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Abstract—With the growing adoption of self-adaptive systems
in various domains, there is an increasing need for strategies to
assess their correct behavior. In particular self-healing systems,
which aim to provide resilience and fault-tolerance, often deal
with unanticipated failures in critical and highly dynamic environ-
ments. Their reactive and complex behavior makes it challenging
to assess if these systems execute according to the desired goals.
Recently, several studies have expressed concern about the lack
of systematic evaluation methods for self-healing behavior.

In this paper, we propose CHESS, an approach for the sys-
tematic evaluation of self-adaptive and self-healing systems that
builds on chaos engineering. Chaos engineering is a methodology
for subjecting a system to unexpected conditions and scenarios.
It has shown great promise in helping developers build resilient
microservice architectures and cyber-physical systems. CHESS
turns this idea around by using chaos engineering to evaluate how
well a self-healing system can withstand such perturbations. We
investigate the viability of this approach through an exploratory
study on a self-healing smart office environment. The study helps
us explore the promises and limitations of the approach, as well as
identify directions where additional work is needed. We conclude
with a summary of lessons learned.

Index Terms—self-healing, resilience, chaos engineering, eval-
uation, exploratory study

I. INTRODUCTION

There is a growing interest in the research of self-adaptive
and self-healing systems in domains such as the internet of
things (IoT), Infrastructure as a Service (IaaS), cyber-physical
systems (CPS), and Industry 4.0, with some of these systems
likely to be adopted into mainstream solutions [[1]]. Systems
in these domains often have to deal with uncertainty and
unanticipated behavior due to the highly dynamic environments
in which they operate, which increases the need for providing
fault tolerance and resilient behavior [2]. Known strategies
for achieving these qualities include monitoring, reconfiguring,
redundancy, maintenance, and automated repair [3]. However,
given the complex and dynamic nature of the domains in which
these systems operate, it is challenging to anticipate all possible
scenarios. Therefore, there is a growing trend towards systems
that are capable of making dynamic decisions at runtime.
Several studies have expressed concern about the lack of
systematic evaluation of self-adaptive systems (SAS) and self-
healing systems (SHS) [4-6]]. A systematic mapping study of
self-adaptive service-oriented applications shows that only 7 out
of 60 studies deal with the evaluation of previously developed
applications [5]. In addition, there is a lack of automated tools
to support evaluations based on runtime measures, and most
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studies concern evaluations focusing on the models used to
design the system [|6]. These models estimate the type of failure
and respective repair actions at either design or deployment
time, which usually misses some crucial scenarios that a system
can face under operation. Runtime models overcome some of
these limitations by leveraging first-class abstractions of the
runtime system, but they come with their own challenges, such
as the need for model creation and maintenance [7].

At a high-level, self-adaptive and self-healing systems can
be seen as comprising a managed system that is controlled by
a managing system. Although there is a considerable body of
work on evaluating managed systems, far less attention is given
to evaluating managing systems, the topic of this paper. Several
aspects of self-adaptive systems make it challenging to systemat-
ically evaluate their behavior. First, a wide variety of approaches
can be used to engineer the managing systems, ranging from
static, reactive, parametric solutions to dynamic, proactive,
structural solutions [8]]. Second, parts of the managing system
can be realized using black-box components, e.g., from control
engineering [9]], bio-inspired solutions [10], or reinforcement
learning [11]. Moreover, the adaptation strategy plays an
essential role, and there are many levels where adaptation can
occur, including the system software, specific components in
the system, communication between components, or the context
itself [12f]. Finally, when SAS/SHS take dynamic decisions
at runtime, they can exhibit emergent behaviors not seen or
conceived before [13]].

Contributions: The key contributions of this work include:
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II. BACKGROUND

When studying the literature on self-adaptive and self-healing
systems, some confusion can arise around the terms evaluation,
testing, assurance, verification, and validation, as these are
used with both different and overlapping meanings in various
relevant studies. To ensure a common understanding, we review
some of the relevant notions from the literature, and establish a
working definition of what we mean with the term evaluation.

Tamura et al. [14] discuss the notion of runtime verification
and validation of self-adaptive software systems in comparison
to V&V in software engineering. A concept of viability zone
is introduced as a set of possible states in which the system
is not compromised. The goal of V&V is to keep the system
inside its viability zone. Verification and validation tasks are
added as common elements with each component of a MAPE-K
feedback loop. The notion of assurance is quite often used for
related concepts in the domain of self-adaptive systems [15]].
Provisioning assurances aim to provide specific guarantees
about the functionality and quality of the self-adaptive system
and to manage uncertainties. Several techniques to provide
guarantees under uncertainties are discussed by Weyns [[16].
However, providing evidence for the value of self-adaptive
systems is still considered one of the biggest challenges.

