served by SBS m. Accordingly,
the action of SBS agent m can be defined as a,,[t] =

{an[t], by [t], P t], £, [t]}, Where

° ault] = [agm) [t], ..., al%i‘[t]] denotes offloading de-

cisions for each UE n € N,,, i.e., the ratio of task
executed by the edge computing.
o by [t] = {1, ORI s 0 1

bI(JT\nf)nI w[t]]} denotes the channel assigned to each UE

n € N, for transmitting the offloaded task to SBS
m.

* pnlt] = [pgm) [t], ...,pm) ‘[t]] denotes the uplink
transmit power of each UE n € N, for offloading
task to the serving SBS m. Note that ™ [t] =0
when UE n computes its task locally.

e fl(m) [t], s f‘%n:ll[t]] denotes the computation
resource that SBS m allocates to each UE n € N,,.
And £{™ [t] = 0 when UE n computes its task locally.

3) Reward Function: Each SBS agent refines its com-
putation offloading and resource allocation policy through
a learning process driven by the reward function, where
the reward function design correlates with the desired
objective. According to the optimization problem PO in
(11), we consider a cooperative multi-agent scenario, where
the SBS agents should cooperate with each other rather
than acting selfishly in their own interests to compromise
the overall performance of the system. To this end, a
system performance-oriented reward function is required
to promote cooperation among SBS agents, such that the
SBS agents improve their policies toward achieving the
desired global objective. Since our goal is to minimize the
total energy consumption while satisfying the latency re-
quirements of the computation tasks, the immediate reward
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RE°[t] for SBS agent m at time ¢ can be defined as
RCH) =
> (—LocE,(;") [t] — Off ES™ [t] + V(™) [t]) (12)

meEMnEN,,

where LocE™ [t] and Of f E™ [t] denote the energy con-
sumption for executing task Task;flm) locally and remotely

at SBS m, respectively, at time ¢. Moreover, V,Sm) [t] is
defined as

V] :G(T,(Lm)—max {LOCT,S’”)[t], OffT\™t] }) (13)

where G(x) is a piecewise function, i.e., G(x) = S if
x > 0, and otherwise G(x) = z if z < 0. The immediate
reward (12) is composed of three parts. The first and
second parts correspond to the energy consumed by local
computing and edge computing, respectively. The third
part denotes the impact of the latency requirements of
the computation tasks. According to (13), V"™ [t] is set
to a positive constant number, [3, representing the revenue
when the latency requirement of the computation task is
guaranteed, and otherwise is set to a negative penalty,
with an absolute value equal to the difference between
the latency requirement and the actual delay of executing
the computation task. In practice, 5 is a hyperparameter,
which is tuned empirically such that it is greater than the
absolute of the penalty, but not obscuring the impact of the
first two parts in the reward function, i.e., the total energy
consumption. Accordingly, the learning process attempts
to reduce the overall energy consumption and fulfill the
latency requirements of as many computation tasks as
possible to maximize the expected cumulative rewards.
The goal of learning for agent m is to find a joint
computation offloading and resource allocation policy to
maximize the expected cumulative discounted reward, i.e.,

Tm =E Y RS (14)
t=0

where the constant y € [0, 1) is the discount factor.

B. Multi-Agent DRL based Computation Offloading and
Resource Allocation Scheme

In order to improve the overall performance of the
system and overcome the inherent nonstationarity of the
multi-agent environment, based on the multi-agent deep
deterministic policy gradient (MADDPG) [27], we propose
a multi-agent DRL based computation offloading and re-
source allocation scheme for small cell networks. Different
from the existing DRL based centralized algorithms pro-
posed in [16]-[21], the proposed multi-agent DRL based
algorithm is a distributed approach, alleviating the scala-
bility issue and more suitable to the practical networks.
In the proposed multi-agent DRL based algorithm, the
SBS agents independently take actions based on their local
observations and user demands, but refine their strategies of
computation offloading, channel allocation, power control,

res IEEE permission. See http://www.ieee.or.

