Testing Robot Controllers Using
Constraint Programming and Continuous Integration

Morten Mossige®?* Arnaud Gotlieb®, Hein Meling®

“ABB Robotics, 4349 Bryne, Norway, +47 514 89 247
bSimula Research Laboratory, Lysaker, Norway, +47 406 26 077
¢ University of Stavanger, 4036 Stavanger, Norway, +47 518 32 080

Abstract

Context: Testing complex industrial robots (CIRs) requires testing several in-
teracting control systems. This is challenging, especially for robots performing
process-intensive tasks such as painting or gluing, since their dedicated process
control systems can be loosely coupled with the robot’s motion control.
Objective: Current practices for validating CIRs involve manual test case de-
sign and execution. To reduce testing costs and improve quality assurance, a
trend is to automate the generation of test cases. Our work aims to define a
cost-effective automated testing technique to validate CIR control systems in
an industrial context.

Method: This paper reports on a methodology, developed at ABB Robotics
in collaboration with SIMULA, for the fully automated testing of CIRs con-
trol systems. Our approach draws on continuous integration principles and
well-established constraint-based testing techniques. It is based on a novel
constraint-based model for automatically generating test sequences where test
sequences are both generated and ezecuted as part of a continuous integration
process.

Results: By performing a detailed analysis of experimental results over a sim-
plified version of our constraint model, we determine the most appropriate pa-
rameterization of the operational version of the constraint model. This version
is now being deployed at ABB Robotics’s CIR testing facilities and used on
a permanent basis. This paper presents the empirical results obtained when
automatically generating test sequences for CIRs at ABB Robotics. In a real
industrial setting, the results show that our methodology is not only able to
detect reintroduced known faults, but also to spot completely new faults.
Conclusion: Our empirical evaluation shows that constraint-based testing is
appropriate for automatically generating test sequences for CIRs and can be
faithfully deployed in an industrial context.

*Corresponding author
Email addresses: morten.mossige@uis.no (Morten Mossige), arnaud@simula.no
(Arnaud Gotlieb), hein.meling@uis.no (Hein Meling)

Preprint submitted to Information and Software Technology September 19, 201}

Keywords: Constraint Programming, Continuous Integration, Robotized
Painting, Software Testing, Distributed Real Time Systems, Empirical
Evaluation, Agile Development

1. Introduction

A complex industrial robot (CIR) is defined as a classical industrial robot with
an additional control system attached to perform a given process. This addi-
tional control system is typical responsible for controlling the process, which is
typically painting, gluing, welding, and so forth.

Developing reliable software for CIRs is a complex task, because typical CIRs
are comprised of numerous components, including control computers, micropro-
cessors, field-programmable gate arrays, and sensor devices. These components
usually interact through a range of different interconnection technologies, for
example, Ethernet and dual port RAM, depending on delay and latency re-
quirements on the communication. As the complexity of robot control systems
continues to grow, the development and validation of software for CIRs is be-
coming increasingly difficult.

The problem is even worse for robots performing process-intensive tasks such
as painting, gluing, or sealing, since their dedicated process control systems can
be loosely coupled with the motion control system. In particular, a key feature
of robotized painting is the ability to precisely activate the process equipment
along a robot’s programmed path. However, many of the processes involved in
robotized painting are relatively slow compared to the process of moving the
mechanical robot. Consequently, advanced computation- based techniques have
been set up to take advantage of knowledge of the slower physical processes to
compensate for these latencies. Validation of such a paint control system, called
an Integrated Painting System (IPS), is therefore challenging. Current testing
practices to reduce the number of software faults apply techniques such as the
manual design of unit and integration testing, where both the test inputs and
expected output are defined by validation engineers. Testing the IPS requires
access to the physical layer to activate many of the painting robot’s features.
Much of the testing is based on running the full-scale system with a moving
robot and measuring IPS outputs with instruments such as an oscilloscope.
This results in long round-trip times and little automation. In addition, many
of the tests produced for one configuration of the IPS cannot easily be reused to
test another configuration, since manual test configuration is required. These
techniques are labor intensive and error prone. Consequently, software faults
may still be detected late in the IPS design process, often close to release date,
leading to increased validation costs.

In this paper, we report on a methodology to fully automate the testing of
ABB’s CIR control systems. The work builds on initial ideas sketched in a poster
presentation [I]. Our approach draws on continuous integration principles and
well-established constraint-based testing techniques. It is based on an original
constraint-based model for automatically generating test sequences that are

both generated and executed as part of a continuous integration process. By
performing a detailed analysis of experimental results over a simplified version
of our constraint model, we determine the most appropriate parameterization
of the operational version of the constraint model. This version is now deployed
at ABB Robotics’s CIR testing facilities and used on a permanent basis. This
paper presents the empirical results obtained when automatically generating test
sequences for CIRs at ABB Robotics. In a real industrial setting, the results
show that our methodology is not only able to detect reintroduced known faults,
but also to spot completely new faults. Our empirical evaluation shows that
constraint-based testing is appropriate to automatically generate test sequences
for CIRs and can be faithfully deployed in an industrial context.

1.1. Contributions
The contributions of the paper can be summarized as follows:

1. Our testing methodology introduces a new constraint-based mathematical
model focusing on IPS timing aspects. The constraints are used to describe
both normal behaviors of the IPS, as well as abnormal behaviors, so that
it is possible to target error states when generating test cases. The model
is generic and expressed using simple mathematical notions, which makes
it reusable in other contexts.

2. A full-scale implementation of the model is presented with constraint pro-
gramming tools [2]. The paper presents how the model is integrated in a
live industrial setting to test the IPS. To the best of our knowledge, this
is the first time a constraint model and its solving processes are used in a
continuous integration environment to test complex control systems.

3. An empirical evaluation is conducted to analyze the model’s deployment.
During this evaluation, reinserted old, historical faults are found by this
new approach, as well as new faults. Comparing this constraint-based
approach with current IPS testing practices reveals that the time from a
source code change to the time that a relevant test is executed is dramat-
ically reduced.

1.2. Organization

We start by providing background information and presenting related work in
Section 2] In Section [3] we introduce robotized painting. We describe some of
the design choices made when developing ABB’s paint control system and how
these affect testing of the system. We present how the IPS is currently tested
in Section [df We describe the paint control systems’ mathematical properties
in Section [5| and, based on these properties, we present the constraints used
as a basis for generating a model that can be used for test case generation
in Section [6] In Section [, we describe how the model is implemented and
how it is integrated with a continuous integration system. We then present the
results this new test strategy in Section[8] We present a thoroughly experimental
evaluation of the model recommendations of how to use the model. In Section 0}
we suggest ideas for improvement and further work.

2. Background and Related Work

The methodology proposed in this paper is tightly coupled with continuous
integration and model- based testing (MBT). This section recalls the basics of
continuous integration and gives a brief overview of the most recent advances
in the field by looking at how continuous integration influences verification and
validation activities. This section also reviews usage of MBT, with a particular
focus on constraint programming in software testing.

2.1. Continuous Integration

Continuous integration [3] is a software engineering practice aimed at uncover-
ing software errors at an early stage of software development, to avoid problems
during integration testing. Even if there is no general consensus of what con-
tinuous integration is exactly, a typical continuous integration infrastructure
includes source control repository tools, automated build, build Serversﬂ and
test servers. Fitzgerald and Stol [4] describe continuous integration as “a process
which is typically automatically triggered and comprises inter-connected steps
such as compiling code, running unit and acceptance tests, validating code cov-
erage, checking compliance with coding standards, and building deployment
packages.” There is therefore a common understanding that the time from a
continuous integration cycle being triggered to a developer receiving feedback
should be as short as possible [B] [6]. Therefore, one of the key ideas behind
continuous integration is to build, integrate, and test the software as frequently
as possible. Developers working under continuous integration are encouraged
to submit small source code changes to the source code repository instead of
waiting and occasionally submitting larger sets of changes.

If we consider test execution part of a continuous integration cycle, various
testing activities could, in principle, be included. For example, automatic test
case generation, test suite minimization, or prioritization [, [8, [, 10} [IT] could
be included to reduce the time needed to execute a test suite without reducing
the quality of the overall test process. Interestingly, Hill et al. [12] report on the
inclusion of system execution modeling tools to test distributed real-time sys-
tems as part of continuous integration. However, to the best our of knowledge,
very few results evaluate the impact of including more testing activities in con-
tinuous integration. Our work, incorporating systematic automated test case
generation methodology in continuous integration, is a first step toward more
automation in the software validation of complex software control systems.

2.2. MBT and Constraint Programming

The test strategy described in this paper relates to different validation and
verification approaches. The discussion work is divided into three topics.

LA build server is a machine that fetches source code from the source control repository
and performs building, testing, integration, and so forth. All steps are carried out completely
automatically and typically triggered by a source code commit or a timer.

Correct-by-construction approaches: When a step-by-step refinement pro-
cess is used to derive an implementation, a correct-by-construction system
can be obtained. Systems designed by such approaches are typically gen-
erated by a formal specification model in which the system’s correctness
is guaranteed and formally proved.

MBT: This approach typically involves three major stages: (1) A specification
model (e.g., UML diagrams) is first built for testing purposes. (2) Then,
the model is used to automatically generate test inputs and test oracles.
(3) Finally, the actual system can be run with the generated inputs and
its results compared with automatically predicted outputs.

Constraint-based testing: This approach aims to use constraint solving tech-
nologies to derive test cases automatically from a piece of code or a model.
The main challenges for this approach lie in the mathematical formulation
of the code or model and tuning the constraint solving process.

Correct-by-construction approaches. Correct-by-construction methods are
frequently used in the design of safety-critical systems in avionics or railway do-
mains, but other application domains are also relevant. Zhao et al. [I3] reports
on the usa of discrete-event systems (DES) [I4] [I5] for the design of an event-
triggered real-time distributed system related to the “eye vision” project. In this
approach, called Programming Temporally Integrated Distributed Embedded
Systems (PTIDES), multiple cameras are synchronized via IEEE 1588 [16], [I7]
to take synchronized images. Since each camera has its own internal timing
characteristics, taking a synchronized image requires addressing problems that
are similar to those encountered in robotized painting. This PTIDES approach
is appealing, since formalizing the event-triggered real-time distributed system
would drive engineers to automatically correctly implement it.