For defining evaluation, we build on Barr’s work that
examines testing and evaluation in the context of V&V for new
domains [17]. The study distinguishes testing and evaluation
based on several factors: Testing generally takes place earlier
in the development lifecycle. It focuses on identifying and
correcting faults in the implemented code and involves code
coverage determined based on implementation details. In
contrast, evaluation usually occurs later in the development
lifecycle, most often after a system is complete. It determines
how well the system works and how it will perform when
put into operation. Systems are evaluated regardless of the
implementation details, and the overall focus is on domain
coverage. Therefore, we define evaluation of SAS and SHS as
"an approach to determine if a system meets objectives under
operation, identify areas in which the system performs as well
as desired or predicted, and provide evidence to the value and
applicability of the system".

III. RELATED WORK

We survey the state-of-the-art on evaluating self-adaptive and
self-healing systems and categorize it into six main topics:

Reviews of evaluations in existing literature: Gerostathopou-
los et al. investigate how studies published over the last decade
at the International Symposium on Software Engineering
for Adaptive and Self-Managing Systems (SEAMS) were
evaluated [4]]. The authors provide an in-depth analysis and
characterization of how the experimental evaluations have
been designed, conducted, analyzed, and packaged. Raibulet
et al. propose a taxonomy for structuring evaluations on self-
* gystems [[18]]. The taxonomy comprises elements such as
the scope of the system (managed or managing), whether
the evaluation concerns the entire software or a part of
it, design time or runtime executions, adaptation types, etc.

Ghahremani et al. present the state-of-the-art in evaluating the
performances of self-healing systems and classifying different
input types (failure models) for these systems [7]. One of
their main findings is that inputs used for evaluation are often
not sophisticated enough to represent real-life scenarios. They
present experiments on a simulator of mRUBiS (an exemplar
of a self-adaptive marketplace that hosts an arbitrary number
of shops [[19]), which show how such weak inputs can lead to
incorrect conclusions from an evaluation.
Evaluation frameworks, criteria, and metrics: Several
studies have developed frameworks to guide evaluation. The
Performability framework [20] has been quite popular in dealing
with the analysis of the fault-tolerant system. Villegas et al. [21]
propose a framework for evaluating quality-driven SAS and pro-
vide a detailed mapping between adaptation properties (derived
from control theory properties) and software quality attributes.
For instance, the adaptation property Robustness is linked
with the quality attributes dependability (i.e., reliability and
availability) and safety. The adaptivity metrics framework [22]]
is proposed for measuring the adaptivity of a computing
system. A metric and a framework are also presented for the
performance evaluation of the self-organizing mechanism [23]].
Although not directly guiding the evaluation, the SEAMS
community collected a set of exemplars and reusable artifacts
to facilitate reproducible researchﬂ

Other studies have focused on the criteria and metrics to
perform the evaluation. Self-healing benchmark [24] is one of
the earliest attempts to provide a mechanism to evaluate the
recently introduced SHS at that time. They propose effectiveness
score and autonomic maturity as the metrics to measure how
effectively a system heals to disturbances, and how autonomic
the healing response is, respectively. Kaddoum er al. [25]]
outline criteria for different categories for evaluating SAS
and SHS including runtime evaluation. They propose the
notion of homeostasis and robustness ability, defined as the
capacity of regaining an ideal state in which the system is
operating in a maximum efficient way after being perturbed,
and the system’s capacity to maintain its behavior when
perturbations occur, respectively. Almeida et al. [26] propose
resilience benchmarking of SAS through the extension of the
previous works on performance and dependability benchmarks.
A quantification method for robustness in self-adaptive and self-
organizing systems (SASO) is also discussed [27]. Recently,
a catalog of 18 performance measures was extracted from 32
previous studies that evaluated SAS [28§]].
Model-based Evaluation: Lotus@Runtime [29] utilizes
models for runtime monitoring and verification of SAS. The
tool updates the system model, which is created at design
time, with the new probabilities of occurrences of each system
action at runtime, and performs runtime checks against the
updated probabilistic state-based model of the system. Hussein
et al. introduce a scenario-based approach for validating the
requirements of context-aware adaptive services along with
a technique to enumerate and generate the services’ variants
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from their scenarios which are then transformed into formal
models to validate against the relevant service properties [30].
The tool extends the UML sequence diagram to specify service
properties that must be maintained when the service adapts
at runtime. Torjusen ef al. [31] integrate runtime verification
enablers, which are models @runtime, requirements @runtime,
dynamic context monitoring, and runtime verification compo-
nent, into the feedback loop of the ASSET project, which is
an adaptive security framework for IoT in eHealth.
Metrics-based Evaluation: Cheng er al. [32] evaluate a
self-adaptive system implemented using the Rainbow frame-
work [33]. Although the self-adaptation framework is model-
based, the evaluation is based on performance metrics. TESS is
an automated performance evaluation testbed for self-adaptive
and self-healing systems [34]. The system collects metrics from
the logs generated during execution. Aktas et al. [35] propose
a runtime verification mechanism which applies a rule-based
pattern detection on the provenance metadata of the execution
traces of a self-healing IoT application to identify faulty
behaviors at runtime. Duarte et al. [36] evaluate a self-healing
IoT system based on Node-RED [37]]. They present several
experiments simulating two IoT failure scenarios regarding
sensor reading and timing issues. The experiments make use
of fault injection in an instrumented version of the MQTT
message broker. Our study uses a chaos engine instead of an
instrumented MQTT broker and experiments with four failure
scenarios where two of them overlap with their scenarios.
Model Checking: Camara et al. [38|] propose probabilistic
model checking for evaluating the resilience of SAS. They
collect experimental data by stimulating the system’s environ-
ment and generate a model based on the aggregated execution
traces. System properties are verified by checking the generated
model against a specification. Filieri et al. [|39] propose runtime
probabilistic model checking for SAS. They compare the
existing approaches that used model checking and focus on the
reliability and performance properties of the system. Runtime
Quantitative Verification (RQV) is a well-known technique that
implements closed-loop control of SAS based on stochastic
models of the system [40]. Scen@rist [41]] is a scenario-based
approach that extends Lotus@Runtime [29]. The tool collects
scenario-based execution traces of an instrumented version of a
SAS at runtime, transforms them into probabilistic state-based
models, and uses model checking to check conformance against
properties specified by the user. The ActivFORMS approach
is introduced to automatically analyze the compliance with the
adaptation goals of a SAS at runtime by utilizing automata
models and statistical model checking [42].

