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Abstract Mobile Edge Computing (MEC) is a promising solution to improve
vehicular services through offloading computation to cloud servers in close
proximity to mobile vehicles. However, the self-interested nature together with
the high mobility characteristic of the vehicles make the design of the compu-
tation offloading scheme a significant challenge. In this paper, we propose a
new Vehicular Edge Computing (VEC) framework to model the computation
offloading process of the mobile vehicles running on a bidirectional road. Based
on this framework, we adopt a contract theoretic approach to design optimal
offloading strategies for the VEC service provider, which maximize the revenue
of the provider while enhancing the utilities of the vehicles. To further improve
the utilization of the computing resources of the VEC servers, we incorporate
task priority distinction as well as additional resource providing into the de-
sign of the offloading scheme, and propose an efficient VEC server selection
and computing resource allocation algorithm. Numerical results indicate that
our proposed schemes greatly enhance the revenue of the VEC provider, and
concurrently improve the utilization of cloud computing resources.
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1 Introduction

The advancements in Internet of Things (IoT) and wireless technologies bring
us pervasive smart devices such as smart vehicles that can facilitate realizing
many novel and powerful mobile applications [1]. Some of such applications in-
clude interactive infotainment, traffic cognition and automatic driving [2]-[6].
However, with the drastically increasing needs for resources along with stricter
requirements on performance for advanced vehicular applications, supporting
large computing intensive applications is a big challenge for the resource con-
strained vehicles [7][8].

To cope with the explosive application demands of the vehicular termi-
nals, cloud-based vehicular networking is widely considered as a promising
approach to improve the performance of the services [9]-[11]. In cloud-enabled
networks, computation processing and storage for vehicular applications are
provided as services on the cloud [12]. Thus, the complicated computing tasks
can either run locally on the vehicular terminals or be offloaded to the remote
computation cloud.

By leveraging rich computational resources from cloud, both the perfor-
mance of the vehicular applications as well as the resource utilization of the
cloud can be improved. However, the long distance between mobile vehicles
and remote cloud servers may incur significant network transmission delay
as well as considerable overhead [13][14]. This latency and overhead seriously
impairs the performance of delay-sensitive mobile applications and the com-
putation offloading efficiency. A new architecture and technology known as
Mobile Edge Computing (MEC) has emerged to address the above challenges,
which pushes cloud services to the edge of the radio network, and provides a
cloud-based computation offloading in close proximity to the mobile vehicular
terminals [15].

Due to proximity to mobile vehicles, the network latency accessing to cloud
computing services can be greatly reduced, which enables MEC to provide fast
interactive response in the computation offloading service. However, compared
to the traditional cloud servers located in the backbone network with power-
ful computation platforms, MEC servers may suffer from resource limitation.
Furthermore, unlike handheld mobile devices that always move slowly within
a relatively small range, smart vehicles have a unique feature in terms of their
high mobility [16]. Considering the limited coverage area of each RoadSide
Unit (RSU), a vehicle may pass by several RSUs within the delay tolerance
time of its applications. In MEC systems, servers are always equipped with the
RSUs. Thus, in order to improve the computation offloading efficiency while
ensuring the performance constraints, it is imperative to jointly investigate
MEC server selection strategies for offloading data transmission as well as the
MEC cloud resource allocation schemes.
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Intuitively, mobile computations can be migrated effectively in MEC sys-
tems with well-designed offloading mechanisms. However, in practice, MEC
service is always provided by operators, and vehicles should pay to use this
service. Since vehicle users are self-interested and want to maximize their own
profit, it is unrealistic to assume that they follow the control instructions from
the MEC service providers unconditionally. This factor poses a significant
challenge on the design of an optimal offloading scheme.

To address this challenge, we turn to contract theory, which is a powerful
framework from economics and makes the rational trading participants act
according to the contractual arrangements [17]. In this paper, we investigate
the characteristics of edge computing in vehicular cloud networks, and design
an optimal contract theoretic computation offloading scheme, which maximizes
the revenues gained by the cloud service providers. The main contributions of
this paper are listed below:

– We propose a new Vehicular Edge Computing (VEC) offloading framework,
where both the computing resource capacity of the VEC servers and the
high-speed mobility of vehicles are considered.

– We model the VEC offloading process with a contract theoretic approach,
and design a contract-based offloading scheme, which maximizes the rev-
enue of the VEC provider while also improving the utilities of the vehicles.

– To further improve the computing resource utilization of the VEC servers
while also ensuring the delay constraints of the vehicular applications, we
propose an efficient algorithm for VEC server selection and computing
resource assignment.

The rest of the paper is organized as follows. In Section II, we review
related works. The system model is presented in Section III. The contract-
based VEC offloading schemes are described in Section IV. In Section V, we
propose an effective delay-constrained VEC server selection and computing
resource allocation algorithm. We present performance evaluation in Section
VI and conclude the paper in Section VII.

