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Abstract. We show how to represent a non-linear equation over GF(2)
using linear systems with multiple right hand sides. We argue that this
representation is particularly useful for constructing equation systems
describing ciphers using an S-box as the only means for non-linearity.
Several techniques for solving systems of such equations were proposed
in earlier work, and are also explained here. Results from experiments
with DES are reported. Finally we use our representation to link a par-
ticular problem concerning vector spaces to the security of ciphers with
S-boxes as the only non-linear operation.
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1 Introduction

For the last years, most of the activity in cryptanalysis has been focused on
algebraic attacks and solving non-linear equation systems. Several interesting
properties and observations have been found and studied, and techniques for
solving equation systems associated with a cipher have been proposed. So far
there is no method for solving such systems which stands out as the “best” way
to solve non-linear systems, the structure of the system plays a part. Moreover,
it may be difficult to implement the ideas on a large system in practice, normal
computers run out of memory too fast, see [IJ.

The traditional way of representing an equation has been by the use of a
multivariate polynomial (MP) written in algebraic normal form (ANF). In [2]
systems representing the block cipher DES are studied, and the authors propose
to convert them to SAT-problems and use SAT-solvers. In this paper we will
look at another way of representing non-linear equations, and with it follows
new ways for solving systems of these equations. These methods were recently
presented in [3], and earlier versions can also be found in [4] and [5].

We will use these techniques on systems representing the DES cipher for
various rounds to see how they do in practice. As a side effect of our view on the
equations we also discover a simply stated problem which makes a foundation
of the security of a specific class of ciphers, in the same way as factoring is a
fundamental problem for the security of RSA and finding discrete logarithms is
a basis for the security of Diffie-Hellman key exchange.
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The paper is organized as follows. In Section 2 we describe the way we rep-
resent equations, and show that systems coming from ciphers where the only
non-linear part is the use of an S-box are easy to construct and are particularly
suited for this representation. In Section 3 we describe some of the methods we
have developed for solving our equation systems, and in Section 4 we try them on
systems constructed from the DES cipher. In Section 5 we describe a problem,
which must be hard to solve in order for the AES (among other ciphers) to be
secure. Conclusions are made in Section 6.

2 MRHS Equation Systems

All variables in our equations will be over GF(2). In most of the literature on
algebraic cryptanalysis a non-linear equation over GF(2) is represented as a MP
f(x1,...,@n) = 0. The set V(f) = {(z1,...,2)|f(21,...,2,) = 0} is the set
of satisfying assignments of f, and is what really defines the constraints the
equation puts on the solution. Instead of the representation using MP, we will
write a linear system with Multiple Right Hand Sides (MRHS) to describe the
constraints:

AX:[bl,...7b5], (].)

where A is a (k x n)-matrix of full rank and the b;’s are vectors of length k over
GF(2). A vector x satisfies ({l) if Ax = b; for some ¢. For shorter notation we
will usually write an equation as Ax = [B], where B is a matrix with the b;’s as
columns. We keep square brackets around B to underline that the equation is
not to be understood as a normal matrix/vector product where B is the product
Ax, but rather that Ax can be any column of B.

2.1 MRHS Equations vs. MP Equations

Tt is rather straight-forward to map between polynomial equations f(x) = 0 and
MRHS equations Ax = [B]. Given a MRHS equation E we may construct the set
V of points in GF(2)"™ that satisfy E. This can be done by getting the solutions
to the ordinary linear system Ax = b; and take the union of these solutions for
t =1,...,5 as V. Then we may use a method like Lagrange interpolation to
construct an f with V(f) = V. Both f and E will then give the same constraint
on the solution space.

Conversely, given f(x) = 0, we may compute V(f) = {by,...,bs}, and create
the MRHS equation I,,x = [by, ..., bs]. As we will see, this way of creating a MRHS
equation is not optimal, we should take advantage of any linearity inherent in f.