Testing self-adaptive systems: Two recent systematic litera-
ture reviews focus on testing self-adaptive systems: Siqueira et
al. [43] analyze and characterize different approaches for testing
SAS, and Lahami ef al. [44] present advances and approaches
for runtime testing of dynamically adaptable and distributed
systems. King er al. [45]] introduce implicit self-testing of
SAS. They propose two strategies for validating the managed
systems at runtime: RV (replication with validation) and SAV
(safe adaptation with validation). RV tests adaptive changes

using copies of the managed resources, whereas SAV deals
directly with the managed resources. Other studies have used
model-based testing to validate self-healing CPS. One such
study proposes a modeling framework to specify executable
test models and an accompanying test model executor to
execute these models [46]]. Another proposes a fragility-oriented
testing approach that learns from test executions and introduces
uncertainties to test the self-healing behaviors of a CPS [47].

IV. CHESS: CHAOS ENGINEERING FOR EVALUATING
SELF-ADAPTIVE AND SELF-HEALING SYSTEMS

Our survey of state-of-the-art (Section shows that there is a
shortage of generic techniques for the systematic evaluation of
SAS and SHS based on their execution under real-life failure
scenarios (as opposed to comparisons to conceptual models).
We address this gap by introducing CHESS, which evaluates
SAS and SHS through a mechanism that systematically exposes
the system to faults and checks whether it can recover from
these perturbations. The overall architecture of CHESS is
shown in Figure [I] Faults are injected into the managed system
following the principles of chaos engineering (CE). The self-
healing system comprises a feedback loop that follows the
MAPE-K reference model [48]], reflected in the fault detection,
fault diagnosis, and fault recovery and knowledge modules.
System self-monitoring provides extensive monitoring and data
collection to capture the status of the system-under-evaluation
before, during, and after fault injection for further analysis.
Chaos engineering is a discipline of experimenting with
software systems in production-like environments to build
confidence in their capability to withstand turbulent and unex-
pected conditions [49]. Improving system resilience through
fault injection has been practiced for decades, and in recent
years chaos engineering has emerged as a popular technique
for conducting systematic fault injection experiments [50].

A. Process Flow of CHESS

Our proposed approach leverages CE by using the chaos cycle
as part of the process flow and by following the main principles
of CE to design and run the chaos experiments (Figure [2). The
four main principles of CE are as follows: building a hypothesis
around steady-state behavior, varying real-world events, running
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experiments in production and automating experiments to run
continuously [49].

To check the steady-state, we capture the execution of the
system and its components through system logs or execution
traces. We can evaluate the system’s behavior based on
these logs, user requirements, and software quality attributes.
Moreover, when designing the chaos experiment, we can decide
the type and level of faults to inject into the system and select
a chaos tool accordingly. During chaos experiment selection,
we randomly select a chaos experiment to run from the pool of
chaos experiments to trigger certain system failures. As a result
of these induced failures, the self-healing system would activate
repair actions or perform adaptations to keep the system satisfy
specific requirements. The mechanism will observe and log the
system state again to evaluate the system against the selected
chaos experiments. This process can be repeated in a loop to
perform a deeper evaluation covering several aspects and quality
attributes. Moreover, we can improve the quality of successive
chaos experiments by using the evaluation feedback against
each executed chaos experiment. Figure [3] shows different
types of comparisons for evaluation as part of the sequential
invocations of the chaos cycle. System states are frequently
captured during the chaos cycle. This allows for comparisons
between various system states both prior to, during, and after
the injection of faults, as well as compliance checking for the
requirements at any given state.