2 Related Work

Vehicular cloud networks, an integration of vehicular communication and mo-
bile computing, possesses the potential to handle massive computing in a flex-
ible and virtualized manner [18]-[20]. The authors in [21] formulated the com-
putation resource allocation of a vehicular cloud computing system as a semi-
Markov decision process, and proposed an optimal decision-making scheme to
maximize the expected reward. In [22], the authors introduced a collaborative
traffic information sharing system, where traffic images provided by a vehicular
cloud are utilized to assist drivers for route planning and route decisions. The
authors in [12] proposed a backoff-based wireless resource scheduling method
in mobile cloud computing networks, where the average queueing delay of the
multiuser applications is minimized. The authors in [16] proposed a coalition
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game for resource management among cloud service providers, where the re-
sources of the cloud-enabled vehicular network are effectively utilized.

Compared with core-based cloud platform, MEC can provide lower com-
puting delay and higher data throughput, which makes it a promising cloud
networking solution [23]-[25]. Driven by this fact, MEC has recently been ex-
plored for various applications. The authors in [26] formed a tree hierarchical
distributed edge cloud server deployment, which improves the utilization of
the cloud resources serving the peak loads from mobile users. To optimize
energy consumption of mobile devices while minimizing application latency,
the authors in [27] incorporated dynamic voltage scaling technology into par-
tial computation offloading for MEC, and proposed a locally optimal algorithm
with the univariate search technique. In [28], the authors focused on the trade-
off between the gain and the cost of live avatars migration, and proposed a
profit maximization avatar placement scheme for the edge cloudlet networks.
In [29], the authors exploited fog computing and mobile edge computing to
detect abnormal or critical events, and demostrated that these technologies
are helpful in improving the services readiness required in case of time-critical
events. In [30], the authors utilized mobile edge computing to manage smart
grid data, where the large data sets generated by various smart grid devices
are disseminated efficiently with the aid of cloud mechanisms. In [31], the au-
thors formulated edge computation offloading decision as multi-user game, and
designed a distributed algorithm to achieve a Nash equilibrium.

Among the aforementioned studies, only [21] and [30] have taken into ac-
count the impacts of vehicle mobility on MEC server choosing and recently
in operation management. In addition, the effectiveness of incentive-based ap-
proaches in the design of MEC offloading mechanisms has been ignored in
these work. As the offloading nodes are rational and self-interested, they will
perform computation offloading in a way that maximizes their revenues. The
nodes may not follow the optimal offloading strategies without any incentive.
To improve the offloading efficiency, an incentive-based MEC offloading scheme
is required.

Contract theory incentivizes two rational entities in a trading system to
reach agreements, and has been widely applied in economic control, resource
allocation and operation management recently. For example, in [32], the au-
thors modeled the spectrum trading process in cognitive radio networks as
a monopoly market, and designed an optimal quality-price contract, which
maximizes the utility of spectrum owners. Observing the dominant position of
content providers in publish-subscribe networks, the authors in [33] adopted
contract theory to optimize the distribution strategies for the content delivery
process. In [34], the authors proposed a contract theoretic approach for moti-
vating user equipments to participate in device-to-device communications in
cellular networks. In [35], contract theory is introduced as a economic incen-
tive approach for energy trade in the smart grid. However, none of these work
have incorporated contract-based strategies into the VEC offloading schemes.

Different from these studies, in this paper we concentrate on the compu-
tation offloading process in a vehicular edge cloud network and propose the
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Fig. 1 The computation offloading in a cloud-based vehicular network.

optimal contract-based offloading schemes to improve the revenues of the cloud
service providers while guaranteeing the required delay constraints.

3 System Model

Figure 1 shows our proposed VEC network. We consider a two-way road, which
has M Road Side Units (RSUs). Each RSU is equipped with a VEC server. We
denote the set of these VEC servers as M = {1, 2, ...,M}. The computation
resources of each VEC server are limited [36]. The amount of the computation
resources for VEC server m is bm units, m ∈ M. All the RSUs and the VEC
servers along the road belong to the same service provider. The resources of the
VEC servers together constitute a virtual computation resource pool, which
is charged by the provider, along with the wireless access of the vehicular
terminals.

Due to the variation in transmission power and the wireless environment,
the RSUs may have different wireless coverage areas [37]. Each vehicle accesses
the RSU with the strongest signal. Thus, the road can be divided into M
segments, whose length is {R1, R2, ..., RM}, respectively. The vehicles running
within the mth segment can only access RSU m and offload their tasks to
VEC server m.

We consider that there are Q1 and Q2 vehicles arriving at the two ends
of the road, respectively. All the vehicles move at a constant speed h, and
have identical onboard computation resource, which is denoted as d0. Each
vehicle has a computation task, which is denoted as T = {d, tmax}. Here, d
is the amount of computing resources required to accomplish the task, and
tmax is the maximum allowed end-to-end latency for the task [38][39]. Each
computation task can be accomplished either locally on the vehicle or remotely
on a VEC server through task offloading.