However, even if the problems addressed in PTIDES share some similarities
with the testing of CIRs, a major drawback is that the complete system is
required, including all functional behaviors, to model the problem. For many
industrial applications, obtaining such a model is challenging. When some parts
of the system are delivered by third-party suppliers, the problem is even worse.

Industrial robots are usually considered representative of the larger class of
Cyber-Physical Systems (CPS) [18, 19], whose modeling is known to be chal-
lenging [20]. Broy et al. [21] formally verify a distributed real-time system used
in the automotive field, using a de facto modeling notation for developing auto-
motive controllers, namely, Simulink/State. Using this formal notation enables
automatic model-based code generation, analysis, and verification of the control
software systems. This of course, is an advantage of the approach, but, again,
a formal model is required for each component. Note also that pushing the
system under test into error states is not easy when developing a correct-by-
construction approach. Formal models tend to capture only correct behaviors,
refining these only until code generation.

Generally, correct-by-construction methods requires skill in writing mathe-
matical proofs, which is uncommon among average software developers. In our

industrial environment, this method is clearly out of scope.

MBT. MBT [22] is a part of model- based design and is thus related to the
previously mentioned approaches. A UML model can be developed to specify
the architectural parts of the system, together with manual coding of the imple-
mentation details. Then, generating test cases based on the model allows the
validation engineer to check the correctness of the developed code. However,
according to Utting and Legeard [22], a more common approach in MBT is to
create a dedicated executable testing model. This approach is simpler because
the complete behavior of the system does not need to be reflected by the model
and details unrelated to actual testing can be ignored. However, writing a UML
executable model is more demanding than writing a constraint model focused
on particular aspects of the system, such as timing aspects. Support tools for
MBT are also limited when it comes to including actual testing into a contin-
uous integration environment. Another challenging aspect concerns including
the test generation process into MBT tools [23].

Specifying variable ordering when generating test inputs is usually not pos-
sible, meaning that the control of the test generation time is limited. We later
show that this is a critical factor in finding solutions in a reasonably allocated
contract of time.

Constraint-based testing. Use of constraint programming for automatic
test case generation has been around for a long time e.g. Gotlieb et al. [24],
Marre and Blanc [25], Di Alesio et al. [26]. Gotlieb et al. [27] developed a
constraint programming model for automatic test case generation for C pro-
grams. Similarly, Marre and Blanc developed GATeL [25], a constraint-based
testing tool able to generate test cases for synchronous languages. In both
these approaches, Prolog with constraints was used, along with techniques to
fine-tune the search process. More recently, Di Alesio et al. [28] adopted a
similar approach to stress-test real-time applications. The approach proposed
in this paper differs in that none of these constraint models are included with a
continuous integration process and none of the constraint solving processes are
launched at testing time. Such integration requires that the constraint solving
time be carefully controlled.

3. ABB’s Process Control System

This section first briefly introduces ABB’s IPS before presenting a general intro-
duction to robotized painting and some of the challenges involved in controlling
slow physical processes. We discuss some of the trade- offs in testing the IPS.
We also look at some of the design choices taken when developing the IPS and
how we can view the IPS in a more abstract way.

ABB’s IPS is a standalone distributed control system usually used with a
standard ABB robot controller, but it can also be used with non-ABB robots.
The IPS is a collection of different real-time embedded controllers capable of
performing one or more process-related tasks. Examples of such tasks can be
the closed-loop control of air flow/air pressure, the closed-loop control of pump
pressure in paint flow, the closed-loop control of high voltage for electrostatic

Message to IPS

Figure 1: To achieve the correct spray pattern at the starting edge of the object
to be painted, different physical processes need to be activated with individual
timing before the robot reaches the object.

charging, and various control systems for operation on valves and the supervision
of sensors. The IPS can be used in many different configurations, ranging from
a single controller for small paint robots to large systems with more than 20
controllers interconnected over an industrial-grade network.

In the following, we illustrate the principles of robotized painting with the
IPS with a small example and introduce some of the challenges.

8.1. Example of Robotized Painting

In this example, the objective is to apply paint to an object, using a robot. The
robot is shown in Figure [I] and the fill area at the bottom left illustrates object
to be painted. We assume that the robot is programmed to move in a straight
line at a constant speed of 1000 mm/s. We also assume time starts at ¢ = 0,
when the robot motion starts.

The spray pattern to be applied starts at 500 mm and, since the robot is
moving at a speed of 1000 mm/s, the final spray pattern should be ’on’ 500 ms
after the start, as shown in Figure Producing the desired spray pattern
involves at least four different physical processes that must be combined to
obtain the expected pattern. For the purpose of this example, we consider four
physical processes: a motor running a paint pump, a valve connected to the
spray head through which paint flows when the valve is open, and two different
air flows that are used to shape the paint fog that comes out of the spray head.

To account for the motion of the robot, the different physical processes must
be activated at the appropriate times. For instance, about 200 ms before the
robot arrives at the point where the paint should be applied, the robot controller

may send the following message to the IPS: (B = 1,t, = 500). This message
means that the IPS should apply spray pattern number 1 at activation time
te = 500 ms. The value B = 1 is simply a logical value describing a specific
spray pattern. The IPS uses the value of B as an index in an internal lookup
table that provides the physical value to be applied to the actuator outputs to
produce the desired spray pattern. For this particular example, B = 1 could
mean that the actuators controlling the pump and air flows 1 and 2 should
provide 400 ml/m of paint and 250 N1/m and 400 N1l/m of air, respectively.
These parameters are, of course, user configurable.

The IPS will then calculate when each of the actuator outputs needs to
be activated to produce the requested spray pattern at t,. Since many of the
physical processes involved in painting have significant physical delays, their
actual activation must take place before t,. For this example, the IPS calculates
that the pump must be started 50 ms before t,, while the valve must be opened
80 ms before t,. For the two air flows, activation must take place 120 ms and
150 ms before t,, respectively.

As is apparent from this example, the IPS needs to synchronize several
actuator outputs, where each output has its own timing characteristic and may
be located on different controllers. The timing characteristics for a specific
actuator output depend on many factors, the most important of which is the
magnitude of the change in output. Consider, for example, a pump; a large
change will take longer to apply than a small change, due to the acceleration of
the motor.

3.2. Testing Challenges

Offering a product with high levels of precision introduces several challenges in
the development phase, among them being testing the system’s behavior with
respect to its timing characteristics [29]. Testing the timing behavior of a cen-
tralized control system with a single clock can be challenging. However, the
IPS is typically configured with a number of embedded controllers distributed
across the robot system. These controllers run time synchronization protocols
to keep their clocks synchronized. Still, testing the IPS timing behavior has
proven to be a major challenge, mainly due to its distributed nature. More-
over, the degrees of freedom in configuring the IPS leads to further complexity
in the testing phase, since a wide range of configurations must be tested. A
natural consequence of these complexities is that automated testing has become
a necessity.

The IPS is designed to be a highly flexible and configurable paint control sys-
tem. Depending on the complexity of a customer’s solution, a robot is equipped
with one or more embedded controllers running the IPS software.

The most complex configurations involve as many as 20 embedded controllers
interconnected through an industrial-grade communication network. The main
motivation for designing the IPS as a distributed system is to enable the different
embedded controllers to be located physically close to the actual process that
it controls. This enables fast control loops and is essential to make the system
precise and accurate. The result of this design principle is that some of the

Robot
@ Controller @
[B
&
‘/D IPS

i e
~“Embedded Master Embedded 7D
Controller 2) Controller j-1 \
[Time Sync.
) <) &)
Embedded Embedded Embedded
Controller 1 Controller 3 Controller j

Figure 2: Logical overview of the IPS. The IPS is interconnected by an
industrial-grade network. All the embedded boards are synchronized by use
of IEEE 1588 [16]. Each embedded controller is typically located inside the
robot’s control cabinet, at different locations on the robot arm, or in an exter-
nal process control cabinet.

controllers are placed at different locations on the robot, while others are located
in a control cabinet close to the robot brain.

This design principle provides a powerful process solution but, complicates
testing both due to the distributed nature of the IPS, and due to the fact
that some of the embedded controllers can be located on movable and possibly
hazardous robots.

8.8. Abstraction of the IPS

An abstract model of the IPS is shown in Figure 2] As we can see, the robot
controller communicates with an embedded controller, denoted the IPS master.
This master connects to other embedded controllers through an industrial-grade
network. Note also that all the embedded controllers are synchronized with re-
spect to time. Since the robot controller and the IPS are synchronized, a func-
tion call to gettimeofday () executed on any embedded controller and the robot
controller at the same time will return a synchronized time with microsecond
precision. This accurate synchronization is one of the most important building
blocks in the design of the IPS, since each embedded controller can schedule
activation times for an actuator output, using the global clock.

4. Legacy Test Practices

In this section, we review some IPS testing practices, focusing on validating
the accuracy of the time-based activation of actuator outputs. We discuss the

Spray-
pattern 1

Spray-
pattern 2
Figure 3: Painting on paper allows for the visual inspection of the timing of

different actuator outputs. However, the inspection must typically be performed
by a paint process engineer in cooperation with a software engineer.

benefits and drawbacks of these legacy testing practices before we outline the
requirements for our automated test method.

A major challenge in testing a robot system is that it involves a physically
moving part (the robot arm) that must be accurately synchronized with several
external process systems. This quickly turns into labor-intensive procedures to
set up and execute tests. Moreover, strict regulations with regard to safety must
also be followed due to moving machinery and the use of hazardous fluids, such

as paint [30].

4.1. Painting on Paper

To simulate a realistic application of spray painting with a robot, we can con-
figure a paint system to spray paint on a piece of paper. An example of this
is shown in Figure his test includes both realistic robot movement and a
complete and realistic IPS configuration. However, there are many drawbacks
with this method. For instance, it involves quite a bit of costly manual labor
to set up the test. In addition, the test can only be performed in a protected
environment to prevent human exposure to dangerous paint fluids and gases.
Finally, it is more or less impossible to automate this test, even after some initial
configuration, as discussed below.