B. Research Questions

We examine the viability of CHESS through an exploratory
study that aims to to address the following research questions:
RQI: To what extent can we leverage CE for evaluating
SHS and SAS under realistic failure scenarios?
How does the observability of the system-under-
evaluation affect CHESS’s evaluation capability?
What kind of limitations does the use of CE bring
for the evaluation of SHS and SAS?
aims to understand the nature of failures in SHS and
SAS in terms of their properties. Moreover, it investigates
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how we can effectively use CE to model failures that mimic
realistic situations and maximize domain coverage. In com-
plex distributed systems, different faults can lead to system
failures [51]. Finding the relation between faults and the
corresponding failures is often challenging. Furthermore, a
failure often does not occur in isolation but can be correlated
to other failures concerning time or space. We can categorize
failures into independent failures, uniform or persistent failures,
and bursty or cascading failures. To develop chaos experiments
that represent a diverse set of realistic failure scenarios for SHS,
we build on the model for failures occurring in a distributed
system [52] which proposes three components (i.e., group size,
inter-arrival time, and resource downtime). Group size refers
to the number of failures present in a system in each space-
correlated failure whereas inter-arrival time and downtime refer
to the time between consecutive failures and the downtime
caused by these failures.

[RQ2] explores how limited observability in the context of
SHS and SAS affects the evaluation and what minimum
observability levels are required to ensure evaluation for specific
quality attributes. There can be multiple levels to the observ-
ability [53] such as system calls or low-level, component level,
and application level. The lack of observability at these levels
can limit our ability to evaluate an SHS. Furthermore, specific
components of a SAS and SHS can be unobservable 54 |S5].
Nevertheless, they are often connected to other observable
components to perform different tasks. It is challenging to
accurately evaluate the compliance of a particular attribute
for a task containing these components. Moreover, there can
be limitations regarding observability for specific hardware
components with SHS deployment or limitations concerning
the system’s architecture.

Finally, RQJ] investigates the limitations of using chaos
engineering for evaluation, and to which extent additional mea-
sures can assist in overcoming these limitations. For example,
chaos engineering can seriously disrupt the functioning of a
system [56], and the blast radius of a chaos experiment is used
to describe the extent of the damage that the experiment can
cause to a running system. This question examines to what
extent the blast radius can interact with the need for control
and predictability during a systematic evaluation.



V. STUDY DESIGN

We examine the viability of CHESS through an exploratory
study on a self-healing smart office application. We considered
several factors while designing this study. First, we looked at
the most commonly used quality attributes (i.e. performance,
availability, reliability, and security) in SAS and SHS stud-
ies [57,|38]], and chose to focus our evaluation on availability,
reliability, performance, and integrity. Since our smart office
does not cover all security aspects, we only considered integrity
which is one aspect of security [21]]. There are multiple ways
in which researchers have defined these attributes. In general,
availability means when all the components in a given system
remain responsive. A reliable SHS will function according
to the specified requirements of the user. We can measure a
system’s performance against the time it takes to process a
specific event whereas integrity can be defined as the absence
of improper (or unauthorized) system alterations [S1]]. Second,
we investigated the models that define and explain failures
in the self-healing problem space. Several elements exist
including failure model, system response, completeness, and
design context [59]], each corresponding to several factors. For
instance, the failure model consists of failure duration, failure
manifestation, failure source, granularity, and failure profile
expectation. Ensuring that an evaluation covers all aspects
of these elements is often challenging. Therefore, we focus
instead on perturbations through chaos experiments utilizing
the failure model that can lead the system to face diverse
scenarios. The system can then be observed and evaluated
by checking system logs captured throughout the experiments.
Lastly, we looked at an appropriate environment to design our
experiments that enables varying conditions and the ability to
perturb the system and control different levels of observability.
Therefore, we propose to use microservices-based architecture
for our experiment design. The following section will discuss
the motivation behind choosing microservices and formulate
failure scenarios that can capture diverse aspects of an SHS’s
execution, considering the quality attributes under evaluation.
Distributed systems based on Microservices: Due to the
exploitation of benefits like faster delivery, improved scala-
bility, and greater autonomy, microservices have become a
standard way of implementing modules in SHS [60]. Although
distributed systems with microservices can suffer from network,
hardware, or application-level issues and are vulnerable to
various factors, they are ideal for implementing SHS because
microservices architectures offer a variety of strategies for deal-
ing with various issues. Moreover, their modular design makes
it relatively less complicated to target specific components and
keep track of independent units. Some existing studies have
explored the idea of fault injection and chaos engineering in
microservices. For instance, FILIBUSTER proposed service
level fault injection testing [61] that systematically identifies
resilience issues early in the development of microservice ap-
plications. ChaosOrca evaluates the resilience of containerized
applications through injecting system call errors [53]]. Frank et
al. designed a case study based on microservices architecture