In our model, there are N types of computation tasks of these vehicles,
whose resource requirements are denoted as {d1, d2, ..., dN}, respectively [40]-
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[42]. Thus, the tasks of the vehicular terminals can be presented as Ti =
{di, tmax

i }, i ∈ N = {1, 2, ..., N}. Without loss of generality, we assume that
d1 < d2 < ... < dN .

According to their computation task types, these vehicles can be corre-
spondingly classified into N types. Let γi be the proportion of vehicles with
task Ti in all the arriving vehicles, and

∑N
i=1 γi = 1. Each vehicle knows its

own type. However, as the types of the vehicles are private information of each
vehicle, the computation offloading service provider may not be well aware of
this information [43]. Thus, we can see that an information asymmetry has
occurred between the service provider and the vehicles. Although the service
provider can not accurately determine the type of each vehicle, it can ob-
tain the probability distribution of the vehicle types through some statistical
information.

Both the service provider and the vehicles are rational and self-interested
[44]. Each vehicle can offload its computation task to a VEC server with
payment to the service provider. Thus, to maximize its revenue, the service
provider derives the optimal amount of the computation resources allocated to
offload the tasks and determines the corresponding payment. The information
of these services is broadcasted to the vehicles running on the road in contract
forms via wireless communication. According to the contract information, each
vehicle offloads its task to maximize its own utility.

4 Contract Theoretic Computation Offloading

In this section, we first formulate the computation offloading process as a con-
tract problem. Then we derive the optimal contract solutions, which maximize
the utility of the VEC service provider while satisfying the requirement of the
vehicles.

4.1 Contract Problem Formulation

As there are N types of vehicles according to their computation tasks, the
provider needs to offer N kinds of contracts correspondingly. Let (qi, pi) denote
the contract designed for the vehicle that belongs to type i (i ∈ N ). Here
qi is the amount of computation resources provided by the VEC servers for
offloading the computation task from a type i vehicle. pi is the payment that
type i vehicle should pay to the provider for using the offloading service.

Each vehicle can obtain the contract information through the wireless
broadcast from the provider. After that, the vehicle chooses to accept the
contract that brings maximal utility to it. Here we define the utility of a type
i vehicle gained from offloading its task based on the contract (qi, pi) as

U i
v(qi, pi) = λ di

d0
ln(αqi + β) + (1− λ)e0qi − pi,

qi ≤ di, i ∈ N .
(1)
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In (1), the first item represents the utility of saving computation resource
by task offloading. The utility is affected by the original resource utilization
di/d0. α and β are coefficients, and α > 0, β > 0. In the second item, e0
is the utility gained from saving energy for running a task on a remote unit
computation resource. λ is the weight factor, and 0 < λ < 1. The inequality
qi ≤ di ensures that the amount of the resources defined by the contract is
less than or equal to the total resources required by the task. Let G(di, qi) =
λ di

d0
ln(αqi + β) + (1− λ)e0qi. Then, (1) can be rewritten as

U i
v(qi, pi) = G(di, qi)− pi. (2)

As the vehicles are rational, they will not choose the contract which brings
negative utilities to them. This property is called Individual Rationality (IR),
and can be mathematically expressed as U i

v ≥ 0 (i ∈ N ). Besides this property,
according to the contract theory, a feasible contract should satisfy the Incentive
Compatible (IC) constraint [45]. This constraint indicates that type i vehicles
are incentivized to choose the contract specifically designed for their own type,
but not the contracts of the others. The IC constraint can be represented as
U i
v(qi, pi) ≥ U i

v(qj , pj), i ̸= j, i, j ∈ N .
The utility of the provider providing computation task offloading service

based on these contracts is defined as

USP = Q
N∑
i=1

γi(pi − cqi), (3)

where c is the cost for the VEC servers running a computation task on a unit
resource.

Based on the utility functions of the vehicles and the service provider while
considering the IR and IC constraints, the contract theoretic optimization
problem of the computation offloading can be formulated as follows,

max
{pn,qn}

U ′
SP =

N∑
n=1

γn(pn − cqn)

s.t. C1 : G(di, qi)− pi ≥ 0, i ∈ N
C2 : G(di, qi)− pi ≥ G(di, qj)− pj

i ̸= j, i, j ∈ N
C3 : 0 ≤ qi ≤ di, i ∈ N

. (4)

It is noteworthy that, compared to (3), Q is omitted in (4), as this parameter
does not affect the design of the contracts.

4.2 Optimal Contract Design

As there are N(N+3)/2 constraints, it may be complex to solve (4), especially
for a large N . Thus, to solve (4) more efficiently, some constraints should be
removed [46]. In this subsection, we first present the steps to simplify the opti-
mization problem. Then, we propose an efficient algorithm to get the optimal
contract solutions.
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Lemma 1 Monotonicity: Both the computation resources qi and the offload-
ing payment pi of the feasible contract {qi, pi} designed for type i vehicles are
monotonically increasing in terms of i, i ∈ N , i.e., for contracts {qi, pi} and
{qj , pj}, we have qi ≥ qj and pi ≥ pj, if and only if i > j, i, j ∈ N .