and computation resource allocation through collaborative
exploration of the environment, so as to coordinate the
inter-cell interference thus improving the overall energy
consumption performance of the system.
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Fig. 2. The multi-agent DRL scheme

As shown in Fig.2, each SBS is modelled as a DDPG
agent, consisting of two parts, i.e., the actor and the critic
networks. The input of the actor network is the local
state observed by the agent, and the output is its selected
action. However, besides the local observation and action
of the agent itself, the input of the critic network is also
augmented by extra information about local observations
and actions of the other agents. The output of the critic
network is the corresponding Q-value. Denote the set of
actor networks and critic networks of all SBS agents as
pw={p1,...,pn} and Q = {Q1,...,Qn} parameterized
by 6% = {6%,....6% } and 69 = {69, ..., 6}, respectively.
Meanwhile, in order to overcome the divergence of Q-value
update, a copy of the primary actor and critic networks are
also created for each agent, i.e., the target actor network
;l.;n and target critic netwo/rk Q;n for SBS agent m with
delayed weight 0';; and 0% , respectively.

To guarantee the non-correlation in training data, an
experience replay buffer is utilized to store the transition tu-
ples (s[t], a[t], r[t], s[t+1]), where s[t] = {s1[t], ..., sa[t]}
is the joint observation, aft] = {a1lt],...,anm[t]} is the
joint action, and r[t] = {r1[t], ..., 7as[t]} is the joint reward
with 7,,,[t] £ RC°[t] given by (12). At each time step, the
critic and actor networks can be updated by sampling a
minibatch uniformly from the experience replay buffer. To
be specific, the critic network of SBS agent m is updated
by minimizing the loss function L,, (9%), which is defined
as

1 & A , S \12
Lo(02) = =3 [ — @ (ssadaly) | 019)
j=1

where W is the size of mini-batches, and j is the index of
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the randomly sampled mini-batches. y7, is the target value
calculated by the target critic network, given by

, , roa
y%zrfn-f—’}’@'fn(su’all"“’a?”) |a;<::#;c(si) . (16)
Different from the action-value function in the single-
agent DRL algorithm which takes as input only the local
observation and action, the action-value function Q¥, (s, a)
of SBS agent m in the proposed multi-agent collaborative
DRL algorithm takes as input the joint observation s and
joint action a. The joint observation s and joint action a
consist of the observations and actions of all SBS agents,
respectively. As such, the critic network of each agent can
evaluate the quality of its selected action taking the actions
of other agents into consideration, thereby promoting the
coordination among the agents.

Then, based on (15) and (16), the weight 9,‘% of the critic
network can be updated by

03 0% — 6V ,a L(63) (17)

m

where ¢ is the learning rate.
Moreover, the actor network of SBS agent m can be
updated with the policy gradient scheme as follows.

\ Jm(%) =

m

1 & , y : (18)
WZVH’T‘”#(S%'L)%WIQI;L(S{ ajlv 5 @m, 'aagw)|am:“(s{n)
j=1

Subsequently, the corresponding weight 8% can be updated
by

01« 08 — 5V g J(O8). (19)

On the other hand, the target network can be regarded
as an old version of the primary network with delayed
weights. With the soft updating strategy, the weights 69
and 6%' of the target critic and target actor networks of
SBS agent m can be updated by

09 = 76% + (1 — 1)69
O = 70k + (1 — 7)o"

where 7 is the soft updating rate of the target network.

(20)

C. Algorithm for Multi-agent DRL

The proposed multi-agent DRL based computation of-
floading and resource allocation algorithm is summarized
as Algorithm 1. In implementation, the proposed multi-
agent DRL based computation offloading and resource al-
location algorithm is divided into the training and execution
phases according to the centralized learning and distributed
implementation framework.