Due to its high cost, this type of test is typically performed during the final
verification stage for a new product running the IPS software, such as a new air
controller or a new pump controller. The test is also performed after a major
refactoring of the IPS. Based on our experience at ABB Robotics, it is both
extremely rare and difficult to find timing-related errors using this test method.

4.2. Activation Testing with an Oscilloscope

By reducing the IPS configuration to a single digital actuator output, without
any fluid or air units and detecting trigger points using a proximity sensor, it

2The video at http://youtu.be/0q524vul5N8 also shows painting on paper.

10

http://youtu.be/oq524vuO5N8

is possible to run rudimentary synchronization tests on the IPS. Specifically,
the test involves connecting the actuator output to an input channel on an
oscilloscope and connecting the proximity sensor to another input channel on
the oscilloscope. With this setup, the robot can be programmed to perform
a linear movement passing over the proximity sensor, with the paint program
set to activate at exactly that point. The robot thus generates a signal on its
actuator output that should correspond exactly to the signal from the proximity
sensor. By comparing the signal from the actuator output with the signal from
the proximity sensor, it is possible to test many of the timing behaviors of the
PSPl

At ABB Robotics, this is one of the most executed tests aimed at uncover-
ing synchronization problems, but it also requires manual labor to set up and
execute the test runs. In addition, since it involves physical movement of the
robot arm, a hazard zone must be established for the test. However, unlike the
test described in Section [1] it can be executed without supervision and the
test results can be inspected after test completion.

4.8. Running in a Simulated Environment

The IPS is designed to be portable to many microprocessor architectures and
operating systems. It is even possible to run the IPS on a desktop system
such as Windows. This advantageously allows much of the functional testing to
be performed in a simulated environment, which reduces some of the need for
time- consuming manual testing on actual hardware. However, testing against
performance requirements is impossible in a simulated environment, due to the
lack of real-time behavior in the simulator.

4.4. Summary of Ezisting Test Methods

The test methods described above have several drawbacks. Test methods that
use a real robot have the advantage of very realistic results, but they require
slow, costly manual labor to set up the test and interpret the results. For the
method described in Section [£.3] it is clearly possible to automate the setup
and to some degree the result analysis. However, the method cannot be used to
execute tests related to real time or synchronization between several embedded
controllers. To cope with such tests, we need a new test method.

4.5. New Test Method

In the following, we outline the requirements for our new test method. The
goals of the new method are automation, the reduction of manual labor, and
reduction of the time required to detect errors introduced during development.

Automated: It should be possible to set up the test, execute the test, and
analyze the results without human intervention.

3These two videos show activation testing using a proximity sensor and an oscilloscope,
respectively: http://youtu.be/I1Ce37_SUwc and http://youtu.be/LgxXd_DN2Kg.

11

http://youtu.be/I1Ce37_SUwc
http://youtu.be/LgxXd_DN2Kg

Systematic: Tests should be generated automatically by a model rather than
constructed by a test engineer.

Adaptive: Generated tests should automatically adapt to changes in the soft-
ware and/or configurations and should not require any manual updates to
the testing framework. This implies that tests should be generated imme-
diately prior to their execution, using as input information obtained from
the system under test.

5. Modeling the IPS

In this section we introduce a mathematical representation of the IPS. We first
establish the mathematical relations within the IPS and show how these can
be abstracted into a general-purpose model. We then show how the IPS can
predict when to apply a change on an actuator output based on the activation
time and the magnitude of the change. Finally, we discuss some of the interesting
constraints and scenarios the IPS must be able to handle and show how they
can be formulated as mathematical constraints and integrated into the model.

5.1. IPS Channels

Before we introduce the mathematical model of the IPS, we need to introduce
the concept of a channel used in the IPS.

As previously mentioned, the IPS can be configured in different ways, de-
pending on the complexity of the process. One way to configure the IPS is
by using channels. A channel is simply an abstraction that represents how a
specific spray pattern is generated. Each channel is responsible for controlling
one physical process, for example, air or paint, involved in generating a spray
pattern. The current IPS supports up to five channels plus a special internal
channel (channel 0) that is reserved for controlling the paint valve in the spray
applicator. In the abstract model of the IPS shown in Figure [d] each channel is
shown as an output of the model.

5.2. Mathematical Model

Abstractly, the IPS can be modeled as shown in Figure[dl The input to the IPS is
represented by a sequence of spray patterns along with their desired application
times, that is, a sequence of (B, t;)-tuples, denoting the ith spray pattern B;
and its application time ¢;. This sequence corresponds to the commands sent by
the robot controller. The output of the model represents the physical values for
each channel j, along with their activation times, (P;;,t;,). In the following, we
describe the mathematical relations for the transformation (B;,t;) — (Pji,t;.)-

To model the physical processes they represent, each channel has its own
set of configuration parameters, which are used as input to the timing calcu-
lation for the channel: D;-r, D;, and K; in Figure {4 and explained further in
Section [5.6] The IPS can also compensate for timing disturbances between the
different channels. This functionality is controlled by the parameters PreTime

12

DY DT K, PreTime
g PostTime

RV <

[P =BBIGLYi € 1.5 |

Pyi,to,
Py ti

’

|
tej = fej (Piis Pji—1) ‘ AT

P3,t3;
Py ita;

) ’

[(B1, 1), (Ba, 12), |_(Bists) | |
vers (BN EN)]

Model B,5 x K
Configuration Brush table

Figure 4: Abstract mathematical overview of the test model.

and PostTime. Finally, we have a brush table B that is consulted to perform
the transformation B; — P; ;.

All of the parameters mentioned above are treated as constants in a pro-
duction installation. However, for the purpose of generating test sequences for
the TIPS model, these parameters are turned into variables that may change.
Finally, the model configuration part of Figure [4] contains configuration param-
eters describing how to generate the IPS test model. These parameters typically
include the length of the test sequence, the type of test scenario, and so on.

5.8. Brush Table

As mentioned earlier, the robot controller will send a new activation message
with the value B;, identifying a specific spray pattern. Internally in the IPS, B;
is used as an index in the brush table. The content of the brush table determines
the actuator output for each channel, which is used to produce the desired spray
pattern. This lookup function is expressed as follows:

P, =B[B]j], Vjiel...5 (1)

where B is a brush table with five columns, one for each channel, and |B| rows,
representing the different spray patterns. For the internal channel 0, the output
is derived from the value of channel 1, according to Equation .

PO,i:]- ifP11i>O (2)
Poﬂ‘ =0 if Pl,i <0

This means that the valve controlled by channel 0 will open if channel 1 has
a positive output. Moreover, a negative value on channel 1 corresponds to a

13

special configuration for loading paint into a canister, meaning that the valve
of channel 0 should be closed. Thus, it is important that channels 0 and 1 are
tightly synchronized to prevent excess pressure on the hoses that carry paint,
which could otherwise cause them to rapture.

5.4. Channel Activation Time

We now explain how to compute the activation times for each channel, ¢; ;, from
the desired spray pattern activation time, ¢;, received from the robot controller.
Equation shows how this calculation is performed:

Vj€0..5Viel...N
lji =1t — tam - th‘
=t; — fa;(Pji, Pji-1) — fe; (Pjiy Pji-1) (3)

where N is the size of the input sequence. The air delay t,,, and channel
delay t.;, used in this equation are computed using Equations and ,
respectively.

Note that the resulting time ¢; ; depends on the change between the actuator
output P;; and the previous output Pj;_i. As we discuss later, each channel
also has its own set of parameters that are used in this calculation.

5.5. Timing Influence between Channels

As mentioned earlier, some of the IPS channels will influence the timing of
other channels. For example, turning on or off the paint channel (channel 1)
will disturb the timing of the air channels (channels 2-4). To compensate for
this disturbance, an air compensation function f, is added to the air channels:

PreTime ifu=0Av#0
Ja; (u,v) = { PostTime ifu#0Av=0 Vje2...4 (4)

0 otherwise

where Prelime and PostTime are considered constant configuration parame-
ters (see also Table in the Appendix).

5.6. Timing on Isolated Channels

Each channel has its own set of parameters that can used to adjust its timing
characteristics. This timing is calculated using the channel compensation func-
tion f., shown in Equation . A channel can be configured to have either a
fixed delay or a delay that is linearly related to the change of P;;. A fixed delay
is typically used for digital outputs that control valves, while a linear delay is
typically used for outputs that control motors and air flows. For a linear delay,
the time needed to adjust the output value depends on the magnitude of the
change; a large change takes longer:

14

D; (W)KJ 1fu<7}
0 otherwise

where K; € {0,1} is used to enable or disable the linear delay component. The
terms D} and D} are considered constant configuration parameters (see also

Table |A.4])).

6. Test Scenarios with Constraints

With our mathematical model at hand, we now describe scenarios that can
arise when multiple spray patterns are activated in succession. Accordingly, we
identify mathematical constraints that can be used to generate test sequences
to produce such error scenarios.

We divide the scenarios into two main categories. The first category ex-
presses how the IPS behaves in a normal operational state. The second category
represents scenarios in which the IPS is pushed into either an erroneous state or
a state with reduced performance. These scenarios are summarized in Figure
and discussed in detail in the following sections.

104 104 10, >
103 103 JEN

. 5 / \
10, v\L \ 10, \ 10, \:\ -
R + > > >
obot ‘ ‘T’T Robot Robot

e
(a) Normal scenario. (b) Overlap scenario. (c) Shutdown scenario.

Figure 5: A collection of error scenarios that the model can generate. Horizontal
lines represent time and a black dot represents the activation of an output. A
specific spray pattern is a collection of output activations, visualized by a line
connecting the black dots.