Proof According to the IC constraints of type i and type j vehicles, where
i ̸= j and i, j ∈ N , we have

G(di, qi)− pi ≥ G(di, qj)− pj , (5)

and
G(dj , qj)− pj ≥ G(dj , qi)− pi. (6)

Adding (5) and (6), we can get G(di, qi)+G(dj , qj) ≥ G(di, qj)+G(dj , qi). By

substituting G(·, ·), the inequation is equally changed to (di − dj) ln(
αqi+β
αqj+β ) ≥

0. Given i > j, according to the vehicle type definition, we have di > dj , which
implies that between the feasible contracts, qi ≥ qj if i ≥ j. Next we will prove
that qi ≥ qj should hold whenever pi ≥ pj . Given the condition pi ≥ pj ,
according to (5), we have λ di

d0
ln(αqi+β)+(1−λ)e0qi−pi ≥ λ di

d0
ln(αqj+β)+

(1 − λ)e0qj − pj . By rearranging the inequation, we can get λ di

d0
ln(αqi+β

αqj+β ) +

(1 − λ)e0(qi − qj) ≥ pi − pj ≥ 0. Due to 0 < λ < 1, we can get qi ≥ qj .
Similarly, the inequality pi ≥ pj can be proved under the condition qi ≥ qj .

Lemma 2 IR Constraints Reduction: If the IR constraint of type 1 vehicles
is satisfied, then other IR constraints of type i, 1 < i ≤ N , do automatically
hold [45].

Proof Based on the IC constraints, we can get G(di, qi)− pi > G(di, q1)− p1.
Furthermore, according to the definition of the vehicle types, we have di > d1,
where 1 < i ≤ N . As G(di, qi) is a monotonically increasing function in terms
of di, we get G(di, q1)− p1 > G(d1, q1)− p1. The inequality indicates that the
IR constraint of type i vehicles, 1 < i ≤ N , is automatically satisfied whenever
IR constraint of type 1 vehicles holds.

Definition 1 Local Downward Incentive Constraint (LDIC) and Downward
Incentive Constraint (DIC): Considering two adjacent types, namely type i
and type (i − 1), the IC constraint of the contracts between these two types
is defined as LDIC, which can be formally presented as

U i
v(qi, pi) ≥ U i

v(qi−1, pi−1), i ∈ {2, 3, ..., N}. (7)

By extending the definition of LDIC to the IC constraints between type i and
type j, where j ∈ {1, ..., i− 1}, we have the DICs, which are shown as

U i
v(qi, pi) ≥ U i

v(qj , pj), i ∈ {2, 3, ..., N}, j ∈ {1, ..., i− 1}. (8)

Definition 2 Upward Incentive Constraint (UIC) and Local Upward Incen-
tive Constraint (LUIC): Similar to Definition 1, the definition of UIC and
LUIC are formally given as U i

v(qi, pi) ≥ U i
v(qj , pj), where i ∈ {1, 2, ..., N −

1}, j ∈ {i+1, ..., N}, and U i
v(qi, pi) ≥ U i

v(qi+1, pi+1), where i ∈ {1, 2, ..., N−1},
respectively.
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Lemma 3 Given the LDICs hold, all DICs do automatically hold and can be
reduced. Similarly, under the condition that LUIC holds, all the UICs can be
removed.

Proof According to the definition of G(·, ·), it is easy to get G(di+1, qi) −
G(di+1, qi−1) ≥ G(di, qi) − G(di, qi−1). Given that LDIC holds, according to
(7), we have G(di, qi) − G(di, qi−1) ≥ pi − pi−1. From these two inequations,
we get

G(di+1, qi)−G(di+1, qi−1) ≥ pi − pi−1. (9)

Based on (9) and the LDIC definition between type (i+1) and type i contracts,
we have

G(di+1, qi+1)− pi+1 ≥ G(di+1, qi)− pi

≥ G(di+1, qi−1)− pi−1.
(10)

The inequation (10) can be extended to prove that all the DICs do hold, i.e.,

G(di+1, qi+1)− pi+1 ≥ G(di+1, qi−1)− pi−1 ≥ ...

≥ G(di+1, q1)− p1, i ∈ {1, 2, ..., N − 1}.
(11)

Hence, we come to the conclusion that all the DICs hold and can be reduced.
The feature that all the UICs hold can be proved in a similar way.

Lemma 4 All the LDICs are binding at the optimal contracts obtained from
problem (4).

Proof For the contract designed for type i vehicles, an LDIC is not binding,
when G(di, qi) − pi > G(di, qi−1) − pi−1. Under this condition, the service
provider can adapt the contract by raising all pj (j ≥ i) to make the LDIC
binding. This method can improve the maximum utility of the provider while
not affecting the LDICs for the contracts of the other types of vehicles.