In the training phase, the historical global information
about the observations, actions, and rewards of all SBS
agents is utilized to train the actor and critic networks
of each SBS agent with the experience replay strategy, so
that the SBS agents collaboratively improve their policies
for the global objective. Specifically, the training procedure
consists of multiple episodes, each consisting of multiple
time steps. In each time step, each SBS agent decides its

ires IEEE permission. See http://www.ieee.org/

actions a., [t] in computation offloading, channel allocation,
power control, and computation resource allocation by the
primary actor network p,,(s,,[t]) based on its current
policy and local observation. Then, each SBS informs its
UE:s the decisions on computation offloading, channel allo-
cation, and power control via an intra-cell dedicated control
channel. Meanwhile, all SBS agents broadcast their local
observations and selected actions via an inter-cell dedicated
control channel, so that each SBS agent can compute the
immediate reward r,,[t] according to (12). Based on the
actions taken by all SBS agents, the environment transits
to a new state due to the changes of co-channel interference
and small-scale channel fading. Each SBS agent acquires
its next local observation s,,[t+1] subsequently. Thereafter,
based on mini-batch technique, each SBS agent updates its
critic and actor networks according to (15)-(20).

In the execution phase, each SBS agent individually
makes decisions on computation offloading, channel allo-
cation, power control, and computation resource allocation
by its trained actor network based on its local observation
of the entire environment. Then, each SBS informs its
UEs the decisions on computation offloading, channel
allocation, and power control via an intra-cell dedicated
control channel, then the UEs can perform accordingly.

Algorithm 1 Multi-Agent DRL based Computation Of-
floading and Resource Allocation Algorithm
1: Initialize actor networks g and critic networks Q with
weights 0 and 6%.
2: Initialize target actor networks g’ and target critic
networks Q' with weights @*' and 6%’

3: Initialize the experience replay buffer D;

4: for each episode epi = 1,2, ... do

5. Initialize the local observation state s[0];

6: for each time t =1,2,..., do

7: All SBS agents select actions a[t] = {an[t] =
L (sm[t]),m € M}, and execute the selected
actions;

8: All SBS agents compute the reward r[t] =
{rm[t] = RS°[t],m € M} with (12), and observe
the next state s[t + 1];

9: Save the tuple (s[t], a[t], r[t],s[t + 1]) in D;

10: Sample a random mini-batch of tuples from D;

11: Update the critic networks of all SBS agents with
(15), (16) and (17);

12: Update the actor networks of all SBS agents with
(19) and (18);

13: Update the target actor and target critic networks
with (20);

14:  end for

15: end for

The time complexity of Algorithm 1 mainly depends
on the number of the SBS agents and the structure of
the neural networks for implementing the actor and critic
networks of each SBS agent. Assuming that the actor
network and critic network of each SBS agent contains
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J and L fully connected layers, respectively, the time
complexity can be calculated as

J L

M x QXZ nA7jnA7j+1—|—2><Z ncInc,i+1

j=0 1=0

ey
J L

=0|Mx E nA,jnA,jHJrg NeIne,i+1

=0 1=0

where n 4 ; and nc; represent the unit number in j-th actor
net layer and [-th critic net layer, respectively. M is the
number of the SBS agents in the system. n4,0 and nc,
equal the input size of the correspond network.

IV. FEDERATED DRL FOR COMPUTATION OFFLOADING
AND RESOURCE ALLOCATION

In the proposed multi-agent DRL algorithm, the global
information about the observations and actions of all SBS
agents is required to train the actor and critic networks of
each SBS agent. Therefore, the SBS agents need to ex-
change their local information with each other, which may
lead to significant signaling overhead. In this section, we
will design a low-overhead algorithm for joint computation
offloading and resource allocation, which is more preferred
for the resource-constrained scenarios.