6.1. Normal Scenario

During normal, non-erroneous behavior, the robot controller sends commands
to the IPS and the IPS activates outputs according to the following constraints,
respectively, both corresponding to Figure

Viel...N,
t; —t;_1 > MinBrushSep,
t; >ti—1, t; 20, (6)

Bi#Bifh B; EO‘(’B|

15

Vje0...5,Viel...N
tj,i — tj,i—l Z MZTLTTZgSGp, (7)
tji > tji—1, tj: =0

where MinBrushSep and MinTrigSep refer to two configurable parameters
that are entered into the model prior to generating a test sequence. These con-
straints are especially efficient in generating test sequences with a corresponding
configuration and oracle to validate that the IPS is behaving as expected under
non-erroneous conditions. During comparison between the outputs generated
by the IPS and the oracle generated by this scenario, we specifically look for
missing output events and missing brush events.

6.1.1. Burst

An extension of the normal behavior scenario can be achieved by constraining
the time span on either a set messages in the input sequence or a set of output
activations. This makes it possible to force a burst of messages or activations
within a limited time period. The constraints for a burst on an input sequence
and a burst for an output channel are formalized, respectively, as

te = tetBurstLen < BurstTime (8)
tc,e+BurstLen - tc,e < BurstTime (9)

Both BurstLen and BurstTime are configurable input parameters in the model

(see Table|A.4)).

6.2. Owverlap Scenario

Overlapping events are probably one of the most interesting scenarios that can
be generated, as shown in Figure This scenario is best explained with a
simple example. Assume that one actuator output is configured with K = 0,

Dt =10, and D~ = —10. Consider two events, where the first resulted in an
activation schedule P;; = 0 and t;; = 10 for the actuator output IOs. The
second message is Pjs = 1 and t;5 = 15. Assuming that the current time

(gettimeofday()) is less than 10, it is easy to see that typ = t;p — DT =
15 — 10 = 5. As this example illustrates, an event received later can result in
an activation time before events already scheduled for activation.

The IPS could generally handle such an overlap scenario in one of two ways.
One possibility is to schedule the new event before the current event, resulting
in the activation sequence ((Pi = 1,t2 = 5), (P = 0,t;; = 10)). However,
this approach has a serious safety flaw. Assume that the last event was some
form of shutdown command, for example, to open a valve due to overpressure.
Then the supervisor system would observe the actuator in an unexpected state.

Another option is to retain the old ¢; and just replace the P; value in the
queue with the newly calculated Py, resulting in a schedule ((P;2 = 1,¢;; = 10)).
We thus ensure that the actuator ends up in a state expected by our supervisor
system. This corresponds to the approach taken by the IPS.

16

In real robot applications, there are many sources for this particular overlap
scenario, the most common being that a customer wishes to increase the speed
of the robot and thus moves the activation time of two events closer together.
The standard behavior for the IPS is to report this in an error message to the
user and resolve the schedule as described above:

tee — teet1 > MinOverlapTime,

tc,e-i—l - tc,e—l Z MmegSep, (10)
te,etr2 — tee > MinOverlapTime

where ¢.. represents the activation time for a specific channel ¢ and event e.
Note that MinOwverlapTime and MinTrigSep are considered positive constants
given as input when a test sequence is generated (see also Table).

6.3. Shutdown Scenario

The shutdown scenario is important to validate that the IPS is able to shut down
safely in specific error cases. Depending on the IPS’s configuration, forcing
one of the output channels to fail may cause the IPS to initiate a controlled
shutdown. This shutdown procedure must be performed in a special sequence,
taking care to avoid pressure buildup in hoses, which could otherwise lead to
rupturing them. This scenario is illustrated in Figure |5c| and its constraint is
specified as

P, . = IllegalVal (11)

where IllegalVal is a configurable input parameter in the model (see Table|A.4))
that causes the IPS to initiate a shutdown.

6.4. Minimizing Test Execution Time

As stated previously, the actual test sequence sent to the IPS is a sequence of
timed events (Bi,t1,...,Bn,tn). When the test sequence is executed, each
(B, t;) pair is sent to the IPS at time tg, such that tg + ¢t5 < ¢;. This means
that the IPS receives each pair (B;,t;) around ¢s before the activation time. In
practice, the value of 5 is typically around 200 ms. Consequently, the execution
time of a complete test cycle lies in the area of the time of the last ¢;, that is,
tny. By minimizing the value of ¢, we gain the ability of executing more tests
within a given time interval as we discuss in Section

7. Implementation

This section explains how the model is implemented, deployed, and used in
ABB’s production-grade test facility. We also discuss some of the design choices
made during the model’s deployment.

17

7.1. Test Setup

This section describes the steps involved in setting up a continuous integration-
based test facility for generating and executing tests. Test execution is typically
triggered by a build server upon a successful build of the IPS software. These
steps are illustrated in Figure [6] and explained below.

1. Build: The software is scheduled to be built every night. In addition,
a developer can trigger a manual build or a build can be triggered by a
check-in to the source control repository.

2. Upgrade: All embedded controllers are upgraded with the newly built
software. This is one of the most important tests performed, one where
catastrophic, hard to find errors are often be detected. Typically, these
can cause the new software to throw an exception or simply freeze.

3. Configure: In this step, the IPS is configured according to configurations
retrieved from the source control repository. This configuration can be
either a specific qualified setup of one of the different configurations that
a customer can buy or a configuration specially made for testing purposes.

4. Query and Solve Model: A set of basic smoke tests [22] is then ex-
ecuted before the constraint model is launched for test case generation.
By feeding data retrieved from the new configuration into the constraint
model, together with properties retrieved from the IPS, we ensure that
the generated tests are kept in sync with the current software and config-
uration. Further details about this just-in-time test generation (JITTG)
are discussed in Section [7.2)

5. Run Test: Finally, the actual test is executed by applying the gener-
ated test sequence and comparing the actuator outputs with the model
generated oracle. Figure [7] shows this last step in more detail.

In ABB’s production test facility, each generated test sequence is executed on 11
different configurations, including execution on different hardware and software
generations of the IPS and on both VxWorks and Linux as the base operating
system for the IPS. The test framework is written in Python [31] and supports
parallel test execution as long as resources are not shared. This allows for
a significant reduction in the time needed to run the test sequence on many
different configurations, compared to running them one at a time, in sequence.

7.2. JITTG

As discussed in Section[f] many parameters in the model must be specified before
the model can be solved. Some of these parameters come from configuration files
used to configure the IPS and some can be extracted by querying a newly built
IPS. Common to both sets of parameters is that the resulting model will differ if
the parameters change. This means that the model is tightly coupled to what is
fetched from the source control repository. Consequently, we decide to generate

18

A Y-
___2Upgrade__ .| Physical IPS set
Test Server ysica setup
/\Source software
control
{epository Python Test Scripts
v, A ——3. Configure—p
A\ 4
1. Build—p| Python Test < 4. Query:
Framework
Python — Prolog
aonend <«€—5. Run test—p
SICStus Prolog
Runtime

Figure 6: Integration between the test server and IPS. The test server typically
receives a new build from a build server, upgrades all embedded boards, performs
tests, and publishes the results for the developer. The numbers correspond to
the explanation given in Section @

and solve the model at testing time, as opposed to solving the model once and
adding the resulting model to the source control repository, corresponding to
what Utting et al. [32] call on-line and off-line testing, respectively. The choice
of on-line versus off-line testing is a trade-off. The main advantage of JITTG is
that there is a lower probability of falsely reporting an error due to a mismatch
between the generated model and the real system. However, an important
concern then becomes the time needed to solve the model. If the model is
solved once and used many times, a solving time of several hours is reasonable.
However, with JITTG the solving time becomes crucial. The models solved so
far have a solving time of less than a few minutes.

7.3. Model Implementation

To convert our mathematical model into an executable model out of which
test sequences and test oracles could be extracted, we use Constraint Program-
ming (CP) [2].

Constraint Programming is a well-known paradigm introduced 25 years ago
to solve combinatorial problems in an efficient and flexible way [33]. Typically,
a constraint programming model is composed of a set of variables V', a set of
domains D, and a set of constraints C' and constraint resolution aims to find
solutions, that is, assignments of V to values that belong to D such that all
the constraints C' are satisfied. Finding solutions is the purpose of the under-
lying constraint solver, which applies several filtering techniques [33] to prune
the search space formed by all the possible combinations of values in D. A nice
feature of constraint programming is the ability to call the constraint solver
incrementally, during program execution. Consequently, most constraint pro-
gramming solvers are embedded into various programming languages, including

19

Test Oracle Compare
i Ppi| ti | Pai| ti | Pai| tsi
Constraint 1i 1,i 2,i 2,i Bl 3,i
Model # 450 | 270 | 600 | 278 | 60 | 305 :D E:>] Pass
600 | 730 | 750 | 745 | 65 | 760 Fail
0 |905| 0 [990| O | 900
Test
Sequence
Bi ti
1 | 300 Test Result
2 | 750 AR N
0 900 Poi | [Pai | i\ Pai | ta
450 | 271)|[600 | 281 /60 | 306
600 | 732J|750 | 745 | |65 | 763
0 907 \O 99 \O 901
\ R
\ ——— :
PC with Constraint .-. N
Model and Test 1 [B.t] . .
Framework S .’ N
~Ips N
A\ Master N
O .
Clock .
Syncronization

[T

Embedded Embedded K Embedded
controller 1 controller 2 controller 3

Figure 7: How a complete test is executed. The constraint model generates the
test sequence, the configuration of the IPS, and the oracle. The configuration
is applied to the IPS and the test sequence is executed. The oracle is then com-
pared with actual measurements before a pass/fail is determined. Currently 11
different variations of this setup are being executed in parallel at ABB Robotics.

20

Java, C++, and Prolog, or dedicated modeling languages, such as OPL, Comet,
and Zinc [34].

In practice, constraint models developed to solve concrete and realistic com-
binatorial problems usually contain complex control conditions (e.g., condition-
als, disjunctions, recursions) and integrate optimized and programmable search
procedures. The flexibility and versatility of constraint programming are recog-
nized as a competitive advantage over other, more rigid approaches [2].

However, solving the mathematical model could have been possible by using
other techniques, such as SAT or SMT solving [35], search-based test data gen-
eration [36], or Mixed Integer Programming (MIP) [37]. These techniques were
examined and discarded for the following reasons:

1. The selected technique had to be flexible enough to accommodate the
many alternatives in the dynamic configuration of the IPS. MIP techniques
are very powerful for handling conjunctions of linear constraints [37], but
handling disjunctive constraints (i.e., non-linear constraints) is much more
problematic. Constraint programming offers a high degree of flexibility to
handle disjunctive constraint systems, including the use of backtracking,
reification, or constructive disjunction [34].