The fact that all the LDICs are binding for the optimal contracts, together
with the monotonicity proved in Lemma 1, leads all the LUICs to be satisfied
[34]. Thus, we can rewrite optimization problem (4) as

max
{pn,qn}

U ′
SP =

N∑
n=1

γn(pn − cqn)

s.t. C1 : G(d1, q1)− p1 = 0
C2 : G(di, qi)− pi = G(di, qi−1)− pi−1, 1 < i ≤ N
C3 : 0 ≤ q1 ≤ q2 ≤ ... ≤ qN
C4 : 0 ≤ qi ≤ di, i ∈ N
C5 : pi ≥ 0, i ∈ N

. (12)

Let ∆k = G(dk, qk)−G(dk, qk−1), where 1 < k ≤ N and ∆1 = 0. Combin-
ing constraints C1 and C2 in (12), pi can be expressed as

pn = G(d1, q1) +
n∑

k=1

∆k, n ∈ N . (13)
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Now replacing pn in (12) with (13), the objective function can takes the form

max
{qn}

U ′
SP =

N∑
n=1

γn(G(d1, q1) +
n∑

k=1

∆k − cqn)

= G(d1, q1)
N∑

n=1
γn −G(d2, q1)

N∑
n=2

γn

+G(d2, q2)
N∑

n=2
γn −G(d3, q2)

N∑
n=3

γn + ...

+G(dN−1, qN−1)
N∑

n=N−1

γn −G(dN , qN−1)γN

+G(dN , qN )γN + c
N∑

n=1
γnqn

. (14)

Then (12) can be rewritten as follows, where the value of the objective function
is only determined by the variable set {qn}.

max
{qn}

U ′
SP =

N∑
n=1

{G(dn, qn)
N∑
i=n

γi

−G(dn+1, qn)
N∑

j=n+1

γj − cγnqn}

s.t. C1 : 0 ≤ q1 ≤ q2 ≤ ... ≤ qN
C2 : 0 ≤ qi ≤ di, i ∈ N

. (15)

Let Sn = G(dn, qn)
N∑
i=n

γi −G(dn+1, qn)
N∑

j=n+1

γj − cγnqn. The objective

function of (15) can be presented as U ′
SP =

∑N
n=1 Sn. As Sn is independent

from Si, n ̸= i, and Sn is only related to the amount of computation resources
qn, the optimal {q∗n} that maximizes U ′

SP can be obtained separately by letting
q∗n = argmaxqnSn.

Lemma 5 If (dn+1 − dn)/dn > γn/
∑N

i=n+1 γi, Sn is a concave function in
terms of qn, n ∈ N .

Proof We have ∂2Sn/∂q
2
n = ((dn+1−dn)

∑N
i=n+1 γi − dnγn)α

2λ/(αqn + β)2d0.

If (dn+1−dn)/dn > γn/
∑N

i=n+1 γi, we can get ∂2Sn/∂q
2
n > 0, which indicates

that Sn is a concave function.

According to Fermat’s theorem, q∗n can be derived by solving ∂Sn/∂qn|qn=q∗n
=

0. Considering constraint C2 in (15), if the obtained q∗n is a negative number
or exceeds dn, q

∗
n should be set as 0 or dn. Here q∗n = 0 means that the contract

is set to {0, Na}. According to this contract, there is no computation offloading
between type n vehicles and the VEC servers.

Besides constraint C2, the obtained optimal q∗n should satisfy constraint C1
of (15). As each q∗n is derived separately from the corresponding Sn, there may
exist some sub-sequences not following the increasing order, which is described
in constraint C1. Noting that when {Sn, n ∈ N} are concave functions, the
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Algorithm 1 The substitution algorithm for the infeasible sub-sequences.
Initialization: Let q∗n = argmaxqnSn, n ∈ N .
1: while The set {q∗n} is not in the increasing order, do
2: In the set {q∗n}, search for the infeasible sub-sequence {q∗i , q∗i+1, ..., q

∗
j }, where q∗i ≥

q∗i+1 ≥ ... ≥ q∗j , 1 ≤ i < j ≤ N ;

3: Set q∗k = argmax{q}
∑j

x=i Sx(q), k ∈ {i, i+ 1, ..., j};
4: end while
5: return The feasible set {q∗n}, n ∈ N .

problem of these infeasible sub-sequences can be solved by an iterative substi-
tution algorithm, which is presented as Algorithm 1 [32].

Based on the derived feasible optimal computation resources {q∗n}, we can
get the corresponding payments {p∗n} through (13). Thus, we can obtain the
optimal contract set {q∗n, p∗n} under the condition that {Sn} are concave func-
tions. If the concave condition is not satisfied, we can first solve the optimiza-
tion problem (12) without constraint C3 by using Lagrange multiplier. Then,
we can check whether the solution to this relaxed problem satisfies constraint
C3.

5 Computing Resource Management for Task Offloading

Considering the different delay tolerances of the vehicular computation tasks
and the mobilities of the vehicles, there may exist different set of optional
VEC servers, which can be chosen as the offloading target by each type of
vehicles. Furthermore, various locations and computing capabilities of the VEC
servers make them heterogeneous available cloud resources to different types
of vehicles. To ensure efficient utilization of the VEC resources, in this section ,
based on the obtained optimal offloading contracts, we further propose efficient
VEC offloading schemes that decide which VEC servers are chosen by each
type of vehicles and how much computing resources are allocated to execute
the vehicular applications.