We show this with a small example. Suppose we are given the polynomial
equation

flx1, 22, 23,24, T5) = T102 + 125 + T223 + 2325 + 24 = 0. (2)

Writing the MRHS equation as Isx = [by,...,bs] we get s = 16 possible right
hand sides. However, if we notice that (2) can be factored as (z1 +x3)(z2 +x5) +
x4 = 0 we can set up the MRHS equation
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which gives the same constraint, but only has four possible right hand sides.

2.2 MRHS Equations from Ciphers

We will now show that MRHS representation of equations is very well suited
for algebraic cryptanalysis of ciphers where the only source of non-linearity is
the use of S-boxes. We call this class of ciphers S-bozx based ciphers. This class
contains the most important block cipher, the AES [7], as well as several other
well known ciphers, like DES [8], Serpent [9], Noekeon [10], etc.

Suppose we are looking at the AES and want to construct a system of equa-
tions describing the cipher. In order to keep equations small enough to handle
we need to introduce variables in each round. Let us say the bits in the cipher
block right after one application of SubBytes are z1, ..., x125 and that the bits
in the cipher block after the next application of SubBytes are y1, ..., y128. Look
at the first of the S-boxes used between x and y. The bits input to this S-box
will be Iy (x)+k1, ..., ls(x)+ ks, where k; are the first eight bits of the round key
used in this round, and the [; are linear combinations using 32 of the x-variables
coming from ShiftRows and MixColumns. The bits at the output of this S-box
will be y1,...,ys. We can now set up the MRHS equation for this S-box as

[11(x) + k1]

lg(X).-ﬁ-kg _ 0 1 ... 255 (3)
Y1 ~1S(0) S(1)...5(255) |’

o

where both ¢ and S(i) are written as 8-bit vectors. This equation has the 256
possible input/output combinations of the S-box as right hand sides and is a
compact representation of the constraints imposed by the S-box when linking
the x and y variables.

To construct MRHS equations in a general S-box based cipher, we will in-
troduce variables between applications of S-boxes, so that the input and output
bits of each S-box are linear combinations of variables and constants. The ma-
trix A will have these linear combinations as rows and the columns of B will
be the possible input/output combinations for the S-box. Setting up an MRHS
equation system describing a complete S-box based cipher is then easily done by
constructing one equation for each S-box used in the cipher.

Note that apart from linear combinations of variables, there is no need to
compute MPs. The MRHS equations are constructed directly from the cipher
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specifications. The size of the system depends only on the size and the number
of S-boxes, and not on the degree of MPs defining the S-box or on diffusion
properties of the linear operations in the cipher.

3 Techniques for Solving MRHS Equation Systems

In this section we will explain some techniques for solving an MRHS equation
system. To make the presentation of this simpler, we first make a note on the
number of columns in the A-matrices appearing in the MRHS equations in the
system.

When setting up an MRHS equation system

A1X: [31}7...7AmX: [Bm], (4)

it is usually the case that the total number of variables in the system is quite
large, but that any individual equation only involves a small subset of those
variables. When writing an equation A;x = [B;], it is always assumed that
x = (71,...,2,)T, where n is the total number of variables in the system. This
is done by inserting 0-columns in A; for variables not occuring in the equation,
such that the A;-matrices all have exactly n columns.

A solution to (@) will be an x-vector such that the product A;x is a column
found in By, for all ¢ = 1,...,m. One can say that the solution picks out the
correct right hand side in each B;, and that the other columns in B; are wrong.
The main strategy we use for trying to solve a system like (@) is to identify
columns in B; which can not be the correct right hand side for a solution, and
delete them. If we are able to delete all wrong columns from each B; we will be
left with an ordinary system of linear equations (with only one right hand side),
which can be easily solved.

The methods described below were all presented in [3], but we repeat them
here for completeness since this work is quite recent and not well known.