TABLE I
MAPPING FAILURE SCENARIOS ONTO SYSTEM QUALITY ATTRIBUTES

Availability  Reliability — Integrity =~ Performance
FS-1 v v - v
FS-2 - v v -
FS-3 v v v -
FS-4 v - - v

for the problem of resilience requirement elicitation and used
ChaosToolkit-based chaos experiments to assess and improve
their architecture [62]]. ChaosTwin is a management framework
leveraging chaos engineering to digital twins for improving
configurations of a cloud-based video streaming service use
case [56, |63]. Our study considers a distributed IoT system
consisting of sensors, actuators, and multiple microservices
such as rule inference services, control, and system services.
Failure scenarios: Modeling a range of failure scenarios
that can cover diverse aspects of the system’s behavior and
functioning aids in performing a systematic evaluation of the
system with respect to the quality of services. Our study
leverages a failure model based on previous studies to ensure
realistic failures [52, [59]]. In addition, we aim to devise
categories of failure scenarios that can target a combination of
specific quality attributes. Our choice of failure scenarios is
based on common faults in IoT systems [64], as well as the
quality attributes considered. We consider the following four
categories of failure scenarios for performing our evaluation:

FS-1: a running service is down abruptly.

FS-2: a deployed sensor sends erroneous readings.
FS-3: a deployed sensor is down unexpectedly.
FS-4: a running service is delayed.

Table [I] shows the mapping of designed categories of failure
scenarios to targetting system attributes of availability, reliabil-
ity, integrity, and performance. These failure scenarios affect
the quality attributes of specific components in the SHS by
exposing the system to different faults and testing to which
extent it can provide resilience against these failures. Each
category covers a range of failure scenarios. FS-1 concerns the
unavailability of the services, which can cover scenarios ranging
from service crashes and service updates to communication
disruption between services and timeouts. FS-2 can include data
corruption, data loss during communication, and a hardware
fault causing the component to send incorrect data. In FS-3,
we can consider the failure of a hardware component (e.g.
due to a power outage) resulting in disconnection, or an
unauthorized alteration of a hardware component. FS-4 may
include delays between the services caused by overload at
communication channels or delays due to resource exhaustion
or limited capacity of a constraint device.

VI. SMART OFFICE EXPLORATORY STUDY USING CHESS

In this section, we describe our exploratory study using the
framework of CHESS, discuss our approach to cover each
failure scenario, and evaluate the implemented system with
two rounds of evaluation, each addressing different aspects



of evaluation. We consider a self-healing smart office for
deployment, experimentation, and monitoring. We consider a
simple scenario with two types of sensors, i.e., temperature and
motion sensors, two types of actuators, i.e., light and heating
actuators, and one external service for the weather. The smart
office scenario follows a set of user requirements such as indoor
temperature range [min, max], illumination levels based on time
of the day and weather conditions, and timeout for switching off
lights when the user is not present. The deployed smart office
services are sensor, external weather, control, actuator, and
user interface. We have two additional services named system
monitoring and system managing, where the former covers fault
detection and the latter covers fault diagnosis and recovery.
All these services interact with each other via the MQTT
broker. The sensor services publish periodic sensing data from
the sensors to the MQTT broker, and the external weather
service publishes the periodic weather data to the broker. The
control services take the sensing and weather data as input and
decide the control values for light and heating based on current
conditions and user-defined preferences. The user interface
shows the incoming sensing values; events generated, weather

conditions, current actuator controls, and sensors battery levels.

The system monitoring service keeps track of the running states
of all services, and the system managing service performs
edit actions on the running services. The edit actions include
deploying new services, deleting services, and updating service
configuration files. Figure [ shows the overall architecture of
the deployment and interactions of the service.

We designed sets of chaos tests for each failure scenario
following a failure model [52] and chose ChaosToolkit as
the chaos engine for performing chaos experiments on our
system. ChaosToolkit works with containers, Kubernetes, bare
metal, and most cloud providers. It comes with extensive
documentation and an example experiments suite. In our
scenario, we use ChaosToolkit-Kubernetes, one of the several
extensions of ChaosToolkit. We deploy the smart office services
and the self-monitoring service within a Kubernetes cluster,
allocating 4 CPUs and 6000MB memoryE] The number of
CPUs and memory needed may differ for another managed
system, depending on the number/type of services to be run.