2. Time-constrained optimization is essential to use the technique in an in-
dustrial context and to build a cost-effective testing method. SAT and
SMT solving are amazingly efficient at handling Boolean and non-Boolean
constraint satisfiability problems [35], but they are not tuned to solve op-
timization problems (e.g., minimizing a cost function in a given contract
of time). Even if extensions exist to handle constraint optimization prob-
lems (e.g., Max-SAT), usual SAT- or SMT- solvers do not necessarily
implement these extensions. On the contrary, constraint programming in-
tegrates time-aware optimization methods on discrete combinatorial prob-
lems in its foundations, which makes it more flexible to tackle optimisation
problems within an industrial process [34].

3. Since the model is used to predict the expected outputs of the IPS pro-
cessing of a timed-event sequence, exact methods are mandatory. Despite
the efficiency of search-based test data generation techniques [36], the ab-
sence of a guarantee of the satisfiability of the constraints (e.g., no possible
detection of unsatisfiability or no guarantee of the determination of sat-
isfiability for complex constraint sets) was regarded by us as a sufficient
reason to discard these techniques. On the contrary, constraint program-
ming offers a theoretical guarantee on the assessment of satisfiability [33].
We should also mention that, since industrial adoption was set up as an es-
sential goal, we felt that deterministic methods would be more appropriate
than probabilistic approaches of constraint solving to convince engineers.

It is worth noticing that CP solvers are usually hosted by a programming
language e.g., Prolog, Java or C++. Thus, they have to be flexible to facil-
itate their integration into applications, and incremental, i.e., constraints can

21

be submitted at different stages of the parsing process. The constraint model
can be structured by using high-level programming features such as predicate
or method invocation, recursive and virtual calls, backtracking or inheritance,
and so on.

We implemented our mathematical model using the finite domain constraint
solving library of SICStus Prolog, called clpfd [38]. This library is well main-
tained and up-to-date with respect to the last advances in constraint program-
ming solving, which was a sufficient reason to select it for industrial adoption.
The clpfd solver is fully hosted and integrated within the Prolog programming
language and is called incrementally during Prolog program executionﬁ To in-
tegrate the model with ABB’s existing test framework, we also built a front-end
layer in Python. This front-end layer can be used by test engineers with no prior
knowledge of constraint programming or Prolog and also allows us to integrate
with our existing build and test servers based on Microsoft Team Foundation
Server. A schematic overview of the architecture is shown in Figure [0}

8. Empirical Evaluation

The constraint model introduced in Section [5] has been thoroughly evaluated to
validate its ability to generate test sequences for CIRs in a realistic industrial
environment. Our objective was to quantify the benefits and drawbacks of
introducing a new testing strategy in a continuous integration process, after
having deployed it within ABB’s testing facilities.

This section presents the main research questions (RQs) (Section ad-
dressed so far in our empirical evaluation. It details the experimental results
and their analysis (Section . It evaluates several threats to the validity of
the results and discuss their importance (Section . Finally, this section con-
cludes with an analysis of several lessons learnt when deploying this approach
in an industrial environment (Section [8.8)).

8.1. Research Questions

The introduction of a new test strategy (i.e., a constraint-based model) into a
strong validation process always raises many research questions regarding its
adoption. Our empirical evaluation addressed three main research questions,
covering the following.

RQ1 (efficiency of the search heuristics): Questioning the efficiency of the
constraint model to generate test sequences is of primary importance.
Among several parameters, the selection of search heuristics turned out
to be a key factor of the strategy’s efficiency. Observing that different
search heuristics can lead to completely distinct results, we conducted a
systematic comparative study of several representative search heuristics
to respond to this research question.

4We used a compiled version of the model.

22

RQ2 (model scalability): The scalability of the model to generate realistic
test sequences is also a main question. To introduce the constraint model
into a continuous integration environment, managing the model solving
time was crucial. Evaluating this solving time for different settings ap-
peared to be the best way to evaluate the model’s scalability.

RQ3 (Adoption in an industrial environment): Finally, evaluating the ca-
pabilities of the model to find previously found bugs and also its ability
to uncover new faults in an industrial, realistic validation process was also
considered a crucial research question. In response to this research ques-
tion, we determined that the only way was to put the constraint model to
work for a period of time and evaluate its potential through a systematic
analysis. Essentially, we saw this work as mandatory to prepare the model
for industrial adoption on a larger scale.

8.2. Experimental Setup

In response to the three research questions, we developed two different con-
straint models. The first model, denoted CMj, is a highly configurable and
general model that includes several measurement and analysis tools. The model
CM; is mainly made for use from within the SICStus environment. The second
model, denoted C'Ms, is highly tuned and optimized for the industrial produc-
tion environment. It is callable from an external Python framework and contains
all the functions to generate realistic test sequences and test oracles. To answer
RQ1, we configured one experiment that systematically analyzed all possible
combinations of variable orderings for defining the search heuristics combined
with different configurations of the model. The goal of this experiment was to
identify a search heuristic that could be further tested on the C'Ms model. In
the second experiment, we used the results from the first experiment on the
C M5 model to answer RQ2.

In the following, we give a detailed account of our observations and findings.

8.3. RQ1, Experiment 1

Our first experiment is divided into three sub-experiments, using three distinct
configurations: {SeqLen, |B|, Channels, MinTrigSep, MinBrushSep } = {7,
3, 3, 3, 1} for Expla. For Explb and Explc we use respectively {10, 5, 5, 3,
1} and {20, 10, 5, 1, 1}. Since experiment Explb and Explc are just slight
variations of Expla, we present only the final results for these, while for Expla
we also present detailed setup and execution results.

Experiment Expla uses a minimal configuration with three channels, j €
[1, 3], as illustrated in Figure 8] yet is complex enough to provide significant and
meaningful results. Each channel has the following characteristics: Min; = 0,
Max; =3, and Dj, D} € [-3,3]. The brush table has |8| = 3 rows and, since
there are three channels, 8 becomes a 3 X 3 matrix, as shown in Figure [8] At
runtime, the model can freely choose a linear or a fixed delay for each channel j,
using K; € [0,1] (see (7). For all three channels, this adds up to the following
sequence of variables that need to be labeled by the constraint solver:

23

Li1|Li2|L13
B =|La1|La2|Los
L31|Lsz2|Lss

Lookup(B;) (Lp.1,Lp 2, Lp3)) c1 (PB,1,ti,1)
LB“X.) D1 7D1_7K1

(Bisti) | M (L2t) o (PB,2,ti,2)
PreTime, PostTime (. D;,D;,Kz

483
] ,z;/)
2 [cs (PB,3,ti,3)
= >

D;aD;g 7K3

Figure 8: Logical overview of experiment Expla. The experiment includes the
use of three actuator outputs (channels), a test sequence of length 7 (SeqLen),
and a lookup table size of size 3 (|B]).

C:(Df,D;,Kl,D;,D;,KQ,D;,Dg,K:j)

In the context of a constraint solver, the term labeling denotes the process of
selecting a value from the legal domain of a variable and assigning it to the
variable such that all constraints are fulfilled.

Note that we use parentheses to denote ordered sequences and brackets to
denote unordered sets. For a constraint solver, the order in which the variables
are labeled is of crucial importance for efficiency.

The variables in B take on the values in the range [Min,, Max;]. Fi-
nally, we specified that none of the channels should slave channel 1, as ex-
plained in Section 5.5} that is, we set PreTime = 0 and PostTime = 0.
We also set MinTrigSep = 3, MinBrushSep = 1, and MinOwverlapTime =
1. The expected input for Expla is a sequence of index-time pairs denoted
(Biy,t1,...,Br7,t7). Each pair (B;,t;) is sent as an individual input to node
M in Figure [§] Figure [J9] shows an example of an optimal solution found by
our method for Expla. In this case an optimal solution means that the con-
straint solver has found the lowest possible value for ¢; while still satisfying the
constraints.

In Expla, the expected test sequence is of length N = 7 and the goal was
to elicit an overlap on C2 between events 5 and 6, as shown in Figure [5b| and
described in Section[6.2] Thus, we engineered the experiment to elicit an overlap
scenario. We chose this scenario because it is the most difficult to obtain.

Another goal with experiment 1 was to find the shortest test sequence able
to elicit the error scenario, since minimizing the duration of the test sequence
allows test engineers to run more tests. Consequently, our constraint model
is used in combination with a time-aware cost optimization process, where the

24

goal is to minimize ¢, the duration of the test sequence, in a given contract of
time. We used a timeout value of 180 seconds of computation time for all three
sub-experiments.

In this context, an optimal solution is an assignment of values to all the
variables such that all constraints are satisfied and ¢ is minimized. If sufficient
time is allocated, the minimization process can provide an optimality certificate.
In most cases, this certificate is not required and the process returns an opti-
mal or sub-optimal solution without any certificate. For a solution without a
certificate, there is no way to evaluate the distance to the true optimal value of
the cost function. If insufficient time is allocated, the solver sometimes reports
a failure, indicating that it has been unable to find a solution. These cases are
obviously the most problematic ones.

+ _ _
0 0 &3 o2 0 Dy =1
C3 P
K3 =0
pl=-1
C2 0 1 0 CHEN D% _
Ky =0
pf=-1
Ci Dy = -3
Ki =0
—
M 8 B8 &S ws B w5
! ! 0! it il
o = <) %) =D N Sp=
MinBrushSep 1
0 0 O MinTrigSep 3
B=3 1 3 MinOverlapTime 1
1 3 2 PreTime 0
PostTime 0

Figure 9: An optimal solution for Expla. The cost function used by the solver
is minimize(t7), where the optimal solution is 7 = 15. The number next to
each black dot (e) represents the value of the actuator output to apply at that
time instance. The configuration of each actuator output is to the right of each
actuator output’s time axis (DT, D™, and K).