5.1 Characteristics of various offloading types

In a practical scenario, the sum of the task offloading demands from the ar-
riving vehicles is a variable. The resource requirement of the demands may
exceed the total computation resource of the MEC servers. Thus, a practical
implementation of the contract-based offloading scheme is required.

Theorem 1 According to the optimal contracts {q∗n, p∗n}, the revenue gained
by the service provider from offering a unit resource to serve a lower type
vehicle is more than utility gained from a higher type vehicle.

Proof Let u(n) denote the revenue of the service provider, which is gained
from offering a unit resource to offload the task of a type n vehicle. Here, we
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have u(n) = (p∗n − cq∗n)/q
∗
n. Thus, we get the difference between u(n+ 1) and

u(n) as

D = u(n+ 1)− u(n) = p∗n+1/q
∗
n+1 − p∗n/q

∗
n. (16)

Using (13), we have q∗np
∗
n+1−q∗n+1p

∗
n = q∗n(G(d1, q

∗
1)+

∑n+1
k=1 ∆k)−q∗n+1(G(d1, q

∗
1)+∑n

k=1 ∆k) = (q∗n − q∗n+1)(G(d1, q
∗
1) +

∑n
k=1 ∆k)− q∗n∆n+1. Due to the mono-

tonicity proved in Lemma 1, we have q∗n < q∗n+1. Thus, we get∆k = G(dk, q
∗
k)−

G(dk, q
∗
k−1) = λdk

d0
ln(

αq∗k+β
αq∗k−1+β )+(1−λ)e0(q

∗
k−q∗k−1) > 0, k = {1, 2, ..., n, n+1}.

Then, we can find q∗np
∗
n+1 < q∗n+1p

∗
n, and come to the conclusion that u(n+1) <

u(n).

Theorem 1 indicates that the vehicles of lower type should be served with
a higher priority, so as to make the limited resource more profitable.

Due to their mobility, the vehicles may reach different RSUs at different
times as they move along the road. Since both the vehicles’ traveling and
the computing execution cost time, there exits a VEC server for each type of
vehicles, which is the last server on the road that the vehicles can offload tasks
to under the delay constraints of the vehicular applications. We denote the id
of the last VEC server for type n vehicles as mmax

n . The definition of mmax
n is

given as

mmax
n = argmax

k

(
k∑

m=1

Rm/h+ dn/q
∗
n ≤ tmax

n

)
, n ∈ N . (17)

Theorem 2 For the vehicles traveling in the same direction, under the con-
cave condition stated in Lemma 5, the last VEC server of the higher type
vehicles is farther than that of the lower type ones.

Proof According to Lemma 5, Sn is a concave function, and the optimal
amount of the computation resources provided for a type n vehicle can be
obtained by solving equation ∂Sn/∂qn|qn=q∗n

= 0. Substituting G(dn, qn), we

have αλ(dnγn+
∑N

j=n+1 γj(dn − dn+1))/d0γn(c+(1−λ)e0) = αq∗n+β. Let Q =

βd0(c+(1−λ)e0)/α. Thus, we get q
∗
n = β(λ(dn+

∑N
j=n+1 γj(dn − dn+1)/γn)−

Q)/αQ. Given the optimal VEC computation resources for each type of ve-
hicles, the difference between the VEC execution time of a type n task and
a type n + 1 task can be written as ∆t = dn/q

∗
n − dn+1/q

∗
n+1. Here, we have

∆′
t = q∗n/dn − q∗n+1/dn+1 = β

αQ{λγn+1(1 − dn+1/dn)/γn − λ
∑N

j=n+2 γj(1 −
dn+2/dn+1)/γn+1 + λ

∑N
j=n+2 γj(1− dn+1/dn)/γn + Q/dn+1 − Q/dn}. Since

dn+1 > dn, we have λγn+1(1 − dn+1/dn)/γn < 0 and Q/dn+1 − Q/dn < 0.

Then, we focus on the remain part of ∆t, which is given as λ
∑N

j=n+2 γj((1−
dn+1/dn)/γn − (1 − dn+2/dn+1)/γn+1). According to the concave condition
stated in Lemma 5, we find (dn+1 − dn)/dn > (dn+2 − dn+1)γn/dn+1γn+1.
Thus, the remain part is negative. Since β

αQ > 0, we get ∆′
t < 0 and ∆t > 0,

which means that the VEC execution time of the higher type vehicles is less
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than that of the lower type ones. Thus, under the delay constraints of vehicu-
lar applications, the maximum available travel time for lower type vehicles is
shorter than that of the higher type ones. Thereafter, the last VEC server of
the lower type vehicles is closer to their starting point.

5.2 VEC Server Selection and Computing Resource Allocation Schemes

The delay in the VEC offloading process is the sum of two components: the
vehicle travel time and the computation execution time. Under the offloading
delay tolerance of each type of applications, the tolerance in the acceptable
delay due to the travel can be higher because of the savings in computation
time. Thus, the range of the available VEC servers for vehicles can be extended
by providing the vehicles with additional computing resources.