3.1 Agreeing

This is the core method we use for finding right hand sides in equations that can
not possibly be correct. This is done by looking for inconsistencies in a pair of
equations and is done as follows. Let the equations A;x = [B;] and A;x = [B)]
be given. By concatenating A; and A; on top of each other and expanding the
columns in B; and B; with zeros we get the following identity:

o= 18]+ 15

The possible right hand sides for the concatenated equation are made by picking

one column from [%} and one column from [ B(’) } and adding them. Compute
J

U such that C = U [A’} is upper triangular, and let T; = U [B;’

A, } and T =
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U [ BP] . By multiplying through with U we get the equation Cx = [T}] + [T}].
j

If {jz does not have full rank the last » > 0 rows of C will be all-zero.
We orjﬂy proceed if this is the case. Since the last r rows of C are all-zero,
only columns from T; and 7} that are equal in the last r coordinates can be
added to make a possible right hand side for C'x, other choices would lead to an
inconsistent system. Let Pr; and Pr; be the projection of T; and T} onto the last
r coordinates, repectively. Any column in T; whose projection is not found in
Pr; can not come from the correct column in B; since adding it to any column
of T; will produce a right hand side inconsistent with Cx. The same applies to
T}, so all columns in T; and T} whose projections are not in Pr; N Pr; will always
create an inconsistency and the corresponding columns in B; and B; are wrong
and can be deleted. An example of agreeing two MRHS equations can be found
in the Appendix.

Agreeing pairs of equations may cause a domino effect of deletions of right
hand sides. For example, say that no deletions occur when agreeing equations F4
and Fs, but that deletions occur in Fs when agreeing it with 3. These deletions
may cause F1 and F5 to disagree, so deletions will now occur in F; when agreeing
it with E5. These deletions may again trigger deletions in other equations, and
so on. We run agreeing on every pair of equations in the system until no more
deletions occur and all pairs of equations agree. We call this process the agreeing
algorithm.

3.2 Extracting Linear Equations

The agreeing algorithm itself is normally not strong enough to solve a system
of MRHS equations. When all pairs of equations agree but there still are many
wrong right hand sides in the equations we may check to see if it is possible
to squeeze ordinary linear equations out of them. This method is applied to
equations individually and is done as follows.

Consider the equation Ax = [B]. Compute U, such that UB is upper trian-
gular and transform the equation to UAx = [UB]. Assume the last » > 0 rows
of UB are all-zero, and let the r last rows of UAx be ly,...,l.. All columns in
B have 0 in the last r coordinates, so the correct column in particular have 0 in
the last r coordinates. We then know the r linear equations Iy = 0,...,l, =0
must be true.

It may also be possible to make one more linear equation from the MRHS
equation. We check if the all-one vector is found in the space spanned by the
rows of B. This is easy to do, we may add the all-one vector to B and see if
the rank of the resulting matrix increases by one, and can be done even faster
when we have a basis for the row space of B in triangular form, as in UB. If we
find that vB = 1 for some v, we know with certainty that the linear equation
vAx = 1 is true. An example of extracting linear equations is found in the
Appendix.
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The linear equations produced this way can be used to eliminate variables in
the system. As variables are eliminated, the rank of some of the A-matrices in
the equations may not be full anymore. When this happens, we can find a vector
v # 0 such that vA = 0, and we can compute u = vB. Columns in B found
in positions where u has a 1-bit would lead to an inconsistent system, and can
safely be removed as wrong columns. In this way, finding linear equations will
also help to identify wrong columns and bring a solution to the system closer to
the surface.

3.3 Gluing

When the agreeing algorithm works, it is because the spaces spanned by the
rows of the A-matrices in some equations overlap in non-trivial common sub-
spaces. When the agreeing algorithm stops, and no more linear equations can be
extracted, we may try merging several equations into one. The spaces spanned
by the A-matrices of the resulting equations will be larger, and hopefully have
more overlap among them, so some new disagreements can be created. When
merging two equations we say we glue them together.

When gluing two MRHS equations A;x = [B;] and A;x = [B,] together into a
new equation Ax = [B], much of the same steps as with agreeing are taken. The
matrices A; and A; are concatenated, and the matrix C' and the two expanded
sets of right hand sides 7T; and T} are computed as explained under agreeing.
Assume the last r rows of C' are all-zero rows. We now create the columns in
B by xoring every pair of one column from 7; and one column from 7; that
are equal in the last r coordinates. The last r (all-zero) coordinates of the sum
should be removed. The matrix A of the glued equation will then be C' with
the last r all-zero rows removed. The two equations we started with are now
redundant and can be removed since all information contained in them is kept
in the glued equation. Gluing reduces the number of equations in the system.