As mentioned earlier, the order in which the variables and values are selected
for labeling is a critical parameter for the efficiency of the constraint- solving
process in clpfd. In this experiment, we defined search heuristics based on
distinct choices of the variable and value selection.

8.3.1. Variable Selection Heuristics

Based on previous definitions, we propose various sequences with distinct vari-
able orderings. We first consider the four possible orderings between B; and ¢;,
denoted as follows:

25

(... Biti, Bist,tisn,...)
t:B; = (..., ti, Bi, tiv1, Biy1,...)
B,=(B,...,Bi,...)
T=(t,. oty (12)

We now define the following two sequences of variables from ‘B in vector form:

L =vec(B) = (L11,L1,2,L1,3,L21,L22,L23,L31,L32,L33,...)
LT =vec(®") = (L11,L21,L31,L19,Lao,La2, L13,Los, Lss,...)

If we now combine all the sequences of variables and define all the combinations
of sets such that each set contains exactly the same variables but the sequences
that each set contains are different, we obtain

Gl = {CaLam} GB = {C7Lam} GE’) = {OaLaE;E}
Gy ={C,L",Bit;} Gs={C,L",t;B;} G¢={C,L",B;,t;} (13)

where G1, G2, G3 and G4 are sets of cardinality 3, while G5 and Gg are of cardi-
nality 4. Considering all possible combinations of these sets yields 4-3!4-2-4! = 72
distinct possibilities. Note that all the resulting orderings are pairwise distinct.
In our experiments Expla, Explb, and Explc, we systematically explored the
results on these 72 distinct search heuristics.

8.3.2. Value Selection Heuristics

To find solutions with clpfd, each variable has to take on a value in its domain.
Exhaustively exploring the domain can be realized through several strategies
e.g., starting from the middle of the domain, picking a value at random from
the domain. For the sake of simplicity, we only explored the following two simple
strategies.

up: If x € [a,b], then explore the domain from the smallest value to the largest
(ie,z=a,z=a+1,...2=0).

down: If € [a,b], then explore the domain from the largest value to the

smallest (i.e., z =b,x=b—1,...2 =a).

Other value selection heuristics were briefly explored without finding signifi-
cant improvements, so we concluded that these two strategies were the most
important to evaluate.

8.3.3. Result for Experiment 1
To classify the results on the 72 measurements, four different categories were
defined, from the most useful to the least interesting:

26

Table 1: Summary of results for experiment 1, where we classify the search
heuristics into four categories. The timeout was set to 180 seconds for all exper-
iments. A more detailed graphical presentation of Expla is given in Figure

Search direction

up down
Expla Explb Explc Expla Explb Explc
(DOptimal 24 6 0 20
©@Optimal, timeout 6
(3Sub-optimal 0 7 2 6 18 2
@No solution 42 59 68 46 52 68
Total 72 72 72 72 72 72

1. (Optimal): An optimal solution is found and an optimality certificate is
obtained within the contract of time, that is, optimality is proven.

2. (Optimal, timeout): An optimal solution is found but no certificate is
provided, that is, optimality is not proven.

3. (Sub-optimal): A sub-optimal solution is found but the search timed
out. This means that optimality is neither reached nor proven.

4. (No solution): No solution is found within the contract of time.

Category 3 (sub-optimal) still represents interesting heuristics, since a solution
is found but, since optimality is not reached, this category is less interesting
than Category 2. Note that to distinguish between Categories 2 and 3, we have
to know the optimal value of the cost function in advance. This is possible for
the simple problems in experiment 1, but not in experiment 2 or whenever the
model is used in production.

Figure shows a detailed depiction of all executions of Expla, where the
four categories are represented. For Category 1, the graph shows the time needed
to find an optimal solution, while for Categories 2 to 4, timeout is reached. These
categories are grouped together and classified through a qualitative difference.
These results are summarized in Table [I}

8.8.4. Analysis of Experiment 1

For Expla, we obtain in total 42 heuristics where no solution is found, six heuris-
tics where the search finds an optimal solution without any proof certificate, and
finally 24 heuristics where an optimal solution is found and proven to be opti-
mal. Furthermore, from Figure [[0] among the 24 successful heuristics, the time
needed to find and prove optimality ranges from 0.7 seconds to 149.4 seconds.

27

Experiment 1a, search direction up

E fTpoaroepr :

@ T T T

@ I I I I I
Irllr:‘r:“.lTr ‘T:.ITT ‘
G Ga G3 Gy Gs Gs

Experiment 1a, search direction down

g I L. i I I

o)

o)

A

Gi G2 Gz Gy Gs Ge

Figure 10: A graphical presentation of the results for Expla from Table|l] The
colored circles on the left axis correspond to the descriptions in Table

Generally speaking, the two graphs in Figure [I0] show that the value selection
heuristics up is more interesting than down. This results from the fact that
when selecting first largest values for all the variables, longer sequences are
privileged.

We found that only two variable selection search heuristics perform accept-
ably for the three sub-experiments, namely, (LT, B;, C,%;) and (L, B;, C, t;), the
first having a slight advantage. Even if these two heuristics do not always give
the best results in terms of CPU time, they can both be used in combination
with the up value selection heuristic for the three sub- experiments. This result
can be explained by the fact that first giving the values for the brush table
(i.e., LT or L) drastically reduces the size of the search space by withdrawing
numerous choice points originating from the table. The remaining sequence
(B;,C,t;) is also important, but most probably for technical reasons involving
the shape of the constraints. Selecting one of these two heuristics answers RQ1
by providing a solid foundation for the analysis of search heuristics in the con-
text of constraint-based test sequence generation. Based on these results, we
selected (LT, B;, C,t;) for the second part of our empirical evaluation, dedicated
to answering RQ2 and RQ3.

28

8.4. RQ2, Experiment 2

To answer RQ2, we examine how scalable the proposed model is with respect
to the heuristics discovered in experiment 1. Scalability in the context of timed
test sequence generation for CIRs can be understood as 1) determining the
largest test sequences the model is able to generate within a reasonable time,
2) determining the impact of the brush table size on the time needed to generate
a test sequence, and 3) determining the optimal contract of time to be allocated
to the minimization process.

To answer these questions, we ran experiments with |B| =(10,15,20) and
SeqLen = (50,100, 150, 200, 250, 300), which yields 18 different configurations.
Each configuration was systematically executed using all timeout values in the
range [2,30] seconds, in addition to 60 seconds, 120 seconds, 180 seconds, and
600 seconds. For each timeout value, the ability to find a solution and the value
of ¢ that was found were reported.

8.4.1. Analysis of Experiment 2
Figure relates the test sequence duration, tx, to the solving time, t,, for
15 different configurations. Note that the model could not be solved for |B| =
10 in combination with large values of SeqLen within the time contract of
600 seconds. For this reason, only three results are reported for |8B| = 10,
namely, those where SeqLen < 150. For |B| = 15 and |B| = 20, we got
results for all combinations of SeqLen. Note also that all executions, except for
|B| = 10, SeqLen = 150, provided a sub-optimal solution within 10 seconds. In
fact, most of the executions generated a first solution in less than three seconds.
This result is encouraging for our desired deployment in a continuous inte-
gration environment. On the one hand, a test sequence where ¢ is minimized is
highly desirable but, on the other hand, allocating a very long contract of time
to reach this objective is counterproductive in continuous integration, since this
will result in a reduction in the number of tests that can be executed. The
trade-off relation can be precisely computed and represented as follows, with a
test efficiency factor E that tells us how much time can be spent in the solving
phase to obtain as many changes in B; as possible:

_ SeqLen
tN + ts
In Figure [I2] we plot the efficiency factor for all the tested configurations. As
the plot shows, the maximum efficiency is obtained after two seconds to 12 sec-
onds of solving time. Thus, if the model is generated and solved solely for a
single execution, there is no benefit running the solver longer to obtain a better
solution. As an example, consider the case with |B| = 10 and SegqLen = 50.
For this case, the first value found is ty = 9.99 seconds and, by running the
model an additional 30 seconds, we obtain a solution that executes in only
tny = 3.05 seconds, that is, a 30% reduction from the first solution. Clearly,
this is wasted effort if the solution is used only once. However, if the generated
model and the solution is meant to serve multiple consecutive test runs, it may
be advantageous to run the solver longer to further reduce ¢y.

(14)

29

B| = 10, SeqLen € (50,100, 150)

—e 50
20 —=— 100
S 10
5 ‘\«\i
1 10 30 60 600
ts [S]
50 w100
40 —— 150
DR 900
Z ——250
20 300
10
0
50 —e— 50
—=— 100
40 —e— 150
ZN 30 ——200
2z, —— 250
+ 2
0 --+--300
10
0

Figure 11: How well the model minimizes the duration of the test sequence, ty,
if more time is added to the solving process, tg.

30

In conclusion, unless a test sequence can be reused multiple times, there is
not much to gain from extending the solving phase.

Figure 12: Efficiency factor E for the executions in Figure When the model is
run in a continuous integration environment, there is little to gain from running
the model more than around 10 seconds.

8.5. RQ3, Deployment, and Industrial Adoption

We now address our last research question, whether our proposed model can
be implemented in a real industrial setting. We divide this question into three
parts:

e Is the model able to detect new errors?
e Is the model able to detect old errors that were reintroduced into the IPS?

e Does the proposed JITTG framework behave as expected?

8.5.1. New Errors Detected
This section describes the errors found immediately after we introduced the
new model. These are errors that were in the IPS for some time and were only

31

Table 2: Historical data on old bugs that were reintroduced to
test the model.

Bug#?* Time in system® Time to solve® Time to validate?
44432 5-10 years 1-2 hours 1 day

44835 5-10 years 2-4 days 1 day

27675 6-12 months 1-2 months 1-2 weeks
28859 6-12 months 2-3 months 2-3 weeks
28638 4-6 months 1-2 weeks 2-3 weeks

2 The bug number in ABB’s bug tracking system.

> How long the bug was present in the IPS before it was discov-
ered. Numbers are based on estimates.

¢ How long it took from the time the bug was discovered until
it was fixed.