Recall that problem PO in (11) is a global optimization
problem to minimize the overall energy consumption of
the system. Since the different small cells are tightly
coupled through the inter-cell interference, each cell can
individually decide its computation offloading and resource
allocation policy if the interference from the other cells is
acquired. Consequently, given the received interference on
all channels, the global optimization problem PO can be
decomposed into M sub-problems, each corresponding to
a small cell. Take cell m for instance, given I, ]gm) [t] for
k € K in (1), the local optimization sub-problem can be
formulated as

Pl: i LocE{™[t]+Off E{™t
am[t],bmﬁfgmm,fmmzn:( B+ O B [D

s.t. (22)

C1 - C7 in (11) for given m

where a,[t] = {a[1]}. bult] = {0} [1}. pult] =
(P )Y, and £, [t] = {£™[t]} for n € N, k € K. Note
that the sub-problem P1 is also an MINLP, with the goal
of minimizing the energy consumption of the cell rather
than the total energy consumption of all cells. In addition,
all of the constraints are only related to the cell itself.
From the system perspective, when the global optimiza-
tion problem is decomposed into multiple sub-problems,
each SBS agent can independently learn a policy based on
its own observation and interaction with the environment,
while treating the other agents as part of the environment.
However, the lack of training data may pose a significant
challenge to the training of an accurate DRL model at each
agent in independent learning. To deal with this challenge

with low overhead, a distributed federated learning [28]
can be exploited to enhance the training performance of
the individual local DRL models without centralizing the
training data [29].
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Fig. 3. The federated DRL scheme

As shown in Fig.3, each SBS runs a local DDPG model,
where the actor network takes as input its local observation
of the environment and outputs the selected action, and
the critic network takes as input the local observation and
the selected action and outputs the corresponding Q-value.
According to the local optimization problem (22), each
SBS agent aims at minimizing the energy consumption of
its own cell while satisfying the latency requirements of
the tasks within its coverage. Therefore, the reward R%![]
for SBS agent m at time ¢ can be defined as

RE![t=>" (- LocB™ -0 FES™ [+V™ 1) 23)
neEN,

where V;{"™) [t] is given by (13). Different from the reward

RE°[t] in (12), the reward RE![t] is designed as the local
utility of each cell.

For SBS agent m, we denote the actor and critic
networks as p,, and Q,, parameterized by 6# and 6%,
respectively. Moreover, SBS agent m maintains an ex-
perience replay buffer to store its local transition tuples
(Sm[t]; am[t], RENE], sm[t-+1]). With the experience replay
strategy, the critic network is updated by minimizing the
loss function LE! (6%), which is defined as

m

W
LEOS) = o> [ — @ (shad))
m ]:1

(24)

where W, is the size of mini-batches of SBS agent m.
U = REHAQ (5, 0%) Ly, (o 18 the target
value generated by the target critic network. Note that
the action-value function Q¥ (s,,,a,,) takes as input the
observation and action of itself. Since the impact of other
SBS agents’ policies on the achievable local reward is
characterized by the received interference I,, in the local
observation of the environment, the critic network can

g 2 ed, uires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF OSL%. Downloaded on August 18,2021 at Oéz 5:57 UTC from IEEII:2

Xplore. Restrictions apply.



0018-9545 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution re:

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2021.3096928, IEEE

Transactions on Vehicular Technology

evaluate the quality of the selected action based on its local
information.

On the other hand, the actor network of SBS agent m
can be updated with the policy gradient scheme as follows.

Vou I (0,) =

14%
1 <=2 . o (25)
W > Vou 1(55,) Vi Qi (0 @) g _ e
i=1

Subsequently, the weights % and 6 can be updated with
(17) and (19), respectively. In addition, the weights of
the corresponding target critic and actor networks can be
updated with (20).

Algorithm 2 Federated DRL based Computation Offload-
ing and Resource Allocation Algorithm

1: Initialize actor networks g and critic networks Q with
weights O* and 0%.