Let us say that the number of right hand sides in the equations B; and B; are

s; and s, respectively. Let u = (uo, ..., u2r—1) be a vector of integers where uy,
is the number of columns in 7; that have the binary representation of & in the
last r coordinates. Let v = (v, ..., v2r_1) be the same kind of vector for T;. The

number of right hand sides in B will be the inner product u-v = Zi;gl UV -
In general, the number of right hand sides in B will be much larger than s; + s,
and in the case r = 0 it will simply be s;s;.

Assume we have three MRHS equations E7, Fo, F5 that all pairwise agree.
If we glue £ and Es into E it may be the case that F and E3 do not agree,
and that right hand sides will be removed from FE3 when agreeing it with FE.
What we are really doing is searching for inconsistencies across all three initial
equations, and not only two as with ordinary agreeing. When gluing several
equations together we will increase the probability of creating disagreements,
which again will reduce the number of right hand sides.

In fact, if we could glue all equations in a system into one big MRHS equation,
we would actually solve the system. What prevents us from doing that in practice
is the fact that the number of right hand sides in a glued equation is (much)
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bigger than the number of right hand sides in the two equations we started with,
assuming they agreed. In practice we have to set a limit on the number of right
hand sides we are capable of storing in one MRHS equation. For the system to
be solvable by gluing it is then necessary that enough disagreements occur after
intermediate gluings so this threshold is never passed.

We will return to the scenario of gluing all equations in a system in Section 5.

3.4 A Complete Algorithm for Solving a System of MRHS
Equations

When all pairs of equations agree, no linear equations can be extracted and we
can not afford to glue any equations together, the last resort is to guess on the
value of one variable, or a sum of variables. Guessing on the sum of some variables
has the same effect as taking a linear equation and eliminating a variable with
it. The sum of variables to be guessed could be one of the vectors occurring in
the span of the rows of some A-matrices, in order to make sure some deletions of
right hand sides occur. In the case for systems constructed from ciphers, it is a
good idea to guess on the value of some of the user-selected key bits since these
variables are special. If the value of the key bits are substituted into the system
it will collapse; the rest of the system will be solved by simple agreeing alone.

We present here an algorithm where we try to find how few bits of information
we need to guess in order to solve a system of MRHS equations. We call this the
FewGuess algorithm, and the idea is to only guess one bit of information when
all else has been tried. The maximum number of right hand sides we will handle
in one equation is S. After each step in the algorithm we check if the system has
been solved or become inconsistent, and exit with the number of guesses made
if it has.

FewGuess

1. Run the agreeing algorithm.

2. Try to extract linear equations. If any linear equations were extracted, elimi-
nate variables and go back to 1.

3. Glue together any pair of equations where the number of right hand sides in
the glued equation is < S. If any gluings occurred go back to 1.

4. Guess on the value of a linear combination of variables, eliminate one variable
and go back to 1.

This algorithm is designed to find how few bits we need to guess in order
to determine whether a guess was right or wrong, and is not very efficient in
terms of running time. After running this algorithm we know a set of linear
combinations of variables to be guessed, and we know in which order equations
were glued together. To set up a key recovery attack, we should first make all
the guesses at once. Then we should glue together equations in the order given
by our algorithm, and possibly run agreeing and extract linear equations first if
some gluings will break the limit S.
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If we need to guess b bits of information the complexity for solving a system
will be of the order 2°, multiplied with a constant that depends on S. This
constant will be the complexity of running the agreeing algorithm, extracting
linear equations and gluing together equations. These are not trivial operations,
and implementing them in the most efficient way is a difficult task in itself.
We will not investigate the complexities and the implementation issues of these
operations here, but rather focus on the number of bits of information needed
to guess in order to solve a system.