A. Failure Scenario 1: Service Down

In this failure scenario, we design a set of chaos tests that
makes a running service unavailable by terminating its running
pods. Steady state hypothesis: all the running microservices
should be in healthy condition and responsive. A service can be
made unavailable for a particular time by deleting its running
pods back-to-back. The SHS deals with this failure by adding
auto-scaling to the service, which allows the service to keep
multiple replicas based on available CPU resources. The chaos
test includes: (i) deleting back-to-back pods for each service
one by one, (ii) deleting pods for a combination of k services,
and (iii) repeating the first two sets of experiments with varying
time intervals between them.

2 A replication package containing a VM for CHESS and the Smart Office
exploratory study is available via https://doi.org/10.5281/zenodo.6817764.
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B. Failure Scenario 2: Sensor Fault

In this failure scenario, we design a set of chaos tests that makes
a deployed sensor service faulty by injecting false readings
into it. Steady state hypothesis: the control service should not
be receiving erroneous sensing data through data validation.
The SHS deals with this failure by adding data validation to
the responsible services, and checking if the data is realistic
based on given ranges. It allows the SHS to timely identify,
unsubscribe, delete the faulty service, and replace it with the
deployment of a healthy service. We consider the injection of
realistic and unrealistic erroneous readings. Note that realistic
false readings are harder to detect due to their similarity with
the correct readings. Our set of chaos tests includes: (i) injecting
the same realistic false readings to all the sensor services of
one type, (ii) injecting the same unrealistic false readings to all
the sensor services of one type, (iii) injecting mixed realistic
and unrealistic readings to all the sensor services of one type,
(iv) repeating the first three experiments to multiple types of
sensor services.

C. Failure Scenario 3: Sensor Down

In this set of experiments, we design a set of chaos tests
that makes a sensor down. Steady state hypothesis: the sensor
service must not be in an idle state. We can make a sensor
unavailable by making its battery resource drain. The SHS
deals with this failure by checking the sensor battery and
connection status via the responsible services, and raising an
alarm for the replacement of the sensor when battery drainage
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is detected. If a backup sensor is already available, it enables
it to respond promptly by connecting the sensing service to
the backup sensor. Our set of chaos tests includes: (i) draining
the battery of sensors one by one, (ii) draining the battery of a
combination of k sensors, and (iii) repeating the first two sets
of experiments with varying time intervals between them.

D. Failure Scenario 4: Service Delayed

In this failure scenario, we design a set of chaos tests that
reflects a delay in the communication of running services.
Steady state hypothesis: a relevant service must respond to the
sent commands within a set delay threshold. We can slow the
service communication by injecting a periodic delay into it,
e.g., injecting a delay of 20 seconds in the communication
after every two minutes. The SHS deals with this failure by
keeping track of the average response times of the running
services. It aids in identifying service delays at early stages,
terminating services that exceed the threshold, and replacing
them by deploying healthy service instances. The chaos test
includes: (i) injecting delay in the services one by one, (ii)
injecting delay in a combination of k services, and (iii) repeating
the first two sets of experiments with varying time intervals.

E. Evaluation

In order to evaluate our system, we perform two rounds of
chaos experiments to examine changes in system behavior and
their impact on quality attributes. The first evaluation round
examines self-healing behavior: we perform failure injections
into the running services that allow us to both analyze the
impact of the failures through the blast radius, as well as
analyze the effects on the system’s quality attributes referenced
in Table[l] The second evaluation round examines self-adaptive
behavior: we test our system under increasing loads to evaluate
how these affect the performance of the system.

Round 1: (self-healing) single-service/multi-service failure in-
Jection to examine blast radius.

Round 2: (self-adaptive) step-wise increase in service requests
to examine performance under varying loads.

Self-healing Evaluation (Round 1): We inject failures into
eight services and show how a deviation in each service’s
running state impacts other services. Figure [5] shows the blast
radius of the system for running chaos experiments on the
vulnerable deployed services. The grey color represents the
primary service of the failure injection in a chaos experiment.
The yellow color represents low-level impact (functionality
slightly affected), the orange color represents medium-level
impact (functionality partially affected), and the red color
represents high-level impact (service not functional).

We can map failure scenario 1 (FS-1) to each of the services,
and the resulting impact is shown in Figure [5] rows 1 to
8. Failure scenario 2 (FS-2) and failure scenario 3 (FS-3)
correspond to the temperature sensor service failure (row 1)
and motion sensor service failure (row 2). Similarly, failure
scenario 4 (FS-4) also maps to each of these services, i.e., from
sensor service delay to control and actuator service delay.
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Fig. 5. Blast radius of chaos experiments on vulnerable services

Figure 5] row 1, shows the blast radius for when the
temperature service deviates from its running state. When
the temperature sensor service faces a failure, at first, it puts a
low-level impact on the user interface service and a high-level
impact on the heating control service. User interface service
has a low-level impact because all other services are still
running, and the service data is being streamed. However, the
user cannot visualize the temperature and resulting temperature
control data. A high-level impact on heating control service
because it highly depends on current temperature values to
devise decisions for heating control. At the next timestamp,
there is an impact on the heating actuator service as it depends
on the control commands from the heating control service.