Lemma 6 For type n vehicles (n ∈ N ), with the additional computing re-
source ∆r,n apart from the optimal contract resource q∗n, they can choose to

offload to a VEC server with index no more than mmax′

n .

Proof Due to the rationality of the VEC service provider, the provider’s rev-
enue should be nonnegative with the extra resource allocation, i.e., p∗n −
c(q∗n +∆r,n) ≥ 0. Considering the total time cost of the VEC offloading pro-

cess with the additional resource, we have dn/(q
∗
n + ∆r,n) +

∑mmax′
n

j=1 Rj/h ≤
tmax
n , and here mmax′

n is the extended last VEC server that type n vehi-
cles can offload to. Combining the above two inequalities, we get mmax′

n =

argmax
k

(∑k
m=1 Rm/h+ dnc/p

∗
n ≤ tmax

n

)
.

Although a lower type vehicle brings more revenue to the provider than a
higher type one, which is stated in Theorem 1, a unit computing resource allo-
cated to lower type vehicles may not always generate more revenue than being
allocated to higher ones with the providing of additional resources. However,
there exists relationships of the revenues gained from the vehicles of different
types under a given condition.

Lemma 7 Given the allocated additional computing resources ∆r,n, if the rev-
enue p∗n/(q

∗
n +∆r,n) gained from providing a unit resource to type n vehicles

is higher than that gained from a unit resource providing to type m vehicles
(m > n, m,n ∈ N ), serving type n vehicles is more profitable than serving
type m vehicles with additional resources.

Proof Given p∗n/(q
∗
n + ∆r,n) > p∗m/q∗m, since ∆r,m > 0, we have p∗m/q∗m >

p∗m/(q∗m +∆r,m). Thus, there has p∗n/(q
∗
n +∆r,n) > p∗m/(q∗m +∆r,m).

With the additional allocated computing resources, the vehicles can offload
their tasks to more distant VEC servers as long as the delay constraints of
their tasks can be satisfied. As a result, more cloud resources can be utilized.
Considering the limited computing capacity of each VEC server, to raise the
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VEC provider’s revenue, the computing resources should be allocated to more
profitable vehicle. When several types of vehicles want to offload their tasks
to the same VEC server, a collision occurs. Thus, a VEC computing resource
management is required.

Here we propose a contract-based efficient VEC server selection and cloud
computing resource allocation scheme for the vehicles. According to Theorem 1
and Theorem 2, the lower type vehicles are more profitable and their available
VEC servers are nearer to the starting point of the traveling vehicles. There-
fore, in the proposed scheme, the computing resource management begins from
the VEC servers located nearest to the starting point, and the computing re-
sources are first allocated to the lowest type vehicles. In the system model, the
road is bidirectional, and there are vehicles traveling in opposite directions.
Thus, the starting points of the road from both sides need to be considered.
When there is a competition for the same VEC resources between different
types of vehicles, a revenue comparison is adopted to decide the resource sub-
scribers. The details of the proposed VEC resource management scheme are
described in Algorithm 2.

Algorithm 2 The contract-based VEC resource management algorithm.
Initialization: The arriving vehicles Q1 and Q2; The computation task Tn = {dn, tmax

n },
n ∈ N ; The available computation resource {bm} for MEC server m, m ∈ M.

1: Derive the optimal contract set {q∗n, p∗n} (n ∈ N ) following the steps described in Section
IV;

2: Obtain the maximum id mmax′
n (n ∈ N ) with the additional allocated VEC resources

according to Lemma 6;
3: For j = 1 : 1 : ⌈M/2⌉ do
4: Loop

5: Based on mmax′
n (n ∈ N ), obtain the set of candidate vehicle types for offloading

tasks to server j (server M − j + 1), which is denoted as Setj (SetM−j+1).
6: Compute the revenues gained from providing a unit VEC resource to the types of

vehicles belonging to the sets Setj (SetM−j+1).
7: Searching from the lowest type vehicles in set Setj (SetM−j+1), find type n∗

1 (n∗
2),

which brings the highest revenues to server j (server M − j + 1).
8: Allocate VEC resource to type n∗

1 (n∗
2) vehicles from server j (server M − j + 1).

9: Update the remain computation resources bj of server j (bM−j+1 of server M −
j + 1).

10: Remove the type of vehicles, whose offloading requirements have been fully satis-
fied, from Setj (SetM−j+1).

11: If Setj == ∅ || bj == ∅ (SetM−j+1 == ∅ || bM−j+1 == ∅) then
12: End loop;
13: End if
14: End loop
15: End For

6 Numerical Results

In this section, we evaluate the proposed contract-based VEC computing re-
source management schemes. We consider a scenario where M = 6 RSUs ran-
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Fig. 2 The revenues of the service provider with different schemes.

domly located in a bidirectional road. The computing resources of these VEC
servers are randomly distributed within the range of (100, 500) units [47]. For
each RSU, the cost for computing for a unit resource is set c = 0.3. There are
100 arriving vehicles on the road, and they run at the speed 100 km/hr. The
vehicles choose the directions of travel with equal probabilities. The arriving
vehicles are classified into N = 5 types in terms of their computation tasks
with the probabilities γ = {0.17, 0.23, 0.28, 0.18, 0.16}. For each type of vehic-
ular computation tasks, the resource requirement is d = {12, 13, 15, 18, 21},
respectively.