2: Initialize target actor networks g’ and target critic
networks Q' with weights 6# and 69"

3: Initialize the experience replay buffer D,, for SBS
agent m € M,

4: for each round r = 1,2,... do

5. for each episode epi = 1,2, ... do

6: Initialize the local observation s,,[0] for m € M;

7: for each time t = 1,2, ... do

8: All SBS agents select actions simultaneously

am[t] = pm(sm[t]),m € M, and execute the
selected actions;

9: for each SBS agent do

10: Measure the received interference I ,gm) [t] on
each channel k& € C, and compute the imme-
diate reward RE![t] with (23), and observe
the next state s,,[t + 1];

11 Save (s, [t], am[t], RELE], sm[t+1]) in D,y;

12: Sample a random mini-batch from D,,;

13: Update the critic network with (17) by min-
imizing the loss function in (24);

14: Update the actor network with (19) and (25);

15: Update the target networks with (20);

16: end for

17: end for

18:  end for

19:  All SBS agents upload the weights 0¥ and 6% of
their local models to the coordinator;

20:  Perform model aggregation with (26), and distribute
the averaged global weights back to all SBS agents;

21: end for

The proposed federated DRL based computation of-
floading and resource allocation algorithm is summarized
in Algorithm 2. In the proposed algorithm, the federated
learning process consists of multiple coordination rounds.
In each round, each SBS agent independently trains its
local model based on its local data through multiple train-
ing episodes, without any knowledge of the observations
and actions of other SBS agents. Consequently, there is

res IEEE permission. See http://www.ieee.org/publications_standards/

no information exchange among SBS agents, and hence
the communication overhead of the system is significantly
reduced.

After training for multiple episodes on each round, each
SBS agent uploads the weights of its local model to
the coordinator (e.g., the macro base station (MBS)) via
a dedicated backhaul control channel to perform model
aggregation. Specifically, the mini-batch based stochas-
tic gradient descent is adopted for federated averaging,
wherein the weights of the global model are given by

0" Z %9;

where 0" and 6], are the weights of the global model and
the local model at SBS agent m on round r, respectively.
W =3, W, is the sum batch size for all SBS agents.
Then, the coordinator distributes the averaged global model
back to all SBS agents to update the their local models
accordingly. Alternatively, the model aggregation can be
performed at each SBS agent locally in implementation.
In particular, the SBS agents exchange their model param-
eters with each other via an inter-cell dedicated control
channel. Each SBS agent performs model aggregation with
(26) based on the collected model parameters from the
other agents. Since each SBS agent acquires the model
parameters of all SBS agents and performs the same
federated averaging operation, different SBS agents can
obtain the same aggregated model as that performed by
the MBS globally. Further, the neighbouring small cells
may experience similar environment observations, the SBS
agents of the neighbouring small cells can be clustered
into a cooperating group to perform model aggregation,
reducing the communication overhead.

Since each SBS agent also runs a local DDPG model, the
time complexity of the proposed federated DRL algorithm
can also be calculated using (21). Although the structure
of the actor network is the same as that in the proposed
multi-agent collaborative DRL algorithm, the input size of
the critic network nc o is significantly reduced since only
the local state is considered instead of the observations and
actions of all SBS agents. Therefore, the complexity of the
proposed federated DRL algorithm is significantly reduced
compared to the proposed multi-agent DRL algorithm.

(26)

V. NUMERICAL RESULTS

In this section, numerical results are presented to validate
the proposed multi-agent DRL and federated DRL based
computation offloading and resource allocation algorithms
for small cell networks. To verify the performance of
our proposed algorithms, we introduce the following three
benchmark algorithms:

o Independent learning (IL) [25] based algorithm: The
SBS agents are independent learners without any
cooperation, where each SBS agent learns a policy
based on its own observation and interaction with
the environment, and there is no model sharing and
information exchange among the SBS agents.
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o Full offloading scheme: All computation tasks are of-
floaded to the corresponding serving SBSs for remote
computing. In each cell, each UE transmits its task
to the SBS on a randomly assigned channel with its
maximum transmit power. The SBS equally allocates
its computation resource to the UEs.

e Local computing scheme: Each UE executes its com-
putation task locally.