4 How long it took to validate that the bug had actually been
fixed. For many bugs, this involved testing time spent at cus-
tomer facilities.

detected by the new model. We found a total of three previously unknown
errors in the IPS. Two of the errors were directly related to the behavior of the
IPS, while the last was related to how a PC tool presents online diagnostics for
a live system.

8.5.2. Detection of Old Errors

To further validate the robustness of the model, a collection of old, previously
detected errors were reintroduced into the source code with the intention of
verifying that the model was able to detect the errors. The selected errors were
chosen by searching ABB’s bug tracking system, by interviewing ABB’s test
engineers, and through discussions with the IPS’s main architect. Most of the
errors were originally discovered at customer sites while staging a production
line or after the production line was set into production. The chosen errors are
mainly related to timing errors of painting events and several of the errors can
be classified as errors that appear when the IPS is part of a large configuration
with many components.

The chosen errors are summarized in Table Pl This table shows historical
data on how long it took to detect the error, how long it took to fix the error, and
how long it took to validate that the error had in fact been fixed. Note that these
numbers cannot be accurately specified; they represent reasonable estimates. In
particular, errors related to how long a bug has been in the system are difficult
to estimate. However, by interviewing the main architect of the IPS and the
lead test engineer, we have high confidence in the numbers presented.

32

8.6. Threats to Validity

In this section, we discuss threats to validity for our experiments and how we
address these. A possible threat to conclusion validity (i.e., when factors that
can influence the conclusion drawn from the experiments) lies in the absence of a
systematic analysis of all possible search heuristics in response to RQ1. Actually,
we adopted a systematic analysis for variable selection heuristics by examining
all 72 possible combinations of variable orderings, but we only compared two
heuristics (up/down). In response to RQ2, we selected only a subset of possible
parameter settings. Therefore there is another threat to conclusion validity,
since nothing guarantees that another specific setting might exhibit different
results. To reduce this threat, we adopted parameter settings that are realistic
for the application of the constraint model in question and we responded to RQ2
by using C'M,, which is the production model. Note also that our empirical
evaluation, in response to RQ3, is realized in a production environment, which
considerably reduces any concern about conclusion validity.

An external validity threat of our empirical evaluation concerns the gener-
alization of the results. Indeed, the models we developed for the experiments
(i.e., CM; and C M) are specific to ABB’s IPS timed sequence generation prob-
lem and cannot be easily generalized to other test generation problems. Such a
threat is common in any software engineering empirical study and cannot really
be reduced without applying the technology to other case studies. However,
general-purpose constraint modeling languages and tools, such as SICStus Pro-
log and its c1lpfd library [38], address this threat and permit us to draw some
generalizable perspectives from this work.

8.7. Comparison of Test Methods

As previously mentioned, our new MBT strategy cannot entirely replace current
testing methods, but it represents an excellent supplement for identifying bugs
at a much earlier stage in the development process. Nonetheless, we can still
compare the different methods quantitatively. Table [3] shows the results of our
comparison. As we can see from this table, our new test strategy provides a
huge improvement in the number of activations that can be tested within a
reasonable time frame, which is not possible with existing testing methods. If
we also include automation in all aspects of testing, our strategy performs much
better than our current test methods. However, it is important to note that our
new method does not involve a mechanical robot and this must be regarded as
a weakness.

8.8. Lessons Learnt

Based on experience from about one year of live production in ABB Robotics
software development environment, we report the following lessons learned,
based on experience gathered through development and deployment of the test
framework and discussions with test engineers:

33

Table 3: Comparison of constraint-based testing versus current test methods.

Activation Paint on baper Constraint-

w /oscilloscope pbap based test
Setup time? 1-2 hours® 3-4 hours® 1-2 minf
Activations per test? 1 5-10 >100
Repetition time® 5 sec 10 min < 1 sec
Interpretation timed < 1 min® 2-4 min® < 1sect
Synchrqmzed with Yes Yes No
mechanical robot
Can run standalone Yes No Yes

after initial setup

& Setup time is defined as the time it takes to configure a test. This time
includes upgrading the software, configuring the IPS, and loading the test.

P The number of physical outputs that are verified with respect to time in
one test.

¢ Time needed to repeat two identical tests.

4 Time needed to inspect and interpret the result.

¢ Manual task performed by a test engineer.

f Automated task performed by a computer.

34

Higher confidence when changing critical parts: Based on developer feed-
back, there is now less worry about applying changes to critical parts of
the code. Previously, such changes involved significant planning efforts
and had to be coordinated with the test engineers responsible for execut-
ing tests. With the new testing framework in place, it is easy to apply a
change, deploy a new build with the corresponding execution of tests, and
inspect the results. If the change causes unwanted side effects, the change
is rolled back to keep the build “green.”

Simple front-end, complex back-end: By using Python [3I] as the front-
end interface to the constraint solver and keeping the interface that a test
engineer is exposed to as simple as possible, we can utilize personnel with
a minimal computer science background. Both Francis et al. [39] and
de la Banda et al. [40] recognize that constraint programming has a steep
learning curve. Even with training limited to introduction to the famous
classical problems such as SEND+MORE=MONEY and the N- Queens
problem [2], the test engineers have received enough training to use the
constraint solver from Python without major problems.

Less focus on legacy and manual tests: A positive side effect of introduc-
ing MBT is that the focus in the organization has shifted from a great
deal of manual testing toward more automatic testing. Even for products
beyond the scope of this paper, the introduction of fully automatic test
suites has inspired other departments to focus more on automatic testing.

Putting everything in the source control repository: In our work, we never
perform any installation on any build serverEAfter a build server is in-
stalled with its continuous integration software, absolutely everything is
extracted from the source control repository, as recommended in [3]. By
strictly adhering to this philosophy, it is possible to utilize large farms
of build servers. For example, ABB Robotics has access to large farms
of build servers located in Norway, Sweden, India, and China and it is
possible to schedule builds on these servers without any prior installa-
tion of special build tools. This is also the case for the new constraint
programming-based tool presented in this paper. We consider the effort
to develop, deploy and fully integrate our constraint-based testing tools
quite demanding, but very efficient in the long run.

Keeping tests in sync with the source code and hardware: The combi-
nation of adding everything to the source control repository and JITTG is
that we experience fewer problems with tests generating false errors due
to a mismatch. We still have other test suites that do not have this tight
integration and these tests can therefore occasionally produce false errors.

5A build server is a machine that fetches source code from the source control repository
and performs building, testing, integration, and so forth. All steps are carried out completely
automatically and typically triggered by a source code commit or a timer.

35

The main advantage of this synchronization is experienced if a roll-back
to an older version is required. In this case both the production source
code and the test code is reverted to the older version.

9. Conclusions

In this paper, we present a new testing strategy for validating the timing as-
pects of distributed control systems for CIRs. A constraint-based mathematical
model is given to automatically generate test cases through constraint solving
and continuous integration techniques. The model is fully implemented and de-
ployed within an industrial continuous integration environment. Interestingly,
the constraint-based model is solved online as part of the continuous integration
process. We call the online solving process JITTG.

Using JITTG guarantees that software, configuration, and hardware are
kept in sync with the generated test cases. To our knowledge, this is the first
time a constraint-based model using JITTG has been deployed in a continuous
integration environment. The paper also answers three research questions, using
the results of a thorough empirical evaluation obtained from testing a CIR
system. Using a generic model that omits some technicalities, we find an ideal
parameterization for constraint solving concerning variable and value ordering
heuristics.

This ideal parameterization is then used on a production-grade model that
is deployed at ABB’s testing facilities and empirically evaluated during the
validation of CIRs. This evaluation reveals that our testing strategy could not
only find reinjected old faults found in previous test campaigns, but could also
discover new faults. By observing that the time taken to generate a single test
case in the continuous integration process typically ranges from two seconds to
13 seconds, we demonstrate that our strategy is faster and more effective than
current test methodologies used at ABB. However, it is worth noting that our
empirical evaluation does not include moving robots as part of the evaluation,
which would be necessary to fully convince stakeholders of the takeaway value
of our approach.

A weakness of our approach is related to the absence of guarantees with
respect to model coverage. In other words, the generated test sequences does
not necessarily cover every possible transition between different spray patterns.
Even if this is not an industrial requirement, we believe that improving our
strategy to achieve a certain test coverage is clearly an interesting research
perspective.

In addition, investigating the use of our constraint-based model for other
applications, such as robotized gluing, sealing, or welding, is also part of further
work.

Acknowledgments This work is funded by the Norwegian Research Council
under the Industrial PhD Program (222010), the Certus SFI grant (http://
www . certus-sfi.no), and ABB Robotics.

36

http://www.certus- sfi.no
http://www.certus- sfi.no

References

1]

M. Mossige, A. Gotlieb, H. Meling, Test generation for robotized paint
systems using constraint programming in a continuous integration environ-
ment, in: IEEE Int. Conf. on Soft. Testing, Verif. and Valid (ICST’13),
Poster presentation, 2013, pp. 489-490. do0i:10.1109/ICST.2013.71.

K. Marriott, P. J. Stuckey, Programming with constraints: an introduction,
MIT press, 1998.

M. Fowler, M. Foemmel, Continuous integration, 2006. URL: http:
//martinfowler.com/articles/continuousIntegration.html, [Online;
accessed 13-August-2013].

B. Fitzgerald, K.-J. Stol, Continuous software engineering and beyond:
trends and challenges, in: First Workshop on Rapid Continuous Software
Engineering (RCoSE) co-located with ICSE, volume 14, 2014.

S. Désinger, R. Mordinyi, S. Biffl, Communicating continuous integration
servers for increasing effectiveness of automated testing, in: Proceedings
of the 27th IEEE/ACM International Conference on Automated Software
Engineering, ACM, 2012, pp. 374-377.

A. Orso, G. Rothermel, Software testing: a research travelogue (2000—
2014), in: Proceedings of the IEEE International conference on Software
Engineering (ICSE), Future of Software Engineering, 2014.

H. Do, G. Rothermel, A. Kinneer, Empirical studies of test case prioritiza-
tion in a junit testing environment, in: Software Reliability Engineering,
2004. ISSRE 2004. 15th International Symposium on, IEEE, 2004, pp. 113-
124.