Figure 2 evaluates the performance of the proposed contract-based com-
puting resource management scheme. In the resource allocation process of
this scheme, both the delay tolerance and the priorities of different types of
vehicles are considered. In addition, the additional VEC resources provid-
ing strategies are adopted to further improve cloud utilization. We compare
the performance of our proposed scheme with two other schemes. One is the
contract-based scheme without additional resource allocation. The other is the
non-contract scheme adopting fixed offloading payment of the vehicles. It can
be seen that both the contract-based schemes yield higher revenues to the
VEC service provider than the fixed payment one. The reason is that in the
contract theoretic approach, each contract is designed for the corresponding
computation task type. Thus, the revenues gained from providing offloading
service to the vehicles can be improved by making the LDICs binding as de-
scribed in Lemma 4. Furthermore, we can find that the revenues obtained by
our proposed scheme is higher compared to the contract-based scheme with-
out additional resource. This can be explained as follows. Due to the vehicles’
travel time cost, the computing resources of the VEC servers far away from the
road starting points can not be used by the vehicles within the delay tolerance
of the vehicular applications. However, through the adoption of our proposed
additional resource allocation, the range of the available VEC servers for the
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vehicles has been extended. Thus, more VEC resources can be utilized, which
brings higher revenue to the service provider.

Figure 3 shows the computing resource utilization rates of different VEC
servers adopting various resource allocation schemes. Here, the vehicles trav-
eling from server 1 to server 6 is denoted as set Q1 with the vehicle number
Q1 = 50. Due to its proximity to the starting point of vehicles Q1, server 1 can
be chosen as the available server by all types of vehicles. Thus, the resource
utilization of server 1 is always close to 1. In contrast, server 6 is the farthest
one from Q1, but the nearest to the starting point of vehicles Q2, which travel
in the opposite direction of Q1. When the number of vehicles Q2 is small,
the resource utilization of server 6 is low, since the long travel delay obstructs
vehicles Q1 to offload tasks to server 6 under delay constraints. In this case, by
implementing our proposed Additional Computing Resource (ACR) scheme,
server 6 is turned to be an available offloading target of Q1 with the extended
traveling delay tolerance. As a result, the resource utilization of server 6 im-
proves. Server 3 is located in the middle of the road. Thus, a large part of the
low type vehicles can not offload tasks to this server by adopting the scheme
without ACR. However, as can be seen from Figure 3, our proposed ACR
scheme greatly increases the utilization rate of server 3 with an average rate
of 24.9%.

Figure 4 indicates the revenues of the VEC service provider gained from
executing an offloading task to a unit resource. We can see that by utilizing a
unit computing resource, the provider gains higher profit from offloading tasks
of the lower type vehicles. This result corroborates Theorem 1. In addition, the
revenue gained from each type of vehicles first increases and then decreases.
This can be explained as follows. According to Theorem 1, the revenues gained
from running a task Ti on a unit resource is defined as u(i) = pi/qi − c. In the
contract-based offloading scheme, the provider raises price pi to gain higher
profit with the growth of cost c. To cope with the increasing price, vehicles
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will reduce the offloading resource consumption qi. The rate of the demand
reduction is higher at lower c.

Figure 5 shows successful rate of computation offloading service for vehic-
ular applications in the cases with different numbers of vehicles traveling in
the opposite directions. It can be seen that the rates improve with increase
in the speed of the vehicles, in all cases, until the rates reach their maximum
thresholds. In addition, we can see that in the case where the distribution of
the vehicles’ travel directions is more dispersed, the maximum threshold is
reached at a slower speed. With a higher speed, vehicles can access more VEC
servers within their task delay constraints. Thus, they have more chances to of-
floading their computation task. When the speed is higher than the threshold,
which enables the vehicles to offload tasks to the farthest servers, the success-
ful rate will not increase with the speed acceleration. In the case where the
vehicles are more dispersed, the average distance between the farthest VEC
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server and the starting points of the traveling vehicles is shorter. Thus, the
speed threshold is lower in this case.

7 Conclusion

In this paper, we have presented a vehicular edge computing framework for
studying computation offloading process. By implementing contract-theoretic
approach, we design optimal computation offloading strategies for the cloud
service provider in terms of computing resource allocation and service pricing.
To further improve the utilization of the edge cloud servers while maximizing
the revenues of the service provider, we propose an efficient cloud resource
management scheme with offloading priority distinction and additional re-
source allocation. Numerical results demonstrate that our proposed schemes
greatly improve the performance of the vehicular application offloading pro-
cess.
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