A. Simulation Setup

We considered an area of 1.5km x lkm with 6 ran-
domly deployed SBSs, where the cell radius is 250m,
and 10 UEs are randomly placed in each small cell. We
modeled the wireless channel as the block Rayleigh fading
channel followed by the Okumura—Hata path loss model,
ie., PL(d) = 137.74 4+ 35.22log(d) in dB, where d is
the distance between the transmitter and the receiver in
kilometers. There are 16 orthogonal channels in the system,
and the channel bandwidth is 10M Hz. The maximum
transmit power of each UE is 23dBm, and the AWGN
spectrum density is —174dBm/H z. The size of the com-
putation task is randomly distributed between 200K B and
300K B, and the CPU cycles required for per bit data is
randomly distributed between 500 and 1000. We assumed
the maximum latency of each UE is equal to ninety percent
of the local latency. The computation capacities of each UE
and each SBS are 1GHz and 50GH z, respectively. The
energy consumption coefficient of each UE is 1J/Gcycle,
and that of each SBS is 10m.J/Geycle.

The adopted DDPG for each SBS agent in the simulation
is a three-layer fully connected neural network with one
hidden layer, each consisting of 64 neurons. The rectified
linear unit (ReLU) is utilized as the activation function and
Adam optimizer is used to update network weights with a
learning rate of 0.001. The size of experience replay buffer
is set to 10000, and the size of minibatch is set to 32. The
discount factor is set to 0.9, and the soft updating rate of
target networks is set to 0.01.

B. Performance Analysis

Fig. 4 compares the convergence performance of dif-
ferent algorithms in terms of system reward, which is the
sum of local rewards obtained by all SBS agents in the
system. We observe that the proposed multi-agent DRL
algorithm (denoted as “MA-DRL”) achieves the highest
system reward and its convergence is the most stable
compared to the other two algorithms. This stems from
the fact that the proposed MA-DRL algorithm leverages
extra information about the observations and actions of
other SBS agents to facilitate the training process, thus
improving the stability of the training process as well as the
system reward. It reveals that the cooperation between the
SBS agents in the training process can effectively overcome
the inherent nonstationarity of the multi-agent environment
thus contributing in improving the system performance. At
the same time, we also observe that the proposed federated

res IEEE permission. See http://www.ieee.org/publications_standards/

DRL based algorithm (denoted as “F-DRL”) outperforms
the independent learning based algorithm (denoted as “IL-
DRL”). In the proposed F-DRL and the IL-DRL algo-
rithms, each SBS agent trains its model based on its own
observation and action, without exchanging its local data
with the other agents. However, the federated learning by
sharing the parameters of local models among the different
SBS agents can improve the training performance of the
local model, thus achieving higher system reward.

le6

System reward

! —— Proposed MA-DRL
! ----- Proposed F-DRL
I —-- ILDRL

o 1000 2000 3000 4000 5000
Episodes

Fig. 4. Convergence performance of different algorithms

To gain insight into the impact of different learning
methods on the performance of the individual local models,
we show the local reward obtained by each SBS agent for
different algorithms in Fig. 5. It can be seen that the SBS
agents exhibit different learning behaviours due to different
local observations and policies. In particular, the difference
between the local rewards obtained by different SBS agents
in the proposed MA-DRL algorithm is smaller than that
in the other two algorithms. This can be explained as
follows. The system performance-oriented reward function
is applied to guide the SBS agents to improve their policies,
leading to the balanced performance among different SBS
agents. On the other hand, Fig. 5 also shows that even
for the same SBS agent, its learning curves are distinct
in different algorithms. Generally, with the proposed MA-
DRL algorithm, the SBS agents can achieve higher local
reward with better stability compared to the other two
algorithms.