Figure E], row 2, show the blast radius for when the motion
sensor service deviates from its running state. In this case,
the light control service only has a medium-level impact
because our system derives the light control from motion
event information, outdoor weather conditions, and the current
time of the day. When one of the inputs is unavailable, the
light control is based on the other two available inputs. Hence,
the light control service is still functional but not to its full
potential. In the next timestamp, the light actuator service is
impacted due to the impact on the light control service. The
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Fig. 6. Performance evaluation under varying system load

blast radius of the external-weather service (Figure E], row 3)
is similar to that of the motion sensor service.

Figure [5] row 4, shows that all running services are down as
the result of a failure of the MQTT-broker service. In Figure [5]
row 5 and row 6, the blast radius for a failure in heating control
and light control reflects a high-level impact on the heating
actuator service and light actuator service, respectively. Finally,
Figure E], row 7 and row 8, show that the blast radius for a
failure in the heating actuator service and light actuator service
at first reflects a medium-level impact on heating control service
and light control service, respectively. The control services stay
functional if the actuator services face a failure for a short
period. However, if the actuator services remain down for
a significant amount of time, it eventually puts a high-level
impact on control services. We observe that the blast radius for
service delay failures varies based on the average delay time.

Further, we observe whether the failure of one service can
make other services unavailable, less responsive, delayed, faulty,
or idle. None of the failure scenarios deviates from any other
service’s state to unavailable. All four failure scenarios make
other services less responsive and delayed due to either no
input data from a service, incorrect input data, or delayed
response from the service. Only FS-2 can make other services
faulty, as when incorrect sensing data is received, it can lead
to the generation of faulty control commands. All four failure
scenarios can deviate other services’ states to idle for a certain
amount of time, e.g., when there is no input data, delayed input
data, or incorrect input data.

Self-Adaptive Evaluation (Round 2): We analyze the
performance of a system under load using an experiment
that gradually increases the service request rates. We run the

experiment of gradually increasing the load for twenty minutes.

The experiment starts with one user and adds a new user every
20 seconds. Each user attempts to access the light control
service once every second.

The top graph of Figure [6] shows the load and capacity of
the system, represented by the number of users, the number
of service responses per second, and the number of deployed
service replicas. The bottom graph shows the system response
times corresponding to the load, represented by the average
response time, response time of the slowest ten percent requests,

and the response times of the slowest one percent requests.
The X-axis shows the timeline of the experiment.

The top graph shows that as the number of users starts rising,
there is a corresponding rise in the number of responses per
second. The service starts with one replica running, but the
number of replicas gradually increases with the increase in
incoming requests’ load. At the experiment’s peak, the number
of replicas reaches twenty, which was the configured maximum.
After termination of the user load, the number of available
replicas remains twenty for the following seven minutes, then
reducing to two replicas for the following four minutes before
it gets down to one replica again. The system delays reducing
the number of replicas as a safe strategy for maintaining buffer
time so it can execute any pending requests and an unexpected
rise in the load. At the end of the experiment, we see that the
number of responses does not drop suddenly, reflecting a few
seconds delay in the service response under increased load.

The bottom graph shows that the response time starts
with a relatively gradual increase during the first half of the
experiment, while there is still less load on the service. High
variations are observed in the response times during the second
half of the experiment, as the loads keep increasing every
twenty seconds, with more users trying to access the service
each second. Once the active users are terminated, the response
time drops from 1 second to 0.2 seconds. It remains 0.2 seconds
for about two minutes, which reflects the handling of any
pending tasks before dropping down to zero.

VII. LESSONS LEARNED

This section summarizes the lessons learned from the experi-
ments that evaluate a self-healing smart office using CHESS.
[RQI: Chaos engineering can be used to inject multiple type
of faults into the containerized applications, that can mainly be
divided into two main catergories of infrastructure level faults
and functional level faults. Chaos engines (and their platform-
specific extensions) contain predefined chaos directives that can
be used to inject infrastructure level faults by modifying details
about the platform configuration, such as adding, deleting, and
scaling deployments and services, rerouting communication,
and killing endpoints. On the other hand, functional level faults
require additional knowledge of the system’s backend logic
and are therefore not directly supported by pre-defined chaos
directives. The chaos engines provide a solution of custom
faults injection for such cases. This challenge can be overcome
by (i) extending the system with custom functions that trigger
such functional level faults, and (ii) using specific functionality
of the chaos engine to call these custom functions as part of a
chaos experiment. Table [lI| presents the fault injection levels
for the various failure scenarios. Depending on the failure, a
system may require infrastructure level, functional level, or
both. FS-3 (Sensor Down) is a special case as it can be handled
by adding a custom function that changes a service’s behavior,
or by adding a second (faulty) service that is replacing the
correct service as the result of an infrastructure modification.
[RQ2: The levels of observability, for a system, heavily depend
on the type of implemented services e.g. observability level