4 Experiments with DES

Inspired by the work in [2], we have constructed the MRHS equation system
representing DES for various number of rounds, and tested the methods for
solving described in the previous section. We assume the reader is familiar with
the basic structure of DES, we repeat here the features that are most important
for the construction of the MRHS equation system.

4.1 Constructing Equations

DES is a Feistel network, with a round function that takes a 32-bit input and
a 48-bit round key to compute a 32-bit output. The bits of the round keys in
DES are selected directly from the 56 user-selected key bits, so we need only
56 variables to represent the round keys. The only non-linear operation in DES
is the use of the eight S-boxes in each round. We construct the equations as
explained in Section 2221 so we need that the bits at the input and output of
each S-box can be written as a linear combination of variables and constants.
We give variable names to the bits going into the round function in each round,
except for the first and last rounds. The inputs of the first and last rounds are
parts of the plaintext and ciphertext, considered constants in a cryptanalytic
attack. The input and output bits of all S-boxes can then be expressed as linear
combinations of variables and constants.

The number of variables in a system representing an r-round version of DES
will be 56 + 32(r — 2). Each S-box gives one MRHS equation, so the system
will consist of 87 equations. The S-boxes used in DES all take 6-bit inputs and
produce 4-bit outputs. The A-matrix in each equation will thus consist of 10
rows, and the B-matrix will have 64 columns, one for each possible S-box input.

4.2 Results

We have tried the FewGuess algorithm on systems representing DES with a
various number of rounds to see how few bits that were needed to guess in order
to solve a system. The 56 key-variables are special, once these are determined
the values of the other variables will be given by the system straight away. It is
therefore natural to guess on the key variables when we need to guess since we
know that at most 56 guesses are needed.
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Table 1. Number of guesses needed to solve DES systems

7 of rounds guessing most used guessing k1, k2, . ..

4 3 3

5 26 17
6 34 28
7 38 38
8 38 38
10 38 38
12 38 38
16 41 38

Table 2. Number of key variables needed to guess for various limits S

S # of guesses

28 48
212 45
216 41
220 36

The order of the variables to be guessed also plays a part. Since some key bits
appear in round keys more often than others in DES, we tried the strategy of
guessing on the most used key variables first, in the hope that eliminating these
variables would create a bigger impact on the system. We also tried guessing the
key bits in the order 1,2,3,... to see if there was a difference. The maximum
number of right hand sides we would allow in one equation was set to S = 2'8.
The results were as follows.

As can be seen, the order in which the variables are guessed makes a difference,
and it is not the greedy approach of guessing the most used variables first that
is most efficient. A reason for this can maybe be found in the key schedule of
DES. The key schedule is designed such that the key bits occuring in the inputs
of the S-boxes S; - Sy are all taken from ky, ..., kos. When these key bits are
guessed, the inputs to S; - Sy in the first and last round will be known. This
will immediately give the value of 32 of the variables entering the second and
the second to last rounds. When guessing on the most used key variables the
guesses will be spread out over all 56 key variables and more guesses are needed
before the values of all key variables entering one S-box are known.

Of course, the number of guesses increases with the number of rounds and it
is necessary to guess 38 key variables to break seven rounds of DES this way.
However, the number of guesses to break more rounds does not increase from
38, at least when guessing in the increasing order. It is natural to believe the
number 38 is linked to the limit S = 2'® since 18 + 38 = 56, the number of
user-selected key variables.

This suggests that 18 bits are guessed “implicitly” when storing up to
right hand sides in the equations and that there is a number-of-guesses/memory
tradeoff. The hypothesis is that setting the limit to S = 2! means we do not

218
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have to guess more than 56 — [ key variables. We tried FewGuess on the system
representing 16-round DES using other values for S and guessing the key bits in
the order 1,2, ... to check this hypothesis.

These few tests show the hypothesis is not exactly true, but almost. The order
in which the variables are guessed plays a part.

5 The Security of S-Box Based Ciphers

In this section we will use the MRHS representation of equations to find an
easily stated problem about vector spaces. This problem is independent of the
structure of a particular S-box based cipher, and it has to be hard to solve if
ciphers in this class are to remain secure.