T.Y. Chen, M. F. Lau, A new heuristic for test suite reduction, Information
and Software Technology 40 (1998) 347-354.

D. Marijan, A. Gotlieb, S. Sen, Test case prioritization for continuous
regression testing: An industrial case study, in: Software Maintenance
(ICSM), 2013 29th IEEE International Conference on, IEEE, 2013, pp.
540-543.

J. S. Bell, G. E. Kaiser, Unit test virtualization with vmvm, in: Companion
Proceedings of the 36th International Conference on Software Engineering
(ICSE), ACM, 2014.

D. Hao, L. Zhang, X. Wu, H. Mei, G. Rothermel, On-demand test suite
reduction, in: Proceedings of the 2012 International Conference on Software
Engineering, IEEE Press, 2012, pp. 738-748.

37

http://dx.doi.org/10.1109/ICST.2013.71
http://martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/articles/continuousIntegration.html

[12]

[13]

[17]

[18]

[19]

[20]

[21]

J. H. Hill, D. C. Schmidt, A. A. Porter, J. M. Slaby, Cicuts: combining
system execution modeling tools with continuous integration environments,
in: Engineering of Computer Based Systems, 2008. ECBS 2008. 15th An-
nual IEEE International Conference and Workshop on the, IEEE, 2008, pp.
66-75.

Y. Zhao, J. Liu, E. A. Lee, A programming model for time-synchronized
distributed real-time systems, in: 13th IEEE Real Time and Embedded
Technology and Applications Symposium, 2007. RTAS ’07, 2007, pp. 259 —
268. URL: http://chess.eecs.berkeley.edu/pubs/325.html.

P. Ramadge, W. Wonham, The control of discrete event systems, Proceed-
ings of the IEEE 77 (1989) 81-98.

C. G. Cassandras, S. Lafortune, Introduction to discrete event systems,
Springer, 2008.

K. Lee, J. Eidson, Ieee-1588 standard for a precision clock synchronization
protocol for networked measurement and control systems, in: In 34 th
Annual Precise Time and Time Interval (PTTI) Meeting, 2002, pp. 98-
105.

S. Johannessen, Time synchronization in a local area network, Control
Systems, IEEE 24 (2004) 61-69.

R. R. Rajkumar, I. Lee, L. Sha, J. Stankovic, Cyber-physical systems: the
next computing revolution, in: Proceedings of the 47th Design Automation
Conference, ACM, 2010, pp. 731-736.

L. Sha, S. Gopalakrishnan, X. Liu, Q. Wang, Cyber-physical systems: A
new frontier, in: Machine Learning in Cyber Trust, Springer, 2009, pp.
3-13.

E. A. Lee, Cyber physical systems: Design challenges, in: Object Oriented
Real-Time Distributed Computing (ISORC), 2008 11th IEEE International
Symposium on, IEEE, 2008, pp. 363—-369.

M. Broy, S. Chakraborty, S. Ramesh, M. Satpathy, S. Resmerita, W. Pree,
Cross-layer analysis, testing and verification of automotive control software,
in: Embedded Software (EMSOFT), 2011 Proceedings of the International
Conference on, IEEE, 2011, pp. 263-272.

M. Utting, B. Legeard, Practical Model-Based Testing: A Tools Approach,
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2007.

M. Barnett, M. Fadhndrich, K. R. M. Leino, P. Miiller, W. Schulte, H. Ven-
ter, Specification and verification: the spec# experience, Commun. ACM
54 (2011) 81-91.

38

http://chess.eecs.berkeley.edu/pubs/325.html

[24]

[25]

[26]

[31]

[32]

[33]

A. Gotlieb, B. Botella, M. Rueher, Automatic test data generation using
constraint solving techniques, in: Proc. of Int. Symp. on Soft. Testing and
Analysis (ISSTA’98), 1998, pp. 53-62.

B. Marre, B. Blanc, Test selection strategies for lustre descriptions in gatel,
Electronic Notes in Theoretical Computer Science 111 (2005) 93 — 111.

S. Di Alesio, S. Nejati, L. Briand, A. Gotlieb, Stress testing of task dead-
lines: A constraint programming approach, in: Software Reliability En-
gineering (ISSRE), 2013 IEEE 24th International Symposium on, IEEE,
2013, pp. 158-167.

A. Gotlieb, T. Denmat, B. Botella, Goal-oriented test data generation for
pointer programs, Information and Soft. Technol. 49 (2007) 1030-1044.

S. Di Alesio, S. Nejati, L. Briand, A. Gotlieb, Stress testing of task dead-
lines: A constraint programming approach, in: Int. Symposium on Soft.
Reliability and Engineering (ISSRE’13), Research track, Pasadena, CA,
USA, 2013.

A. W. Ulrich, P. Zimmerer, G. Chrobok-Diening, Test architectures for
testing distributed systems, in: Proceedings of the 12th International Soft-
ware Quality Week, 1999.

FEuropean Parliament and Council of the European Union, Directive
2006/42/EC on machinery, 2006.

G. Rossum, Python Reference Manual, Technical Report, Amsterdam, The
Netherlands, The Netherlands, 1995.

M. Utting, A. Pretschner, B. Legeard, A taxonomy of model-based testing
approaches, Softw. Test. Verif. Reliab. 22 (2012) 297-312.

P. Van Hentenryck, Constraint Satisfaction in Logic Programming, MIT
Press, 1989.

F. Rossi, P. v. Beek, T. Walsh, Handbook of Constraint Programming
(Foundations of Artificial Intelligence), Elsevier Science Inc., New York,
USA, 2006.

L. De Moura, N. Bjgrner, 73: an efficient smt solver, in:
TACAS’08/ETAPS’08: Proceedings of the Theory and practice of software,
14th international conference on Tools and algorithms for the construction
and analysis of systems, Springer-Verlag, 2008, pp. 337—-340.

P. McMinn, Search-based software test data generation: A survey, Software
Testing, Verification and Reliability 14 (2004) 105-156.

I. IBM, ILOG Labs, IBM CPLEX: High-performance software for math-
ematical programming and optimization, 2006. http://www.ilog.com/
products/cplex/|

39

http://www.ilog.com/products/cplex/
http://www.ilog.com/products/cplex/

[38] M. Carlsson, G. Ottosson, B. Carlson, An open-ended finite domain con-
straint solver, in: Proceedings of the9th International Symposium on Pro-
gramming Languages: Implementations, Logics, and Programs: Includ-
ing a Special Trach on Declarative Programming Languages in Education,
PLILP 97, Springer-Verlag, London, UK, UK, 1997, pp. 191-206. URL:
http://dl.acm.org/citation.cfm?id=646452.692956.

[39] K. Francis, S. Brand, P. J. Stuckey, Optimisation modelling for software de-
velopers, in: Principles and Practice of Constraint Programming, Springer,
2012, pp. 274-289.

[40] M. G. de la Banda, P. J. Stuckey, P. Van Hentenryck, M. Wallace, The
future of optimization technology, Constraints (2013) 1-13.
Appendix A. Notation

In Table [A4] we summarize the notation used in the mathematical model for
the IPS.

40

http://dl.acm.org/citation.cfm?id=646452.692956

Table A.4: Notation for the parameters in the production model.

Parameter Test control parameters
N The size of the input sequence.
i The ith sequence, i € [1, N].
J Channel number j € [1, 5].
The number of different spray patterns in the model, or entries
I'B| .
in the lookup table 5.
e A subscript e specifies at which sequence ¢ a scenario should
start.
c A subscript ¢ specifies on which channel j a scenario should
appear.
. The minimum time between two spray pattern changes
MinBrushS ’
mBTushoep t; —t;—1 > MinBrushSep.
MinTrigSep The minimum 'tlme between two actuator output changes for
some channel j.
MinOverlapTime The minimum time an overlap should be in the overlap scenario.
. The minimum time a burst of changes should last in the burst
BurstTime .
scenario.
BurstLen The number of changes to use in the burst scenario.
IllegalVal Value to use for the shutdown scenario.
Parameter Parameters from the robot controller
B; The value ith spray pattern in the test sequence.
t; The time of the ith spray pattern in the test sequence.
Parameter Global parameters in the IPS
. Disturbance time between channel 1 and channels 2—4 for
PreTime
P=0—P>0.
. Disturbance time between channel 1 and channels 2-4 for
PostTime
P>0—P=0.
B Brush table with |B| rows; each row has five tuples.
Parameter Parameters for each channel
Mazx; The maximum value channel j can have.
Min; The minimum value channel j can have.
Dt Parameter used to calculate timing for increasing value of the
J output on channel j.
D- Parameter used to calculate timing for decreasing value of the
J output on channel j.
) Boolean value deciding whether or not a channel should user
J linear delay calculations.
P The activation value for the ith output on channel j.
tji The activation time for the ith output on channel j.

41

	Introduction
	Contributions
	Organization

	Background and Related Work
	Continuous Integration
	MBT and Constraint Programming

	ABB's Process Control System
	Example of Robotized Painting
	Testing Challenges
	Abstraction of the IPS

	Legacy Test Practices
	Painting on Paper
	Activation Testing with an Oscilloscope
	Running in a Simulated Environment
	Summary of Existing Test Methods
	New Test Method

	Modeling the IPS
	IPS Channels
	Mathematical Model
	Brush Table
	Channel Activation Time
	Timing Influence between Channels
	Timing on Isolated Channels

	Test Scenarios with Constraints
	Normal Scenario
	Burst

	Overlap Scenario
	Shutdown Scenario
	Minimizing Test Execution Time

	Implementation
	Test Setup
	JITTG
	Model Implementation

	Empirical Evaluation
	Research Questions
	Experimental Setup
	RQ1, Experiment 1
	Variable Selection Heuristics
	Value Selection Heuristics
	Result for Experiment 1
	Analysis of Experiment 1

	RQ2, Experiment 2
	Analysis of Experiment 2

	RQ3, Deployment, and Industrial Adoption
	New Errors Detected
	Detection of Old Errors

	Threats to Validity
	Comparison of Test Methods
	Lessons Learnt

	Conclusions
	Notation