TABLE II
LEVELS OF FAULT INJECTION NEEDED FOR THE FAILURE SCENARIOS

Infrastructure  Functional
Level Level
FS-1 : Service Down v -
FS-2 : Sensor Fault v v
FS-3 : Sensor Down v W)
FS-4 : Service Delayed v -

for containerized applications is mostly in black-box manner,
i.e., the internals of a deployed service can not be monitored.
The monitoring tools (such as prometheus, kiali and grafana)
enable observation of metrics regarding running deployments
and services including traffic inflow, traffic outflow, services’
health, and infrastructural level parameters such as deployments’
impact on system resources (e.g., RAM, CPU) and network
load. During the chaos experiments, the chaos engine also
collects chaos logs that collect information regarding exploited
services and changes in the system’s running state along
with the metrics like number of pods available, killed, or
terminated. However, many system details at the functional
level cannot be observed using monitoring tools or chaos logs,
for example, determining if a service is receiving erroneous
data or if a service is stuck in a certain state due to a functional
error. We address this shortcoming in CHESS using system
self-monitoring which ensures that in-depth observability is
available. This level of monitoring also serves to increase the
confidence in the evaluation results obtained. Table [Tl shows
a comparison of the various monitoring options for CHESS
experiments and the extent to which certain failure scenarios
need the observability provided by these monitoring options.
[RQ3: One of the main challenges while using CE for
evaluating SHS is to control the cascading effects of chaos
experiments. For a systematic and thorough evaluation, it is
vital to avoid superfluous failures. However, limiting the blast
radius to the set of relevant components requires an in-depth
understanding of system functionalities and dependencies. The
following measures can help to improve a system’s capacity
to limit the blast radius:

1) Context-awareness can support effective decision-making
and enable more effective evaluations of SHS.

2) Priority-awareness of involved tasks can help with ad-
dressing the most critical failures first, resulting in a
more optimal flow of resolving failures. This is especially
important in case of multiple failures and can help prevent
cascading failures, thereby minimizing the blast radius.

3) Conditional monitoring allows one to dig deeper into
error-prone areas while keeping the monitoring overhead
under control, aiding in fault identification and diagnosis.

Summary: Our overall conclusion is that the proposed CHESS
approach is viable, and that it enables systematic evaluation of
a self-adaptive or self-healing system by exposing the system
to a series of systematic perturbations at both the functional
and infrastructural level and analyzing its capacity to maintain,
or return to, its steady-state.

TABLE III
A COMPARISON OF MONITORING OPTIONS FOR CHESS EXPERIMENTS

Monitoring ~ Chaos System
Tools Logs Self-Monitoring
FS-1 : Service Down v v -
FS-2 : Sensor Fault - - v
FS-3 : Sensor Down v v v
FS-4 : Service Delayed v v -
VIII. CONCLUDING REMARKS
Contributions: This paper presents CHESS, an approach

for the systematic evaluation of self-adaptive and self-healing
systems that builds on chaos engineering principles. The
approach was informed by our literature survey of the state-
of-the-art in evaluating self-adaptive and self-healing systems,
which distinguishes the main evaluation approaches used in
the self-adaptive and self-healing literature and highlights the
main quality attributes analyzed in those evaluations. CHESS
systematically perturbates the system-under-evaluation and
records how the system responds to those perturbations. We
present the experimental design for evaluating distributed SHS
based on microservices and discuss common failure scenarios
and their mapping to quality attributes. We investigate the
viability of the proposed approach through an exploratory
study that evaluates the resilience of a self-healing smart office
application. We discuss the lessons learned while conducting
the study, which includes challenges w.r.t. chaos experiments at
the functional level (RQ1), the need for observability at various
levels of abstraction (RQ2), and limiting the cascading effects
of chaos experiments (RQ3). We conclude that with the help
of CHESS, we can analyze the system’s ability to maintain a
steady-state under adversarial perturbations at both functional
and infrastructural levels. Consequently, CHESS enables us to
effectively and systematically evaluate the proper behavior of
self-adaptive and self-healing systems.

Directions for Future Work: We are extending our work
with CHESS for data synthesis, which can provide training
data for self-healing systems with AI components. Other
directions for future work include evaluating the application
of CHESS to complex architectures such as multi-level inter-
dependent microservices and selecting chaos experiments with
the combination of multiple failure scenarios. It could also
be interesting to investigate techniques that enable automated
region selection for chaos experiments based on the health and
performance status of services. Further options to extend this
work include adding contextual information about the system-
under-evaluation, for example using ontologies or knowledge
graphs, that can be exploited in chaos experiments for smart
targeting of fault injection. Finally, for large and complex
systems, techniques similar to test-case selection may be needed
for selecting chaos experiments. More research is needed to
analyze how to do this without affecting evaluation quality.
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