Assume we are given an S-box based cipher and construct its MRHS equation
system using a total of n variables. Let the number of input bits to the S-box(es)
used be p, let the number of S-boxes used to process one encryption be ¢ and let
the number of output bits of the S-box be k — p. The MRHS equation system
we get will be

A1X= [Bﬂ,...,AqX: [Bq], (5)

where each A; is a k X n-matrix and each B; is a k x 2P-matrix. Let us set this
system up as if we are going to glue all equations into one big MRHS equation
Ax = [B] in one operation:

A] X1 B] 0 O
A2 X2 0 Bo .
=| .|+ .|+ (6)
: : : : 0
A, T 0 0 B,

Using linear algebra we compute U such that U multiplied by the matrix on
the left hand side of (@) is upper triangular. As in Section B3] let us call the
resulting matrix C' and let U multiplied with the bracket containing B; be Tj;.
Multiplying through with U gives us

Cx =T+ [To] + ... + [T4], (7)

where we are supposed to select exactly one column from each 7; and add them
together to create a possible right hand side for Cx.

The matrix C' has gk rows and n columns, and there are no linear relations
among the variables (if there were, we would eliminate some variables first).
Hence the last gk — n rows of C' are all-zero rows and put the constraint on the
selection of the columns from the 7T;’s that their sum must be zero in the last
qk — n coordinates. If we can find such a selection of columns from the T;’s we
get a consistent linear system with a unique right hand side, and solving this we
get the solution to (Hl).
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Let Pr(-) be the projection onto the last gk — n coordinates and let Z; =
(Pr(T;))T. Concatenate the matrices Z; like in the left hand side of (@) and call
the resulting matrix Z.

The number of rows in Z is 2Pg and the number of columns is gk — n. Our
problem has been transformed to picking exactly one row from each Z; such
that they add up to 0. Similarly to the computation of U, we can compute a
(2Pq x 2Pg)-matrix M such that M Z is upper triangular. Let the matrix formed
by the last 2Pq — gk + n rows of M be called My. Then any v from the row space
of My will give vZ = 0.

Definition 1. We say that a binary vector v = (vi,...,v,) where |v;| = 2P for
some q and p has the ql-property if the Hamming weight of each v; is one.

We can now state the problem as follows.

A fundamental problem for S-box based ciphers. Given a binary matriz
My with 2Pq columns for some p and q. If there are vectors in the row space of
My with the ql-property, find one.

If we can solve this problem, the 1-bits in the found vector will indicate exactly
which right hand sides that can be added together in (@) to form a consistent lin-
ear system. This would solve () and break any S-box based cipher, hence it must
be a hard problem if these ciphers are to remain secure. On the other hand, if we
can break an S-box based cipher (find its key given some plaintext/ciphertext
pairs) we find the solution to the corresponding MRHS equation system and
the positions of the correct right hand sides in each equation. Setting a 1-bit
in these positions will give us a vector with the ql-property which is found in
the rowspace of the associated M. This shows that solving the fundamental
problem corresponding to an S-box based cipher is equivalent to breaking the
cipher.

We do not propose any ideas for efficiently solving the fundamental problem
here, but instead we take a look at the actual values of p, ¢, k and n for DES and
AES to briefly see what the problem will look like in these specific instances.

For the full 16 round DES, we get p = 6,¢ = 128,k = 10 and n = 56+414-32 =
504. The matrix My will in this instance be a 7416 x 8192-matrix. For the full
AES with 128-bit key we get p = 8, ¢ = 200,k = 16 and n = 1600. This gives a
Moy with 49600 rows and 51200 columns. In both cases we see that the number
of rows in My is so much larger than the number of bits in the user-selected
key that any algorithm solving the fundamental problem must be polynomial
(or very close to polynomial) in the number of rows of My to give an efficient
attack.
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6 Conclusions

The purpose of this paper is to show that the MRHS representation of non-linear
equations should be taken into consideration when discussing algebraic attacks.