Fig. 6 compares the energy consumption in different
algorithms. In addition to the total energy consumption, the
energy consumptions of local computing and edge comput-
ing are shown in the figure. First, the total energy consump-
tions in MA-DRL and F-DRL are lower than that in the
independent learning based algorithm and full offloading
scheme, but higher than that in the local computing scheme.
Compared with the local computing scheme, the proposed
MA-DRL and F-DRL algorithms intelligently offload the
tasks to the corresponding serving SBS, which introduces
an extra energy consumption for communications, resulting
in higher total energy consumption. Nevertheless, Fig. 7
shows that the proposed MA-DRL and F-DRL algorithms
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dramatically improve the demand satisfaction rate at a cost
of the reasonable increase in energy consumption. Com-
pared with the full offloading scheme, the proposed MA-
DRL and F-DRL algorithms considerably reduce energy
consumption by jointly optimizing computation offload-
ing, channel allocation, power control, and computation
resource allocation. Compared to the IL-DRL algorithm,
our proposed MA-DRL algorithm ensures that the SBS
agents learn better policies by making use of the global
information about the observations, actions, and rewards
of all SBS agents to train their models. Moreover, our
proposed F-DRL algorithm enhances the performance of
the individual local models by exploiting model sharing
among SBS agents, whereas the models may be affected
by the limited local training data in the IL-DRL algorithm.
Thus, the cooperation among SBS agents can improve
the policies of agents in a multi-agent environment, thus
improving the overall energy consumption performance
of the system. Second, the average energy consumptions
of local computing in the proposed MA-DRL algorithm
is zero, whereas local computing consumes energy in
the proposed F-DRL and the IL-DRL algorithms. This
implies that SBS agents have learnt different strategies

res IEEE permission. See http://www.ieee.or.

utilizing these three intelligent algorithms, rendering dif-
ferent performance, which corroborates the results show
in Fig. 5. Third, the average total energy consumptions
in the proposed F-DRL algorithm is slightly higher than
that in the proposed MA-DRL algorithm. The reason is
that learning based on local observation and action may
degrade the training performance of the model, although
federated learning is employed.
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Fig. 7. Latency guaranteed percentage for different algorithms

Fig. 7 shows the statistics of the latency guaranteed
percentage in different algorithms. The latency guaranteed
percentage is the ratio of UEs that meet their task latency
requirements. Since the maximum latency of each UE is
equal to ninety percent of the local latency, the latency
guaranteed percentage of the local computing scheme is
always zero, so it is omitted in the figure. Note that the
original optimization problem PO in (11) may be infea-
sible due to the limited communication and computation
resources of the system, such that it is impossible to satisfy
the latency requirements of all UEs. In such cases, the
latency guaranteed percentage is an important metric to
measure the ability of guaranteeing task requirements.

Fig. 7 shows that the proposed MA-DRL and F-DRL
algorithms significantly outperforms the benchmark algo-
rithms. In particular, the proposed MA-DRL algorithm
achieves the highest average latency guaranteed percentage.
Compared with the local computing scheme and the full
offloading scheme, the proposed MA-DRL and F-DRL
algorithms can intelligently perform the joint optimization
of computation offloading and resource allocation, thus
improving the latency guaranteed percentage. We would
also like to emphasize that even when the system is in
a restricted situation, the proposed MA-DRL and F-DRL
algorithms can still guarantee the latency requirements
of some UEs, while the two benchmark algorithms fail.
Compared to the IL-DRL algorithm, the proposed MA-
DRL and F-DRL algorithms facilitate the SBS agents to
learn better strategies by utilizing the cooperation among
SBS agents. From Fig. 7, we also note that the performance
of the proposed F-DRL algorithm is close to that of
the proposed MA-DRL algorithm. The average latency
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guaranteed percentage in the proposed F-DRL algorithm
is about 85% of that in the proposed MA-DRL algorithm.
Compared to proposed MA-DRL algorithm, the proposed
F-DRL algorithm only requires the SBS agents to share
their model parameters rather than the local training data,
greatly reducing the signalling overhead.

VI. CONCLUSION

In this paper, we investigated the joint optimization
problem of computation offloading and interference coor-
dination for small cell networks. To reap the performance
gains brought by cooperation among agents, we proposed
the multi-agent DRL based computation offloading and
resource allocation algorithm to minimize total energy
consumption while ensuring the latency requirements of
the tasks. In addition, we proposed the federated DRL
scheme to reduce the computing complexity and signalling
overhead due to the training process. Numerical results
clearly indicated that our proposed schemes can consid-
erably improve the system performance in terms of energy
consumption and latency guaranteed percentage compared
with the local computing scheme, the full offloading
scheme, and the independent learning based algorithm.
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