The representation of equations does matter. In [2] the authors do algebraic
cryptanalysis of reduced-round DES, comparing their own technique to those
implemented in software packages like MAGMA and Singular. The representa-
tion used for the equations is MPs, and the results are not as good as when
they convert the equation system into CNF form and use a SAT-solver. There
are some important differences between the MRHS representation and the MP
representation.

First, the size of an MRHS equation is independent of the linear operations
taking place between the use of two S-boxes. We may describe an S-box using a
set of MPs in x- (input) and y- (output) variables. When the x and y are linear
combinations of variables the size of these polynomials in ANF form will be very
dependent on the number of variables in each linear combination.

Second, the degree of the MPs representing an S-box plays a crucial role for the
complexity of solving a MP equation system. For MRHS equations this degree
is irrelevant, the complexity of using the techniques described in this paper does
not depend on it.

Third, there are fewer equations in an MRHS equation system than in a
system of MP equations representing a cipher. One S-box gives rise to one MRHS
equation, while there are a number of MP equations associated with one S-box.
The strategies taken for solving these systems are also different in nature. When
using MP representation we usually want to create more equations, to be able to
solve by re-lienarization or find a Grébner basis. This consumes a lot of memory
in implementations. When using MRHS representation we want to reduce the
number of equations by gluing, and to remove right hand sides.

Fourth, we are not aware of any method for finding and extracting all linear
equations that might implicitly be hiding in a non-linear MP equation. The
method described in Section allows us to efficiently do this for an MRHS
equation.

Using the MRHS representation also allowed us to derive a problem about
finding a vector with a special property in a given vector space and show that
solving this problem is equivalent to breaking any S-box based cipher. A lot
of effort has been spent on the problems of factoring and discrete logarithms
for assessing the security of several primitives in public key cryptography. It
is reasonable to look more closely on the fundamental problem of S-box based
ciphers stated in this paper, since the security of the AES depends on it.

We think that the MRHS representation of equations is better suited than
MPs for systems representing an S-box based cipher. As traditional methods for
solving MP equation systems tend to run out of memory, even on rather small
systems, MRHS equation systems representing full ciphers can be constructed,
and worked with. The MRHS representation of equations should go into the
toolbox for algebraic cryptanalysis.
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A Example of Agreeing and Extracting Linear Equations

A.1 Agreeing Example

We want to agree the following two equations:

Ay T B, Az T B>
11000 T2 0011 00101 T2 0011
01010 z3 | =(0101 01010 3 | =(0101
00110 T4 1110 01100 T4 0001

5 Is5

We compute U to make {ﬁl] triangular and find 773 = U [%1] and T, =
2

0
U[BJ.
100000 11000
010000 01010
001000 A7 _|oot110
U=loo1100 C‘l]Lh]_ 00011
010010 00000

011001 00000


http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.ecrypt.eu.org/stream/triviump3.html
http://eprint.iacr.org/
http://www.cl.cam.ac.uk/~rja14/serpent.html
http://gro.noekeon.org/
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0011 0000
0101 0000
1110 0000

i=11110 =10011
0101 0101
1011 0001

We see that r = 2, and that Prq N Pry = {(é), G)} The projections of the first
and third columns from both 77 and T» fall outside the intersection, hence the
first and third columns from both B; and By have been identified as wrong.
After agreeing the equations are

Ay Ty B1 Ay T B>
11000 T2 01 00101 T2 01
01010 zs | =11 01010 rzs | =11
00110 Tq 10 01100 T4 01

I5 Ts5

A.2 Example of Extracting Linear Equations

We take the equation A;x = [By], and extract linear equations from it. First we
compute U to make B upper triangular, and multiply through to arrive at the
following MRHS equation

UA; 1 UB;
00110 To 10
11000 x3 | =01
10100 Ty 00

x5

From the bottom row we get the linear equation ;1 + 3 = 0. Adding the two
top rows will create the 1-vector in U By, hence by adding the two top rows from
U Ay we also get the linear equation x1 + xo + x3 + x4 = 1.
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